Let $ a, n $ be positive integers and $ S = \{x_1, ..., x_n\} $ be a set of $ n $ distinct positive integers. The set $ S $ is said to be gcd (resp. lcm) closed if $ \gcd(x_i, x_j)\in S $ (resp. $ [x_i, x_j]\in S $) for all integers $ i, j $ with $ 1\le i, j\le n $. We denote by $ (S^a) $ (resp. $ [S^a] $) the $ n\times n $ matrix having the $ a $th power of the greatest common divisor (resp. the least common multiple) of $ x_i $ and $ x_j $ as its $ (i, j) $-entry. In this paper, we mainly show that for any positive integer $ a $ with $ a\ge 2 $, the power LCM matrix $ [S^a] $ defined on a certain class of gcd-closed (resp. lcm-closed) sets $ S $ is nonsingular. This provides evidences to a conjecture raised by Shaofang Hong in 2002.
Citation: Guangyan Zhu, Kaimin Cheng, Wei Zhao. Notes on Hong's conjecture on nonsingularity of power LCM matrices[J]. AIMS Mathematics, 2022, 7(6): 10276-10285. doi: 10.3934/math.2022572
Let $ a, n $ be positive integers and $ S = \{x_1, ..., x_n\} $ be a set of $ n $ distinct positive integers. The set $ S $ is said to be gcd (resp. lcm) closed if $ \gcd(x_i, x_j)\in S $ (resp. $ [x_i, x_j]\in S $) for all integers $ i, j $ with $ 1\le i, j\le n $. We denote by $ (S^a) $ (resp. $ [S^a] $) the $ n\times n $ matrix having the $ a $th power of the greatest common divisor (resp. the least common multiple) of $ x_i $ and $ x_j $ as its $ (i, j) $-entry. In this paper, we mainly show that for any positive integer $ a $ with $ a\ge 2 $, the power LCM matrix $ [S^a] $ defined on a certain class of gcd-closed (resp. lcm-closed) sets $ S $ is nonsingular. This provides evidences to a conjecture raised by Shaofang Hong in 2002.
[1] | K. Bourque, S. Ligh, On GCD and LCM matrices, Linear Algebra Appl., 174 (1992), 65–74. https://doi.org/10.1016/0024-3795(92)90042-9 doi: 10.1016/0024-3795(92)90042-9 |
[2] | K. Bourque, S. Ligh, Matrices associated with multiplicative functions, Linear Algebra Appl., 216 (1995), 267–275. https://doi.org/10.1016/0024-3795(93)00154-R doi: 10.1016/0024-3795(93)00154-R |
[3] | W. Cao, On Hong's conjecture for power LCM matrices, Czech. Math. J., 57 (2007), 253–268. https://doi.org/10.1007/s10587-007-0059-3 doi: 10.1007/s10587-007-0059-3 |
[4] | S. Hong, LCM matrices on an $r$-fold gcd-closed set (Chinese), Journal of Sichuan University (Natural Science Edition), 33 (1996), 650–657. |
[5] | S. Hong, On LCM matrices on gcd-closed sets, Se. Asian B. Math., 22 (1998), 381–384. |
[6] | S. Hong, On the Bourque-Ligh conjecture of least common multiple matrices, J. Algebra, 218 (1999), 216–228. https://doi.org/10.1006/jabr.1998.7844 doi: 10.1006/jabr.1998.7844 |
[7] | S. Hong, Gcd-closed sets and determinants of matrices associated with arithmetical functions, Acta Arith., 101 (2002), 321–332. https://doi.org/10.4064/aa101-4-2 doi: 10.4064/aa101-4-2 |
[8] | S. Hong, Notes on power LCM matrices, Acta Arith., 111 (2004), 165–177. https://doi.org/10.4064/aa111-2-5 doi: 10.4064/aa111-2-5 |
[9] | S. Hong, Nonsingularity of matrices associated with classes of arithmetical functions, J. Algebra, 281 (2004), 1–14. https://doi.org/10.1016/j.jalgebra.2004.07.026 doi: 10.1016/j.jalgebra.2004.07.026 |
[10] | S. Hong, Nonsingularity of matrices associated with classes of arithmetical functions on lcm-closed sets, Linear Algebra Appl., 416 (2006), 124–134. https://doi.org/10.1016/j.laa.2005.10.009 doi: 10.1016/j.laa.2005.10.009 |
[11] | S. Hong, K. Shum, Q. Sun, On nonsingular power LCM matrices, Algebr. Colloq., 13 (2006), 689–704. https://doi.org/10.1142/S1005386706000642 doi: 10.1142/S1005386706000642 |
[12] | P. Haukkanen, J. Wang, J. Sillanp$\ddot{a}\ddot{a}$, On Smith's determinant, Linear Algebra Appl., 258 (1997), 251–269. https://doi.org/S0024-3795(96)00192-9 |
[13] | I. Korkee, M. Mattila, P. Haukkanen, A lattice-theoretic approach to the Bourque-Ligh conjecture, Linear Multilinear A., 67 (2019), 2471–2487. https://doi.org/10.1080/03081087.2018.1494695 doi: 10.1080/03081087.2018.1494695 |
[14] | M. Li, Notes on Hong's conjectures of real number power LCM matrices, J. Algebra, 315 (2007), 654–664. https://doi.org/10.1016/j.jalgebra.2007.05.005 doi: 10.1016/j.jalgebra.2007.05.005 |
[15] | H. Smith, On the value of a certain arithmetical determinant, P. Lond. Math. Soc., 7 (1875), 208–213. https://doi.org/10.1112/plms/s1-7.1.208 doi: 10.1112/plms/s1-7.1.208 |
[16] | J. Wan, S. Hu, Q. Tan, New results on nonsingular power LCM matrices, Electron. J. Linear Al., 27 (2014), 652–669. https://doi.org/10.13001/1081-3810.1927 doi: 10.13001/1081-3810.1927 |
[17] | G. Zhu, On the divisibility among power GCD and power LCM matrices on gcd-closed sets, Int. J. Number Theory, in press. https://doi.org/10.1142/S1793042122500701 |
[18] | G. Zhu, On a certain determinant for a U.F.D., Colloq. Math., unpublished work. |