Research article

Notes on Hong's conjecture on nonsingularity of power LCM matrices

Guangyan Zhu ${ }^{1}$, Kaimin Cheng ${ }^{2, *}$ and Wei Zhao ${ }^{3}$
${ }^{1}$ School of Teacher Education, Hubei Minzu University, Enshi 445000, China
${ }^{2}$ School of Mathematics and Information, China West Normal University, Nanchong 637009, China
${ }^{3}$ Science and Technology on Communication Security Laboratory, Chengdu 610041, China
* Correspondence: Email: ckm20@126.com, kmcheng@cwnu.edu.cn.

Abstract

Let a, n be positive integers and $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of n distinct positive integers. The set S is said to be gcd (resp. 1cm) closed if $\operatorname{gcd}\left(x_{i}, x_{j}\right) \in S$ (resp. $\left[x_{i}, x_{j}\right] \in S$) for all integers i, j with $1 \leq i, j \leq n$. We denote by $\left(S^{a}\right)$ (resp. $\left[S^{a}\right]$) the $n \times n$ matrix having the a th power of the greatest common divisor (resp. the least common multiple) of x_{i} and x_{j} as its (i, j)-entry. In this paper, we mainly show that for any positive integer a with $a \geq 2$, the power LCM matrix $\left[S^{a}\right]$ defined on a certain class of gcd-closed (resp. lcm-closed) sets S is nonsingular. This provides evidences to a conjecture raised by Shaofang Hong in 2002.

Keywords: power LCM matrix; power GCD matrix; nonsingularity; gcd-closed set
Mathematics Subject Classification: Primary 11C20; Secondary 11A05, 15B36

1. Introduction

Throughout, a, n stand for positive integers. Let $S=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of n distinct positive integers, where $x_{1}<\ldots<x_{n}$. We denote by (x, y) (resp. $[x, y]$) the greatest common divisor (resp. least common multiple) of integers x and y. Let $\left(f\left(\left(x_{i}, x_{j}\right)\right)\right.$) (abbreviated by $\left.(f(S))\right)$ be the $n \times n$ matrix whose (i, j)-entry is that the arithmetic function f evaluates at $\left(x_{i}, x_{j}\right)$. Let $\left(f\left(\left[x_{i}, x_{j}\right]\right)\right)$ (abbreviated by $(f[S])$) be the $n \times n$ matrix whose (i, j)-entry is that f evaluates at $\left[x_{i}, x_{j}\right]$. Let ξ_{a} be the arithmetic function defined by $\xi_{a}(x)=x^{a}$ for any positive integer x. The $n \times n$ matrix $\left(\xi_{a}\left(\left(x_{i}, x_{j}\right)\right)\right)$ (abbreviated by $\left(S^{a}\right)$) and $\left(\xi_{a}\left(\left[x_{i}, x_{j}\right]\right)\right)$ (abbreviated by $\left.\left[S^{a}\right]\right)$ are called power GCD matrix on S and power LCM matrix on S, respectively. When $a=1$, they are simply called GCD matrix and LCM matrix. In 1875, Smith [15] showed that

$$
\begin{equation*}
\operatorname{det}(f((i, j)))=\prod_{k=1}^{n}(f * \mu)(k), \tag{1.1}
\end{equation*}
$$

where μ is the Möbius function and $f * \mu$ is the Dirichlet convolution of the arithmetic function f and μ. Since then, lots of generalizations of Smith's determinant (1.1) and related results have been published (see, for example, [1-14,16-18]).

The study of power GCD matrices was initiated by Bourque and Ligh [2]. They showed that every power GCD matrix is positive definite. A set S is called factor closed (FC) if the conditions $x \in S$ and $d \mid x$ imply that $d \in S$. We say that the set S is gcd (resp. lcm) closed if $\left(x_{i}, x_{j}\right) \in S$ (resp. $\left[x_{i}, x_{j}\right] \in S$) for all integers i, j with $1 \leq i, j \leq n$. Evidently, any FC set is gcd closed but not conversely. We know [15] that (S) and [S] are nonsingular when S is FC. In [1], Bourque and Ligh obtained a formula for the inverse of these matrices on FC sets. Furthermore, they conjectured that $[S]$ is nonsingular if S is gcd closed. In [12], Haukkanen, Wang and Sillanpää presented a counterexample to disprove the Bourque-Ligh conjecture [1].

Definition 1.1. [4, 10] Let r be an integer with $1 \leq r \leq n-1$. The set S is 0 -fold gcd closed if S is gcd closed. The set S is r-fold gcd closed if there is a divisor chain $R \subset S$ with $|R|=r$ such that $\max (R) \mid \min (S \backslash R)$ and the set $S \backslash R$ is gcd closed.

Hong [4] proved the Bourque-Ligh conjecture if $n \leq 5$, and also if $n \geq 6$ and S is ($n-5$)-fold. He [6] proved this conjecture for $n \leq 7$ and disproved for $n \geq 8$. Further, he proved it under certain assumptions [5], and proposed [7] the following conjecture.

Conjecture 1.1. [7] There is a positive integer $k(a)$ depending only on a, such that $\left[S^{a}\right]$ is nonsingular if $n \leq k(a)$ and S is gcd closed. But for any integer $n \geq k(a)+1$, there is a gcd-closed set S such that $\left[S^{a}\right]$ is singular.

Hong [7] noted that $k(a) \geq 7$ for any $a \geq 2$. He also [8] showed that [S^{a}] is nonsingular if S is gcd closed and all its elements have at most two distinct prime factors. We denote by lcm $(A)($ resp. $\operatorname{gcd}(A))$ the least common multiple (resp. greatest common divisor) of all elements of A, where A is a set of finite distinct positive integers.

Definition 1.2. [10] Let $m=1 \mathrm{~cm}(S)$. The reciprocal set of S is

$$
m S^{-1}=\left\{\frac{m}{x_{1}}, \ldots, \frac{m}{x_{n}}\right\} .
$$

Definition 1.3. [14] Let r be an integer with $1 \leq r \leq n-1$. The set S is r-fold lcm closed if $m S^{-1}$ is r-fold gcd closed.
Definition 1.4. [10, 14] The $n \times n$ matrix $\left(\frac{1}{S^{a}}\right)$ having the reciprocal ath power of $\left(x_{i}, x_{j}\right)$ as its (i, j) entry is called reciprocal power GCD matrix defined on S. When $a=1$, it is simply called reciprocal GCD matrix on S, and denoted by $\left(\frac{1}{S}\right)$.

Hong [10] proved that if $n \leq 7$ and S is gcd (resp. lcm) closed, then [S] and ($\frac{1}{S}$) are nonsingular, which also holds if $n \geq 8$ and S is ($n-7$)-fold gcd (resp. lcm) closed. Hong, Shum and Sun [11] proved that $\left[S^{a}\right]$ is nonsingular if every element of a gcd-closed set S is of the form $p q r$, or $p^{2} q r$, or $p^{3} q r$ except for the case $a=1$ and $270,520 \in S$, where p, q, r are distinct primes. They also showed that $\left[S^{a}\right]$ is nonsingular if S is a gcd-closed set satisfying $x_{i}<180$ for all integers i with $1 \leq i \leq n$. Cao [3]
developed Hong's method and proved that $k(a) \geq 8$ for all $a \geq 2$. Li [14] showed that if $n \leq 7$ and S is gcd (resp. lcm) closed, then $\left(\left[x_{i}, x_{j}\right]^{e}\right)$ and $\left(\frac{1}{S^{e}}\right)$ are nonsingular for any real number e with $e \geq 1$, and also if $n \geq 8$ and S is ($n-7$)-fold gcd (resp. lcm) closed. Wan, Hu and Tan [16] extended Hong's results [8] and [11] by showing that [S^{a}] is nonsingular when S is gcd closed such that every element of S contains at most two distinct prime factors or is of the form $p^{l} q r$ with p, q, r being distinct primes and the positive integer l satisfying $1 \leq l \leq 4$ except for the case $a=1$ and 270,520, 810, $1040 \in S$. Let $x, y \in S$ with $x<y$. If $x \mid y$ and the conditions $x|d| y$ and $d \in S$ imply that $d \in\{x, y\}$, then we say that x is a greatest-type divisor of y in S. For $x \in S, G_{S}(x)$ stands for the set of all greatest-type divisors of x in S. The concept of greatest-type divisor was introduced by Hong and played a key role in his solution [6] of the Bourque-Ligh conjecture [1]. Korkee et al. [13] studied the invertibility of matrices in a more general matrix class, join matrices. Meanwhile, they provided a lattice-theoretic explanation for this solution of the Bourque-Ligh conjecture.

This paper is organized as follows. In Section 2, we supply some preliminary results that are needed in the proofs of the main results of this paper. Then in Section 3, we show that for a certain class of gcd-closed (resp. lcm-closed) sets S, $\left[S^{a}\right]$ is nonsingular. This provides evidences to Conjecture 1.1. In Section 4, we show that for a certain class of gcd-closed (resp. lcm-closed) sets $S,\left(\frac{1}{S^{a}}\right)$ is nonsingular.

2. Preliminary results

If f is an arithmetic function and m is any positive integer, we denote by $1 / f$ the arithmetic function defined as follows:

$$
\frac{1}{f}(m)=\left\{\begin{array}{lc}
0 & \text { if } f(m)=0 \\
\frac{1}{f(m)} & \text { otherwise }
\end{array}\right.
$$

First, we need a result which gives the formula for the determinant of the power LCM matrix on a gcd-closed set.

Lemma 2.1. [8, Lemma 2.1] If S is gcd closed, then

$$
\begin{equation*}
\operatorname{det}\left[S^{a}\right]=\prod_{k=1}^{n} x_{k}^{2 a} \alpha_{a, k}, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{a, k}=\sum_{\substack{d x_{k} \\ d \nmid x_{x}, x_{i} x_{k}}}\left(\frac{1}{\xi_{a}} * \mu\right)(d) \tag{2.2}
\end{equation*}
$$

throughout this paper.
Lemma 2.2. Let n be a positive integer. Then

$$
\sum_{d \mid n}\left(\frac{1}{\xi_{a}} * \mu\right)(d)=n^{-a} .
$$

Proof. The result follows immediately from [7, Lemma 7] applied to $f=1 / \xi_{a}$.

Lemma 2.3. If $k=1$, then $\alpha_{a, k}=x_{1}^{-a}$.
Proof. Lemma 2.3 follows immediately from Lemma 2.2.
We also need Hong's reduction formulas.
Lemma 2.4. [8, Lemma 2.5] If S is gcd closed and $k \geq 2$, then

$$
\begin{equation*}
\alpha_{a, k}=x_{k}^{-a}+\sum_{t=1}^{k-1}(-1)^{t} \sum_{1 \leq i_{1}<\cdots<i_{t} \leq k-1}\left(x_{k}, x_{i_{1}}, \ldots, x_{i_{t}}\right)^{-a} . \tag{2.3}
\end{equation*}
$$

Lemma 2.5. If S is gcd closed and $k \geq 3$, then

$$
\begin{equation*}
\alpha_{a, k}=x_{k}^{-a}+\sum_{t=1}^{k-2}(-1)^{t} \sum_{2 \leq i_{1}<\cdots<i_{t} \leq k-1}\left(x_{k}, x_{i_{1}}, \ldots, x_{i_{t}}\right)^{-a} . \tag{2.4}
\end{equation*}
$$

Proof. Since S is gcd closed, $\left(x_{k}, x_{1}, x_{i_{1}}, \ldots, x_{i_{t}}\right)=x_{1}$ for $2 \leq i_{1}<\cdots<i_{t} \leq k-1$. By (2.3), one has

$$
\begin{aligned}
\alpha_{a, k}= & x_{k}^{-a}-\sum_{1 \leq i \leq k-1}\left(x_{k}, x_{i}\right)^{-a}+\sum_{1 \leq i<j \leq k-1}\left(x_{k}, x_{i}, x_{j}\right)^{-a} \\
& +\cdots+(-1)^{t} \sum_{1 \leq i_{1}<\cdots<i_{i} \leq k-1}\left(x_{k}, x_{i_{1}}, \ldots, x_{i_{t}}\right)^{-a}+\cdots+(-1)^{k-1}\left(x_{k}, x_{1}, \ldots, x_{k-1}\right)^{-a} \\
= & -\left(x_{k}, x_{1}\right)^{-a}+\sum_{2 \leq i_{1} \leq k-1}\left(x_{k}, x_{1}, x_{i_{1}}\right)^{-a}+\cdots+(-1)^{t} \sum_{2 \leq i_{1}<\cdots<i_{t-1} \leq k-1}\left(x_{k}, x_{1}, x_{i_{1}}, \ldots, x_{i_{1-1}}\right)^{-a} \\
& +\cdots+(-1)^{k-2} \sum_{2 \leq i_{1}<\cdots<i_{k-3} \leq k-1}\left(x_{k}, x_{1}, x_{i_{1}}, \ldots, x_{i_{k-3}}\right)^{-a}+(-1)^{k-1}\left(x_{k}, x_{1}, \ldots, x_{k-1}\right)^{-a} \\
& +x_{k}^{-a}-\sum_{2 \leq i \leq k-1}\left(x_{k}, x_{i}\right)^{-a}+\sum_{2 \leq i<j \leq k-1}\left(x_{k}, x_{i}, x_{j}\right)^{-a} \\
& +\cdots+(-1)^{t} \sum_{2 \leq i_{1}<\cdots<i_{t} \leq k-1}\left(x_{k}, x_{\left.i_{1}, \ldots, x_{i_{t}}\right)^{-a}+\cdots+(-1)^{k-2}\left(x_{k}, x_{2}, \ldots, x_{k-1}\right)^{-a}}^{=}\right. \\
= & (-1) \sum_{w=0}^{k-2}\binom{k-2}{w}(-1)^{w} x_{1}^{-a}+x_{k}^{-a}+\sum_{t=1}^{k-2}(-1)^{t} \sum_{2 \leq i_{1}<\cdots<i_{i} \leq k-1}\left(x_{k}, x_{i_{1}}, \ldots, x_{i_{t}}\right)^{-a} \\
= & (-1) \times 0+x_{k}^{-a}+\sum_{t=1}^{k-2}(-1)^{t} \sum_{2 \leq i_{1}<\cdots<i_{t} \leq k-1}\left(x_{k}, x_{i_{1}}, \ldots, x_{i_{t}}\right)^{-a} \\
= & x_{k}^{-a}+\sum_{t=1}^{k-2}(-1)^{t} \sum_{2 \leq i_{1}<\cdots<i_{t} \leq k-1}\left(x_{k}, x_{i_{1}}, \ldots, x_{i_{t}}\right)^{-a}
\end{aligned}
$$

as expected. This concludes the proof of Lemma 2.5.
Lemma 2.6. If S is gcd closed, then

$$
\begin{equation*}
\alpha_{a, k}=\sum_{J \subset G_{S}\left(x_{k}\right)} \frac{(-1)^{|J|}}{\left(\operatorname{gcd}\left(J \cup x_{k}\right)\right)^{a}} . \tag{2.5}
\end{equation*}
$$

Proof. This follows immediately from [9, Theorem 1.2] applied to $f=1 / \xi_{a}$.
Lemma 2.7. [3, Theorem 5.1] Let a and n be positive integers with $a \geq 2$ and $n \leq 8$. If S is gcd closed, then $\left[S^{a}\right]$ is nonsingular.

Lemma 2.8. [10, Lemma 2.2] The set S is lcm closed if and only if $m S^{-1}$ is gcd closed.

3. Nonsingularity of power LCM matrices

As usual, for any nonzero integer c and prime number $p, v_{p}(c)$ is the greatest nonnegative integer v such that p^{v} divides c. Then $v_{p}(c) \geq 1$ if and only if p divides c.

Theorem 3.1. Let S be gcd closed. If there are primes p_{3}, \ldots, p_{n} (not necessarily distinct) such that

$$
\begin{equation*}
v_{p_{k}}\left(x_{k}\right)>\max _{2 \leq i \leq k-1}\left\{v_{p_{k}}\left(x_{i}\right)\right\}, \tag{3.1}
\end{equation*}
$$

then $\left[S^{a}\right]$ is nonsingular.
Proof. By Lemma 2.3, we have $\alpha_{a, 1}=x_{1}^{-a}$. By Lemma 2.4, one has

$$
\alpha_{a, 2}=x_{2}^{-a}-\left(x_{1}, x_{2}\right)^{-a}=x_{2}^{-a}-x_{1}^{-a}
$$

since $\left(x_{2}, x_{1}\right)=x_{1}$. Thus $\alpha_{a, 1} \neq 0$ and $\alpha_{a, 2} \neq 0$. Now let $k \geq 3$. For any $2 \leq i_{1}<\cdots<i_{t} \leq k-1(1 \leq$ $t \leq k-2$), it follows from (3.1) that

$$
v_{p_{k}}\left(x_{k}, x_{i_{1}}, \ldots, x_{i_{t}}\right)=\min \left\{v_{p_{k}}\left(x_{k}\right), v_{p_{k}}\left(x_{i_{1}}\right), \ldots, v_{p_{k}}\left(x_{i_{t}}\right)\right\}<v_{p_{k}}\left(x_{k}\right)
$$

Therefore,

$$
\begin{equation*}
\frac{x_{k}}{\left(x_{k}, x_{i_{1}}, \ldots, x_{i_{t}}\right)} \equiv 0 \quad\left(\bmod p_{k}\right) . \tag{3.2}
\end{equation*}
$$

Multiplying both sides of (2.4) by x_{k}^{a}, by (3.2), one has $x_{k}^{a} \alpha_{a, k} \equiv 1\left(\bmod p_{k}\right)$. Thus, $\alpha_{a, k} \neq 0(k \geq 3)$. So $\alpha_{a, 1} \alpha_{a, 2} \cdots \alpha_{a, n} \neq 0$. It can be deduced from Lemma 2.1 that $\left[S^{a}\right]$ is nonsingular.

Corollary 3.1. Let S be gcd closed. If $x_{i} \mid x_{j}$ for all integers i, j with $1 \leq i<j \leq n$, then $\left[S^{a}\right]$ is nonsingular.

Proof. We show that there are primes p_{3}, \ldots, p_{n} satisfying (3.1). Let $3 \leq k \leq n$. For any prime p, we have $v_{p}\left(x_{k}\right) \geq v_{p}\left(x_{k-1}\right)$ since $x_{k-1} \mid x_{k}$. Thus there exists a prime p_{k} such that $v_{p_{k}}\left(x_{k}\right)>v_{p_{k}}\left(x_{k-1}\right)$ since $x_{k-1}<x_{k}$. Moreover, $x_{2}|\ldots| x_{k-1}$ implies that

$$
v_{p_{k}}\left(x_{2}\right) \leq v_{p_{k}}\left(x_{3}\right) \leq \cdots \leq v_{p_{k}}\left(x_{k-1}\right) .
$$

Hence $\max _{2 \leq i \leq k-1}\left\{v_{p_{k}}\left(x_{i}\right)\right\}=v_{p_{k}}\left(x_{k-1}\right)$. Then (3.1) holds. The statement is true from Theorem 3.1.
Corollary 3.2. Let S be gcd closed. If $x_{2} / x_{1}, \ldots, x_{n} / x_{1}$ are pairwise relatively prime, then $\left[S^{a}\right]$ is nonsingular.

Proof. Let $3 \leq k \leq n$. By the hypothesis, x_{k} / x_{1} is prime to x_{i} / x_{1} for $2 \leq i \leq k-1$. Recall that $x_{k} / x_{1}>$ $x_{i} / x_{1}(2 \leq i \leq k-1)$. Let p_{k} be any prime factor of x_{k} / x_{1}. Then we know that $p_{k} \nmid x_{i} / x_{1}(2 \leq i \leq k-1)$. Thus, $v_{p_{k}}\left(x_{i} / x_{1}\right)=0(2 \leq i \leq k-1)$. Therefore

$$
\max _{2 \leq i \leq k-1}\left\{v_{p_{k}}\left(\frac{x_{i}}{x_{1}}\right)\right\}=0
$$

So

$$
\max _{2 \leq i \leq k-1}\left\{v_{p_{k}}\left(x_{i}\right)\right\}=v_{p_{k}}\left(x_{1}\right) .
$$

Since $p_{k} \mid x_{k} / x_{1}$, one has

$$
v_{p_{k}}\left(\frac{x_{k}}{x_{1}}\right) \geq 1 .
$$

This yields that

$$
v_{p_{k}}\left(x_{k}\right) \geq v_{p_{k}}\left(x_{1}\right)+1>v_{p_{k}}\left(x_{1}\right) .
$$

Then (3.1) holds and the proof of Corollary 3.2 is complete.
Theorem 3.2. Let S be gcd closed and $F_{k}=\left\{x \in S \mid x<x_{k}\right.$ and $\left.x \mid x_{k}\right\}$. If

$$
\begin{equation*}
x_{k}>\operatorname{lcm}\left(F_{k}\right), \tag{3.3}
\end{equation*}
$$

for $k=2, \ldots, n$, then $\left[S^{a}\right]$ is nonsingular.
Proof. By (2.3), we have

$$
\begin{equation*}
\alpha_{a, k}=\frac{1}{x_{k}^{a}}+\frac{t}{y^{a}}, \tag{3.4}
\end{equation*}
$$

where t is an integer and $y=\operatorname{lcm}\left(F_{k}\right)$. Then $y \mid x_{k}$. On the other hand, (3.3) yields $y<x_{k}$. Then there exists a prime factor p of x_{k} such that $v_{p}(y)<v_{p}\left(x_{k}\right)$. So we obtain that

$$
\begin{equation*}
v_{p}\left(\frac{x_{k}}{y}\right)>0 . \tag{3.5}
\end{equation*}
$$

Multiplying by x_{k}^{a} on both sides of (3.4), by (3.5), we have $\alpha_{a, k} x_{k}^{a} \equiv 1(\bmod p)$. Therefore, $\alpha_{a, k} \neq 0$. So $\alpha_{a, 1} \alpha_{a, 2} \cdots \alpha_{a, n} \neq 0$. Thus the statement is true from Lemma 2.1.

Corollary 3.3. Let S be gcd closed and $H_{k}=\left\{x_{i} \mid 1 \leq i \leq k-1\right\}$. If

$$
\begin{equation*}
x_{k}>\operatorname{lcm}\left(H_{k}\right), \tag{3.6}
\end{equation*}
$$

for $k=2, \ldots, n$, then $\left[S^{a}\right]$ is nonsingular.
Proof. Let F_{k} be defined as in Theorem 3.2. Since $F_{k} \subseteq H_{k}$, one has

$$
\begin{equation*}
\operatorname{lcm}\left(H_{k}\right) \geq \operatorname{lcm}\left(F_{k}\right) \tag{3.7}
\end{equation*}
$$

Equations (3.6) and (3.7) yield (3.3). Then by Theorem 3.2, we know that $\left[S^{a}\right]$ is nonsingular.

Corollary 3.4. Let S be gcd closed. If there is at most one $x_{i_{k}}\left(2 \leq i_{k} \leq k-1\right)$ such that $x_{i_{k}} \mid x_{k}$, then $\left[S^{a}\right]$ is nonsingular.

Proof. Let F_{k} be defined as in Theorem 3.2. If there does not exist any integer i_{k} with $2 \leq i_{k} \leq k-1$ such that $x_{i k} \mid x_{k}$, then we have $\operatorname{lcm}\left(F_{k}\right)=x_{1}$. So (3.3) holds. It then follows from Theorem 3.2 that $\left[S^{a}\right]$ is nonsingular. The statement is true for this case.

If there exists exactly one $x_{i_{k}}\left(2 \leq i_{k} \leq k-1\right)$ such that $x_{i_{k}} \mid x_{k}$, then we have $\operatorname{lcm}\left(F_{k}\right)=x_{i_{k}}$. The condition $x_{i_{k}}<x_{k}$ yields (3.3). The corollary follows immediately from Theorem 3.2 as expected. The statement is true for this case.

Theorem 3.3. Let a and n be positive integers with $a \geq 2$ and $n \geq 9$. If S is $(n-8)$-fold gcd closed, then $\left[S^{a}\right]$ is nonsingular.

Proof. First of all, any ($n-8$)-fold gcd-closed set S must satisfy that $x_{1}|\ldots| x_{n-7}$ and the set $\left\{x_{n-7}, \ldots, x_{n}\right\}$ is gcd closed. Since $G_{S}\left(x_{k}\right)=\left\{x_{k-1}\right\}$ for all $2 \leq k \leq n-7$, by (2.5), we have $\alpha_{a, k}=x_{k}^{-a}-x_{k-1}^{-a}$. Hence $\alpha_{a, k} \neq 0$ for all integers k with $1 \leq k \leq n-7$. Now let $n-6 \leq k \leq n$. One has $x_{n-7} \mid x_{k}$ since $\left\{x_{n-7}, \ldots, x_{n}\right\}$ is gcd closed. So $G_{S}\left(x_{k}\right)$ equals the set of greatest-type divisors of x_{k} in the set $S_{k}:=\left\{x_{n-7}, \ldots, x_{k}\right\}$. Thus by (2.5) we have

$$
\begin{equation*}
\alpha_{a, k}=\sum_{J \subset G_{S}\left(x_{k}\right)} \frac{(-1)^{|J|}}{\left(\operatorname{gcd}\left(J \cup\left\{x_{k}\right\}\right)\right)^{a}}=\sum_{J \subset G_{S_{k}}\left(x_{k}\right)} \frac{(-1)^{|J|}}{\left(\operatorname{gcd}\left(J \cup\left\{x_{k}\right\}\right)\right)^{a}} . \tag{3.8}
\end{equation*}
$$

Note that $2 \leq k-n+8 \leq 8$ since $n-6 \leq k \leq n$. So $\left|S_{k}\right| \leq 8$. Since S_{k} is gcd closed, it follows immediately from Lemma 2.7 that $\left[S_{k}^{a}\right]$ is nonsingular. $\operatorname{So} \operatorname{det}\left[S_{k}^{a}\right] \neq 0$. one can easily deduce from Lemma 2.1 that

$$
\begin{equation*}
\alpha_{a, k}=\sum_{J \subset G_{s_{k}}\left(x_{k}\right)} \frac{(-1)^{|J|}}{\left(\operatorname{gcd}\left(J \cup\left\{x_{k}\right\}\right)\right)^{a}} \neq 0 \tag{3.9}
\end{equation*}
$$

By (3.8) and (3.9), we obtain that $\alpha_{a, k} \neq 0$ for all integers k with $n-6 \leq k \leq n$. So $\alpha_{a, 1} \alpha_{a, 2} \cdots \alpha_{a, n} \neq 0$. Then by Lemma 2.1, we derive that $\left[S^{a}\right]$ is nonsingular as desired.

This finishes the proof of Theorem 3.3.
In the following theorem, we will show that $\left[S^{a}\right]$ defined on a certain class of lcm-closed sets is nonsingular.

Theorem 3.4. Let a and n be positive integers with $a \geq 2$. Then each of the following is true:
(i). If $n \leq 8$ and S is lcm closed, then $\left[S^{a}\right]$ is nonsingular.
(ii). If $n \geq 9$ and S is ($n-8$)-fold lcm closed, then $\left[S^{a}\right]$ is nonsingular.

Proof. Let m be defined as in Definition 1.2. Since

$$
\left[x_{i}, x_{j}\right]=\frac{x_{i} x_{j}}{\left(x_{i}, x_{j}\right)}=\frac{1}{m} \cdot x_{i} \cdot \frac{m}{\left(x_{i}, x_{j}\right)} \cdot x_{j}=\frac{1}{m} \cdot x_{i} \cdot\left[\frac{m}{x_{i}}, \frac{m}{x_{j}}\right] \cdot x_{j},
$$

we have

$$
\left[S^{a}\right]=\frac{1}{m^{a}} W\left[\left(m S^{-1}\right)^{a}\right] W,
$$

where $W=\operatorname{diag}\left(x_{1}^{a}, \ldots, x_{n}^{a}\right)$. So

$$
\operatorname{det}\left[S^{a}\right]=\operatorname{det}\left[\left(m S^{-1}\right)^{a}\right] \prod_{k=1}^{n}\left(\frac{x_{k}^{2}}{m}\right)^{a} .
$$

Therefore, to show the desired result, it suffices to prove that $\operatorname{det}\left[\left(m S^{-1}\right)^{a}\right] \neq 0$.
First, we prove part (i). By Lemma 2.8, we know that the reciprocal set $m S^{-1}$ is gcd closed. Lemma 2.7 tells us that $\left[\left(m S^{-1}\right)^{a}\right]$ is nonsingular. So $\operatorname{det}\left[\left(m S^{-1}\right)^{a}\right] \neq 0$. This completes the proof of part (i).

Consequently, we prove part (ii). Since S is ($n-8$)-fold lcm closed, by Definition 1.3, we know that $m S^{-1}$ is $(n-8)$-fold gcd closed. Theorem 3.3 tells us that $\left[\left(m S^{-1}\right)^{a}\right]$ is nonsingular. So $\operatorname{det}\left[\left(m S^{-1}\right)^{a}\right] \neq 0$. This finishes the proof of part (ii).

4. Nonsingularity of reciprocal power GCD matrices

In this section, we will show that $\left(\frac{1}{S^{a}}\right)$ defined on a certain class of gcd-closed (resp. 1cm-closed) sets is nonsingular.

Theorem 4.1. Let a and n be positive integers with $a \geq 2$. Then each of the following is true:
(i). If $n \leq 8$ and S is gcd closed, then $\left(\frac{1}{S^{a}}\right)$ is nonsingular.
(ii). If $n \geq 9$ and S is $(n-8)$-fold gcd closed, then $\left(\frac{1}{S^{a}}\right)$ is nonsingular.

Proof. Since

$$
\frac{1}{\left(x_{i}, x_{j}\right)^{a}}=\frac{\left[x_{i}, x_{j}\right]^{a}}{x_{i}^{a} x_{j}^{a}}
$$

we have

$$
\left(\frac{1}{S^{a}}\right)=T\left[S^{a}\right] T
$$

where

$$
T=\operatorname{diag}\left(\frac{1}{x_{1}^{a}}, \ldots, \frac{1}{x_{n}^{a}}\right) .
$$

So

$$
\begin{equation*}
\operatorname{det}\left(\frac{1}{S^{a}}\right)=\operatorname{det}\left[S^{a}\right] \prod_{k=1}^{n} x_{k}^{-2 a} . \tag{4.1}
\end{equation*}
$$

By Lemma 2.1 and (4.1), we get that

$$
\operatorname{det}\left(\frac{1}{S^{a}}\right)=\prod_{k=1}^{n} \alpha_{a, k} .
$$

So we only need to prove that $\prod_{k=1}^{n} \alpha_{a, k} \neq 0$.
We prove part (i) as follows. Lemma 2.7 tells us that $\left[S^{a}\right]$ is nonsingular. By Lemma 2.1, we know that $\prod_{k=1}^{n} \alpha_{a, k} \neq 0$. This concludes the proof of part (i).

Now we prove part (ii). Since S is $(n-8)$-fold gcd closed, Theorem 3.3 tells us that $\left[S^{a}\right]$ is nonsingular. By Lemma 2.1, we know that $\prod_{k=1}^{n} \alpha_{a, k} \neq 0$. This completes the proof of part (ii).

Theorem 4.2. Let a and n be positive integers with $a \geq 2$. Then each of the following is true:
(i). If $n \leq 8$ and S is lcm closed, then $\left(\frac{1}{S^{a}}\right)$ is nonsingular.
(ii). If $n \geq 9$ and S is $(n-8)$-fold lcm closed, then $\left(\frac{1}{S^{a}}\right)$ is nonsingular.

Proof. Let m be defined as in Definition 1.2. Since

$$
\frac{1}{\left(x_{i}, x_{j}\right)}=\frac{1}{m} \cdot \frac{m}{\left(x_{i}, x_{j}\right)}=\frac{1}{m} \cdot\left[\frac{m}{x_{i}}, \frac{m}{x_{j}}\right],
$$

one deduces that

$$
\left(\frac{1}{S^{a}}\right)=\frac{1}{m^{a}}\left[\left(m S^{-1}\right)^{a}\right] .
$$

So

$$
\begin{equation*}
\operatorname{det}\left(\frac{1}{S^{a}}\right)=\frac{1}{m^{n a}} \operatorname{det}\left[\left(m S^{-1}\right)^{a}\right] . \tag{4.2}
\end{equation*}
$$

Thus, it is sufficient to prove the truth of the claim by stating that $\left.\operatorname{det}\left[m S^{-1}\right)^{a}\right] \neq 0$. By the proof of Theorem 3.4, we know that the claim is true.

This finishes the proof of Theorem 4.2.

Acknowledgments

The authors would like to thank the anonymous referees for careful readings of the manuscript and helpful comments. The corresponding author K. Cheng was supported partially by China's Central Government Funds for Guiding Local Scientific and Technological Development (No. 2021ZYD0013) and the Research Initiation Fund for Young Teachers of China West Normal University (No. 412769).

Conflict of interest

We declare that we have no conflict of interest.

References

1. K. Bourque, S. Ligh, On GCD and LCM matrices, Linear Algebra Appl., 174 (1992), 65-74. https://doi.org/10.1016/0024-3795(92)90042-9
2. K. Bourque, S. Ligh, Matrices associated with multiplicative functions, Linear Algebra Appl., 216 (1995), 267-275. https://doi.org/10.1016/0024-3795(93)00154-R
3. W. Cao, On Hong's conjecture for power LCM matrices, Czech. Math. J., 57 (2007), 253-268. https://doi.org/10.1007/s10587-007-0059-3
4. S. Hong, LCM matrices on an r-fold gcd-closed set (Chinese), Journal of Sichuan University (Natural Science Edition), 33 (1996), 650-657.
5. S. Hong, On LCM matrices on gcd-closed sets, Se. Asian B. Math., 22 (1998), 381-384.
6. S. Hong, On the Bourque-Ligh conjecture of least common multiple matrices, J. Algebra, 218 (1999), 216-228. https://doi.org/10.1006/jabr.1998.7844
7. S. Hong, Gcd-closed sets and determinants of matrices associated with arithmetical functions, Acta Arith., 101 (2002), 321-332. https://doi.org/10.4064/aa101-4-2
8. S. Hong, Notes on power LCM matrices, Acta Arith., 111 (2004), 165-177. https://doi.org/10.4064/aa111-2-5
9. S. Hong, Nonsingularity of matrices associated with classes of arithmetical functions, J. Algebra, 281 (2004), 1-14. https://doi.org/10.1016/j.jalgebra.2004.07.026
10. S. Hong, Nonsingularity of matrices associated with classes of arithmetical functions on lcm-closed sets, Linear Algebra Appl., 416 (2006), 124-134. https://doi.org/10.1016/j.laa.2005.10.009
11. S. Hong, K. Shum, Q. Sun, On nonsingular power LCM matrices, Algebr. Colloq., 13 (2006), 689-704. https://doi.org/10.1142/S 1005386706000642
12. P. Haukkanen, J. Wang, J. Sillanpää, On Smith's determinant, Linear Algebra Appl., 258 (1997), 251-269. https://doi.org/S0024-3795(96)00192-9
13. I. Korkee, M. Mattila, P. Haukkanen, A lattice-theoretic approach to the Bourque-Ligh conjecture, Linear Multilinear A., 67 (2019), 2471-2487. https://doi.org/10.1080/03081087.2018.1494695
14. M. Li, Notes on Hong's conjectures of real number power LCM matrices, J. Algebra, 315 (2007), 654-664. https://doi.org/10.1016/j.jalgebra.2007.05.005
15. H. Smith, On the value of a certain arithmetical determinant, P. Lond. Math. Soc., 7 (1875), 208213. https://doi.org/10.1112/plms/s1-7.1.208
16. J. Wan, S. Hu, Q. Tan, New results on nonsingular power LCM matrices, Electron. J. Linear Al., 27 (2014), 652-669. https://doi.org/10.13001/1081-3810.1927
17. G. Zhu, On the divisibility among power GCD and power LCM matrices on gcd-closed sets, Int. J. Number Theory, in press. https://doi.org/10.1142/S1793042122500701
18. G. Zhu, On a certain determinant for a U.F.D., Colloq. Math., unpublished work.
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
