Research article

Fixed point results of an implicit iterative scheme for fractal generations

  • Received: 06 May 2021 Accepted: 23 August 2021 Published: 15 September 2021
  • MSC : 37F45, 37F50, 47J25

  • In this paper, we derive the escape criteria for general complex polynomial $ f(x) = \sum_{i = 0}^{p}a_{i}x^{i} $ with $ p\geq2 $, where $ a_{i} \in \mathbb{C} $ for $ i = 0, 1, 2, \dots, p $ to generate the fractals. Moreover, we study the orbit of an implicit iteration (i.e., Jungck-Ishikawa iteration with $ s $-convexity) and develop algorithms for Mandelbrot set and Multi-corn or Multi-edge set. Moreover, we draw some complex graphs and observe how the graph of Mandelbrot set and Multi-corn or Multi-edge set vary with the variation of $ a_{i} $'s.

    Citation: Haixia Zhang, Muhammad Tanveer, Yi-Xia Li, Qingxiu Peng, Nehad Ali Shah. Fixed point results of an implicit iterative scheme for fractal generations[J]. AIMS Mathematics, 2021, 6(12): 13170-13186. doi: 10.3934/math.2021761

    Related Papers:

  • In this paper, we derive the escape criteria for general complex polynomial $ f(x) = \sum_{i = 0}^{p}a_{i}x^{i} $ with $ p\geq2 $, where $ a_{i} \in \mathbb{C} $ for $ i = 0, 1, 2, \dots, p $ to generate the fractals. Moreover, we study the orbit of an implicit iteration (i.e., Jungck-Ishikawa iteration with $ s $-convexity) and develop algorithms for Mandelbrot set and Multi-corn or Multi-edge set. Moreover, we draw some complex graphs and observe how the graph of Mandelbrot set and Multi-corn or Multi-edge set vary with the variation of $ a_{i} $'s.



    加载中


    [1] B. B. Mandelbrot, The fractal geometry of nature, New York: W. H. Freeman, 1982.
    [2] Y. C. Kwun, M. Tanveer, W. Nazeer, K. Gdawiec, S. M. Kang, Mandelbrot and Julia sets via Jungck-CR iteration with $ s $convexity, IEEE Access, 7 (2019), 12167–12176. doi: 10.1109/ACCESS.2019.2892013
    [3] A. Lakhtakia, V. V. Varadan, R. Messier, V. K. Varadan, On the symmetries of the Julia sets for the process $z = z^p+ c, $ J. Phys. A-Math. Gen., 20 (1987), 3533.
    [4] P. Blanchard, R. L. Devaney, A. Garijo, E. D. Russell, A generalized version of the McMullen domain, Int. J. Bifurcat. Chaos, 18 (2008), 2309–2318. doi: 10.1142/S0218127408021725
    [5] T. Kim, Quaternion Julia set shape optimization, Comput. Graph. Forum, 34 (2015), 167–176.
    [6] V. Drakopoulos, N. Mimikou, T. Theoharis, An overview of parallel visualisation methods for Mandelbrot and Julia sets, Comput. Graph., 27 (2003), 635–646. doi: 10.1016/S0097-8493(03)00106-7
    [7] Y. Sun, L. Chen, R. Xu, R. Kong, An image encryption algorithm utilizing Julia sets and Hilbert curves, PloS one, 9 (2014), e84655. doi: 10.1371/journal.pone.0084655
    [8] M. Rani, V. Kumar, Superior julia set, Res. Math. Edu., 8 (2004), 261–277.
    [9] M. Rani, V. Kumar, Superior mandelbrot set, Res. Math. Edu., 8 (2004), 279–291.
    [10] M. Rani, R. Agarwal, Effect of stochastic noise on superior Julia sets, J. Math. Imaging Vis., 36 (2010), 63–68. doi: 10.1007/s10851-009-0171-0
    [11] M. Rani, R. Chugh, Julia sets and Mandelbrot sets in Noor orbit, Appl. Math. Comput., 228 (2014), 615–631.
    [12] S. M. Kang, A. Rafiq, A. Latif, A. A. Shahid, Y. C. Kwun, Tricorns and multicorns of-iteration scheme, J. Funct. Space., 2015 (2015), 417167.
    [13] K. Goyal, B. Prasad, Dynamics of iterative schemes for quadratic polynomial, AIP Conference Proceedings, 1897 (2017), 020031. doi: 10.1063/1.5008710
    [14] W. Nazeer, S. M. Kang, M. Tanveer, A. A. Shahid, Fixed point results in the generation of Julia and Mandelbrot sets, J. Inequal. Appl., 2015 (2015), 1–16. doi: 10.1186/1029-242X-2015-1
    [15] S. M. Kang, W. Nazeer, M. Tanveer, A. A. Shahid, New fixed point results for fractal generation in Jungck Noor orbit with-convexity, J. Funct. Space., 2015 (2015), 963016.
    [16] D. Li, M. Tanveer, W. Nazeer, X. Guo, Boundaries of filled julia sets in generalized jungck mann orbit, IEEE Access, 7 (2019), 76859–76867. doi: 10.1109/ACCESS.2019.2920026
    [17] Y. C. Kwun, M. Tanveer, W. Nazeer, M. Abbas, S. M. Kang, Fractal generation in modified Jungck-S orbit, IEEE Access, 7 (2019), 35060–35071. doi: 10.1109/ACCESS.2019.2904677
    [18] Y. C. Kwun, M. Tanveer, W. Nazeer, K. Gdawiec, S. M. Kang, Mandelbrot and Julia sets via Jungck-CR iteration with $s$-convexity, IEEE Access, 7 (2019), 12167–12176. doi: 10.1109/ACCESS.2019.2892013
    [19] M. Barnsley, Fractals everywhere, 2nd Edition, Academic Press, 1993.
    [20] R. L. Devaney, A first course in chaotic dynamical systems: Theory and experiment, CRC Press, 2018.
    [21] X. Liu, Z. Zhu, G. Wang, W. Zhu, Composed accelerated escape time algorithm to construct the general Mandelbrot sets, Fractals, 9 (2001), 149–154. doi: 10.1142/S0218348X01000580
    [22] N. Hussain, V. Kumar, M. A. Kutbi, On rate of convergence of Jungck-type iterative schemes, Abstr. Appl. Anal., 2013 (2013), 132626.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2167) PDF downloads(110) Cited by(8)

Article outline

Figures and Tables

Figures(18)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog