Research article

Derivative of self-intersection local time for the sub-bifractional Brownian motion

  • Received: 26 December 2021 Revised: 22 February 2022 Accepted: 02 March 2022 Published: 24 March 2022
  • MSC : 60G22, 60J55

  • Let $ S^{H, K} = \{S^{H, K}_t, t\geq 0\} $ be the sub-bifractional Brownian motion (sbfBm) of dimension 1, with indices $ H\in (0, 1) $ and $ K\in (0, 1]. $ We mainly consider the existence of the self-intersection local time and its derivative for the sbfBm. Moreover, we prove its derivative is H$ \ddot{o} $lder continuous in space variable and time variable, respectively.

    Citation: Nenghui Kuang, Huantian Xie. Derivative of self-intersection local time for the sub-bifractional Brownian motion[J]. AIMS Mathematics, 2022, 7(6): 10286-10302. doi: 10.3934/math.2022573

    Related Papers:

  • Let $ S^{H, K} = \{S^{H, K}_t, t\geq 0\} $ be the sub-bifractional Brownian motion (sbfBm) of dimension 1, with indices $ H\in (0, 1) $ and $ K\in (0, 1]. $ We mainly consider the existence of the self-intersection local time and its derivative for the sbfBm. Moreover, we prove its derivative is H$ \ddot{o} $lder continuous in space variable and time variable, respectively.



    加载中


    [1] S. Berman, Local nondeterminism and local times of Gaussian processes, Bull. Amer. Math. Soc., 79 (1973), 475–477.
    [2] Z. Chen, L. Sang, X. Hao, Renormalized self-intersection local time of bifractional Brownian motion, J. Inequal. Appl., 2018 (2018), 326. http://dx.doi.org/10.1186/s13660-018-1916-3 doi: 10.1186/s13660-018-1916-3
    [3] C. El-Nouty, J. Journé, The sub-bifractional Brownian motion, Stud. Sci. Math. Hung., 50 (2013), 67–121. http://dx.doi.org/10.1556/SScMath.50.2013.1.1231 doi: 10.1556/SScMath.50.2013.1.1231
    [4] Y. Hu, Self-intersection local time of fractional Brownian motions-via chaos expansion, J. Math. Kyoto Univ., 41 (2001), 233–250. http://dx.doi.org/10.1215/kjm/1250517630 doi: 10.1215/kjm/1250517630
    [5] Y. Hu, D. Nualart, Renormalized self-intersection local time for fractional Brownian motion, Ann. Probab., 33 (2005), 948–983. http://dx.doi.org/10.2307/3481716 doi: 10.2307/3481716
    [6] A. Jaramillo, D. Nualart, Asymptotic properties of the derivative of self-intersection local time of fractional Brownian motion, Stoch. Proc. Appl., 127 (2017), 669–700. http://dx.doi.org/10.1016/j.spa.2016.06.023 doi: 10.1016/j.spa.2016.06.023
    [7] A. Jaramillo, D. Nualart, Functional limit theorem for the self-intersection local time of the fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist., 55 (2019), 480–527. http://dx.doi.org/10.1214/18-AIHP889 doi: 10.1214/18-AIHP889
    [8] Y. Jiang, Y. Wang, Self-intersection local times and collision local times of bifractional Brownian motions, Sci. China Ser. A-Math., 52 (2009), 1905–1919. http://dx.doi.org/10.1007/s11425-009-0081-z doi: 10.1007/s11425-009-0081-z
    [9] P. Jung, G. Markowsky, On the Tanaka formula for the derivative of self-intersection local time of fractional Brownian motion, Stoch. Proc. Appl., 124 (2014), 3846–3868. http://dx.doi.org/10.1016/j.spa.2014.07.001 doi: 10.1016/j.spa.2014.07.001
    [10] P. Jung, G. Markowsky, Hölder continuity and occupation-time formulas for fBm self-intersection local time and its derivative, J. Theor. Probab., 28 (2015), 299–312. http://dx.doi.org/10.1007/s10959-012-0474-8 doi: 10.1007/s10959-012-0474-8
    [11] N. Kuang, On the collision local time of sub-bifractional Brownian motions (Chinese), Advances in Mathematics (China), 48 (2019), 627–640. http://dx.doi.org/10.11845/sxjz.2018023b doi: 10.11845/sxjz.2018023b
    [12] N. Kuang, Y. Li, Berry-Esséen bounds and almost sure CLT for the quadratic variation of the sub-bifractional Brownian motion, Commun. Stat.-Simul. C., in press. http://dx.doi.org/10.1080/03610918.2020.1740265
    [13] N. Kuang, B. Liu, Parameter estimations for the sub-fractional Brownian motion with drift at discrete observation, Braz. J. Probab. Stat., 29 (2015), 778–789. http://dx.doi.org/10.1214/14-BJPS246 doi: 10.1214/14-BJPS246
    [14] N. Kuang, B. Liu, Least squares estimator for $\alpha$-sub-fractional bridges, Stat. Papers, 59 (2018), 893–912. http://dx.doi.org/10.1007/s00362-016-0795-2 doi: 10.1007/s00362-016-0795-2
    [15] N. Kuang, H. Xie, Maximum likelihood estimator for the sub-fractional Brownian motion approximated by a random walk, Ann. Inst. Stat. Math., 67 (2015), 75–91. http://dx.doi.org/10.1007/s10463-013-0439-4 doi: 10.1007/s10463-013-0439-4
    [16] N. Kuang, H. Xie, Asymptotic behavior of weighted cubic variation of sub-fractional brownian motion, Commun. Stat.-Simul. C., 46 (2017), 215–229. http://dx.doi.org/10.1080/03610918.2014.957849 doi: 10.1080/03610918.2014.957849
    [17] J. Rosen, The intersection local time of fractional Brownian motion in the plane, J. Multivariate Anal., 23 (1987), 37–46. http://dx.doi.org/10.1016/0047-259x(87)90176-x doi: 10.1016/0047-259x(87)90176-x
    [18] J. Rosen, Derivatives of self-intersection local time, In: Lecture notes in mathematics, Berlin: Springer, 2005,263–281. http://dx.doi.org/10.1007/978-3-540-31449-3_18
    [19] Q. Shi, Fractional smoothness of derivative of self-intersection local times with respect to bi-fractional Brownian motion, Syst. Control Lett., 138 (2020), 104627. http://dx.doi.org/10.1016/j.sysconle.2020.104627 doi: 10.1016/j.sysconle.2020.104627
    [20] Y. Xiao, Strong local nondeterminism and the sample path properties of Gaussian random fields. In: Asymptotic theory in probability and statistics with applications, Beijing: Higher Education Press, 2007,136–176.
    [21] H. Xie, N. Kuang, Least squares type estimations for discretely observed nonergodic Gaussian Ornstein-Uhlenbeck processes of the second kind, AIMS Mathematics, 7 (2022), 1095–1114. http://dx.doi.org/10.3934/math.2022065 doi: 10.3934/math.2022065
    [22] L. Yan, X. Yang, Y. Lu, p-variation of an integral functional driven by fractional Brownian motion, Stat. Probabil. Lett., 78 (2008), 1148–1157. http://dx.doi.org/10.1016/j.spl.2007.11.008 doi: 10.1016/j.spl.2007.11.008
    [23] L. Yan, X. Yu, Derivative for self-intersection local time of multidimensional fractional Brownian motion, Stochastics, 87 (2015), 966–999. http://dx.doi.org/10.1080/17442508.2015.1019883 doi: 10.1080/17442508.2015.1019883
    [24] Q. Yu, Higher order derivative of self-intersection local time for fractional Brownian motion, J. Theor. Probab., 34 (2021), 1749–1774. http://dx.doi.org/10.1007/s10959-021-01093-6 doi: 10.1007/s10959-021-01093-6
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1094) PDF downloads(56) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog