Let $ S^{H, K} = \{S^{H, K}_t, t\geq 0\} $ be the sub-bifractional Brownian motion (sbfBm) of dimension 1, with indices $ H\in (0, 1) $ and $ K\in (0, 1]. $ We mainly consider the existence of the self-intersection local time and its derivative for the sbfBm. Moreover, we prove its derivative is H$ \ddot{o} $lder continuous in space variable and time variable, respectively.
Citation: Nenghui Kuang, Huantian Xie. Derivative of self-intersection local time for the sub-bifractional Brownian motion[J]. AIMS Mathematics, 2022, 7(6): 10286-10302. doi: 10.3934/math.2022573
Let $ S^{H, K} = \{S^{H, K}_t, t\geq 0\} $ be the sub-bifractional Brownian motion (sbfBm) of dimension 1, with indices $ H\in (0, 1) $ and $ K\in (0, 1]. $ We mainly consider the existence of the self-intersection local time and its derivative for the sbfBm. Moreover, we prove its derivative is H$ \ddot{o} $lder continuous in space variable and time variable, respectively.
[1] | S. Berman, Local nondeterminism and local times of Gaussian processes, Bull. Amer. Math. Soc., 79 (1973), 475–477. |
[2] | Z. Chen, L. Sang, X. Hao, Renormalized self-intersection local time of bifractional Brownian motion, J. Inequal. Appl., 2018 (2018), 326. http://dx.doi.org/10.1186/s13660-018-1916-3 doi: 10.1186/s13660-018-1916-3 |
[3] | C. El-Nouty, J. Journé, The sub-bifractional Brownian motion, Stud. Sci. Math. Hung., 50 (2013), 67–121. http://dx.doi.org/10.1556/SScMath.50.2013.1.1231 doi: 10.1556/SScMath.50.2013.1.1231 |
[4] | Y. Hu, Self-intersection local time of fractional Brownian motions-via chaos expansion, J. Math. Kyoto Univ., 41 (2001), 233–250. http://dx.doi.org/10.1215/kjm/1250517630 doi: 10.1215/kjm/1250517630 |
[5] | Y. Hu, D. Nualart, Renormalized self-intersection local time for fractional Brownian motion, Ann. Probab., 33 (2005), 948–983. http://dx.doi.org/10.2307/3481716 doi: 10.2307/3481716 |
[6] | A. Jaramillo, D. Nualart, Asymptotic properties of the derivative of self-intersection local time of fractional Brownian motion, Stoch. Proc. Appl., 127 (2017), 669–700. http://dx.doi.org/10.1016/j.spa.2016.06.023 doi: 10.1016/j.spa.2016.06.023 |
[7] | A. Jaramillo, D. Nualart, Functional limit theorem for the self-intersection local time of the fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist., 55 (2019), 480–527. http://dx.doi.org/10.1214/18-AIHP889 doi: 10.1214/18-AIHP889 |
[8] | Y. Jiang, Y. Wang, Self-intersection local times and collision local times of bifractional Brownian motions, Sci. China Ser. A-Math., 52 (2009), 1905–1919. http://dx.doi.org/10.1007/s11425-009-0081-z doi: 10.1007/s11425-009-0081-z |
[9] | P. Jung, G. Markowsky, On the Tanaka formula for the derivative of self-intersection local time of fractional Brownian motion, Stoch. Proc. Appl., 124 (2014), 3846–3868. http://dx.doi.org/10.1016/j.spa.2014.07.001 doi: 10.1016/j.spa.2014.07.001 |
[10] | P. Jung, G. Markowsky, Hölder continuity and occupation-time formulas for fBm self-intersection local time and its derivative, J. Theor. Probab., 28 (2015), 299–312. http://dx.doi.org/10.1007/s10959-012-0474-8 doi: 10.1007/s10959-012-0474-8 |
[11] | N. Kuang, On the collision local time of sub-bifractional Brownian motions (Chinese), Advances in Mathematics (China), 48 (2019), 627–640. http://dx.doi.org/10.11845/sxjz.2018023b doi: 10.11845/sxjz.2018023b |
[12] | N. Kuang, Y. Li, Berry-Esséen bounds and almost sure CLT for the quadratic variation of the sub-bifractional Brownian motion, Commun. Stat.-Simul. C., in press. http://dx.doi.org/10.1080/03610918.2020.1740265 |
[13] | N. Kuang, B. Liu, Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation, Braz. J. Probab. Stat., 29 (2015), 778–789. http://dx.doi.org/10.1214/14-BJPS246 doi: 10.1214/14-BJPS246 |
[14] | N. Kuang, B. Liu, Least squares estimator for $\alpha$-sub-fractional bridges, Stat. Papers, 59 (2018), 893–912. http://dx.doi.org/10.1007/s00362-016-0795-2 doi: 10.1007/s00362-016-0795-2 |
[15] | N. Kuang, H. Xie, Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk, Ann. Inst. Stat. Math., 67 (2015), 75–91. http://dx.doi.org/10.1007/s10463-013-0439-4 doi: 10.1007/s10463-013-0439-4 |
[16] | N. Kuang, H. Xie, Asymptotic behavior of weighted cubic variation of sub-fractional brownian motion, Commun. Stat.-Simul. C., 46 (2017), 215–229. http://dx.doi.org/10.1080/03610918.2014.957849 doi: 10.1080/03610918.2014.957849 |
[17] | J. Rosen, The intersection local time of fractional Brownian motion in the plane, J. Multivariate Anal., 23 (1987), 37–46. http://dx.doi.org/10.1016/0047-259x(87)90176-x doi: 10.1016/0047-259x(87)90176-x |
[18] | J. Rosen, Derivatives of self-intersection local time, In: Lecture notes in mathematics, Berlin: Springer, 2005,263–281. http://dx.doi.org/10.1007/978-3-540-31449-3_18 |
[19] | Q. Shi, Fractional smoothness of derivative of self-intersection local times with respect to bi-fractional Brownian motion, Syst. Control Lett., 138 (2020), 104627. http://dx.doi.org/10.1016/j.sysconle.2020.104627 doi: 10.1016/j.sysconle.2020.104627 |
[20] | Y. Xiao, Strong local nondeterminism and the sample path properties of Gaussian random fields. In: Asymptotic theory in probability and statistics with applications, Beijing: Higher Education Press, 2007,136–176. |
[21] | H. Xie, N. Kuang, Least squares type estimations for discretely observed nonergodic Gaussian Ornstein-Uhlenbeck processes of the second kind, AIMS Mathematics, 7 (2022), 1095–1114. http://dx.doi.org/10.3934/math.2022065 doi: 10.3934/math.2022065 |
[22] | L. Yan, X. Yang, Y. Lu, p-variation of an integral functional driven by fractional Brownian motion, Stat. Probabil. Lett., 78 (2008), 1148–1157. http://dx.doi.org/10.1016/j.spl.2007.11.008 doi: 10.1016/j.spl.2007.11.008 |
[23] | L. Yan, X. Yu, Derivative for self-intersection local time of multidimensional fractional Brownian motion, Stochastics, 87 (2015), 966–999. http://dx.doi.org/10.1080/17442508.2015.1019883 doi: 10.1080/17442508.2015.1019883 |
[24] | Q. Yu, Higher order derivative of self-intersection local time for fractional Brownian motion, J. Theor. Probab., 34 (2021), 1749–1774. http://dx.doi.org/10.1007/s10959-021-01093-6 doi: 10.1007/s10959-021-01093-6 |