In this paper, we derive the escape criteria for general complex polynomial $ f(x) = \sum_{i = 0}^{p}a_{i}x^{i} $ with $ p\geq2 $, where $ a_{i} \in \mathbb{C} $ for $ i = 0, 1, 2, \dots, p $ to generate the fractals. Moreover, we study the orbit of an implicit iteration (i.e., Jungck-Ishikawa iteration with $ s $-convexity) and develop algorithms for Mandelbrot set and Multi-corn or Multi-edge set. Moreover, we draw some complex graphs and observe how the graph of Mandelbrot set and Multi-corn or Multi-edge set vary with the variation of $ a_{i} $'s.
Citation: Haixia Zhang, Muhammad Tanveer, Yi-Xia Li, Qingxiu Peng, Nehad Ali Shah. Fixed point results of an implicit iterative scheme for fractal generations[J]. AIMS Mathematics, 2021, 6(12): 13170-13186. doi: 10.3934/math.2021761
In this paper, we derive the escape criteria for general complex polynomial $ f(x) = \sum_{i = 0}^{p}a_{i}x^{i} $ with $ p\geq2 $, where $ a_{i} \in \mathbb{C} $ for $ i = 0, 1, 2, \dots, p $ to generate the fractals. Moreover, we study the orbit of an implicit iteration (i.e., Jungck-Ishikawa iteration with $ s $-convexity) and develop algorithms for Mandelbrot set and Multi-corn or Multi-edge set. Moreover, we draw some complex graphs and observe how the graph of Mandelbrot set and Multi-corn or Multi-edge set vary with the variation of $ a_{i} $'s.
[1] | B. B. Mandelbrot, The fractal geometry of nature, New York: W. H. Freeman, 1982. |
[2] | Y. C. Kwun, M. Tanveer, W. Nazeer, K. Gdawiec, S. M. Kang, Mandelbrot and Julia sets via Jungck-CR iteration with $ s $convexity, IEEE Access, 7 (2019), 12167–12176. doi: 10.1109/ACCESS.2019.2892013 |
[3] | A. Lakhtakia, V. V. Varadan, R. Messier, V. K. Varadan, On the symmetries of the Julia sets for the process $z = z^p+ c, $ J. Phys. A-Math. Gen., 20 (1987), 3533. |
[4] | P. Blanchard, R. L. Devaney, A. Garijo, E. D. Russell, A generalized version of the McMullen domain, Int. J. Bifurcat. Chaos, 18 (2008), 2309–2318. doi: 10.1142/S0218127408021725 |
[5] | T. Kim, Quaternion Julia set shape optimization, Comput. Graph. Forum, 34 (2015), 167–176. |
[6] | V. Drakopoulos, N. Mimikou, T. Theoharis, An overview of parallel visualisation methods for Mandelbrot and Julia sets, Comput. Graph., 27 (2003), 635–646. doi: 10.1016/S0097-8493(03)00106-7 |
[7] | Y. Sun, L. Chen, R. Xu, R. Kong, An image encryption algorithm utilizing Julia sets and Hilbert curves, PloS one, 9 (2014), e84655. doi: 10.1371/journal.pone.0084655 |
[8] | M. Rani, V. Kumar, Superior julia set, Res. Math. Edu., 8 (2004), 261–277. |
[9] | M. Rani, V. Kumar, Superior mandelbrot set, Res. Math. Edu., 8 (2004), 279–291. |
[10] | M. Rani, R. Agarwal, Effect of stochastic noise on superior Julia sets, J. Math. Imaging Vis., 36 (2010), 63–68. doi: 10.1007/s10851-009-0171-0 |
[11] | M. Rani, R. Chugh, Julia sets and Mandelbrot sets in Noor orbit, Appl. Math. Comput., 228 (2014), 615–631. |
[12] | S. M. Kang, A. Rafiq, A. Latif, A. A. Shahid, Y. C. Kwun, Tricorns and multicorns of-iteration scheme, J. Funct. Space., 2015 (2015), 417167. |
[13] | K. Goyal, B. Prasad, Dynamics of iterative schemes for quadratic polynomial, AIP Conference Proceedings, 1897 (2017), 020031. doi: 10.1063/1.5008710 |
[14] | W. Nazeer, S. M. Kang, M. Tanveer, A. A. Shahid, Fixed point results in the generation of Julia and Mandelbrot sets, J. Inequal. Appl., 2015 (2015), 1–16. doi: 10.1186/1029-242X-2015-1 |
[15] | S. M. Kang, W. Nazeer, M. Tanveer, A. A. Shahid, New fixed point results for fractal generation in Jungck Noor orbit with-convexity, J. Funct. Space., 2015 (2015), 963016. |
[16] | D. Li, M. Tanveer, W. Nazeer, X. Guo, Boundaries of filled julia sets in generalized jungck mann orbit, IEEE Access, 7 (2019), 76859–76867. doi: 10.1109/ACCESS.2019.2920026 |
[17] | Y. C. Kwun, M. Tanveer, W. Nazeer, M. Abbas, S. M. Kang, Fractal generation in modified Jungck-S orbit, IEEE Access, 7 (2019), 35060–35071. doi: 10.1109/ACCESS.2019.2904677 |
[18] | Y. C. Kwun, M. Tanveer, W. Nazeer, K. Gdawiec, S. M. Kang, Mandelbrot and Julia sets via Jungck-CR iteration with $s$-convexity, IEEE Access, 7 (2019), 12167–12176. doi: 10.1109/ACCESS.2019.2892013 |
[19] | M. Barnsley, Fractals everywhere, 2nd Edition, Academic Press, 1993. |
[20] | R. L. Devaney, A first course in chaotic dynamical systems: Theory and experiment, CRC Press, 2018. |
[21] | X. Liu, Z. Zhu, G. Wang, W. Zhu, Composed accelerated escape time algorithm to construct the general Mandelbrot sets, Fractals, 9 (2001), 149–154. doi: 10.1142/S0218348X01000580 |
[22] | N. Hussain, V. Kumar, M. A. Kutbi, On rate of convergence of Jungck-type iterative schemes, Abstr. Appl. Anal., 2013 (2013), 132626. |