Research article

Finite difference method for transmission dynamics of Contagious Bovine Pleuropneumonia

  • Received: 30 December 2021 Revised: 28 February 2022 Accepted: 10 March 2022 Published: 24 March 2022
  • MSC : 34A08; 65N06

  • In this study, the transmission dynamics of Contagious Bovine Pleuropneumonia (CBPP) by finite difference method are presented. This model is made up of sensitive, exposed, vaccinated, infectious, constantly infected, and treated compartments. The model is studied by the finite difference method. Firstly, the finite difference scheme is constructed. Then the stability estimates are proved for this model. As a result, several simulations are given for this model on the verge of antibiotic therapy. From these figures, the supposition that 50% of infectious cattle take antibiotic therapy or the date of infection decrease to 28 days, 50% of susceptible obtain vaccination within 73 days.

    Citation: Sait Kıkpınar, Mahmut Modanli, Ali Akgül, Fahd Jarad. Finite difference method for transmission dynamics of Contagious Bovine Pleuropneumonia[J]. AIMS Mathematics, 2022, 7(6): 10303-10314. doi: 10.3934/math.2022574

    Related Papers:

  • In this study, the transmission dynamics of Contagious Bovine Pleuropneumonia (CBPP) by finite difference method are presented. This model is made up of sensitive, exposed, vaccinated, infectious, constantly infected, and treated compartments. The model is studied by the finite difference method. Firstly, the finite difference scheme is constructed. Then the stability estimates are proved for this model. As a result, several simulations are given for this model on the verge of antibiotic therapy. From these figures, the supposition that 50% of infectious cattle take antibiotic therapy or the date of infection decrease to 28 days, 50% of susceptible obtain vaccination within 73 days.



    加载中


    [1] A. A. Aligaz, J. M. W. Munganga, Analysis of a mathematical model of the dynamics of contagious bovine pleuropneumonia, Texts Biomath., 1 (2017), 64–80. https://doi.org/10.11145/texts.2017.12.253 doi: 10.11145/texts.2017.12.253
    [2] A. A. Aligaz, J. M. W. Munganga, Mathematical modelling of the transmission dynamics of contagious bovine pleuropneumonia with vaccination and antibiotic treatment, J. Appl. Math., 2019. https://doi.org/10.1155/2019/2490313 doi: 10.1155/2019/2490313
    [3] A. Ssematimba, J. Jores, J. C. Mariner, Mathematical modelling of the transmission dynamics of contagious bovine pleuropneumonia reveals minimal target profiles for improved vaccines and diagnostic assays, PLoS One, 10 (2015), e0116730. https://doi.org/10.1371/journal.pone.0116730 doi: 10.1371/journal.pone.0116730
    [4] N. B. Alhaji, P. I. Ankeli, L. T. Ikpa, O. O. Babalobi, Contagious Bovine Pleuropneumonia: Challenges and prospects regarding diagnosis and control strategies in Africa, Vet. Med.: Res. Rep., 11 (2020), 71. https://doi.org/10.2147/VMRR.S180025 doi: 10.2147/VMRR.S180025
    [5] E. M. Vilei, J. Frey, Detection of Mycoplasma mycoides subsp. mycoides SC in bronchoalveolar lavage fluids of cows based on a TaqMan real-time PCR discriminating wild type strains from an lppQ-mutant vaccine strain used for DIVA-strategies, J. Microbiol. Meth., 81 (2010), 211–218. https://doi.org/10.1016/j.mimet.2010.03.025 doi: 10.1016/j.mimet.2010.03.025
    [6] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Elsevier, 1998.
    [7] J. C. Mariner, J. McDermott, J. A. P. Heesterbeek, G. Thomson, P. L. Roeder, S. W. Martin, A heterogeneous population model for contagious bovine pleuropneumonia transmission and control in pastoral communities of East Africa, Prev. Vet. Med., 73 (2006), 75–91. https://doi.org/10.1016/j.prevetmed.2005.09.002 doi: 10.1016/j.prevetmed.2005.09.002
    [8] J. Jores, J. C. Mariner, J. Naessens, Development of an improved vaccine for contagious bovine pleuropneumonia: An African perspective on challenges and proposed actions, Vet. Res., 44 (2013), 1–5. https://doi.org/10.1186/1297-9716-44-122 doi: 10.1186/1297-9716-44-122
    [9] J. O. Onono, B. Wieland, J. Rushton, Estimation of impact of contagious bovine pleuropneumonia on pastoralists in Kenya, Pre. Vet. Med., 115 (2014), 122–129. https://doi.org/10.1016/j.prevetmed.2014.03.022 doi: 10.1016/j.prevetmed.2014.03.022
    [10] M. J. Otte, R. Nugent, A. McLeod, Transboundary animal diseases: Assessment of socio-economic impacts and institutional responses, Rome, Italy: Food Agriculture Organization, (2004), 119–126.
    [11] N. Abdela, N. Yune, Seroprevalence and distribution of contagious bovine pleuropneumonia in Ethiopia: update and critical analysis of 20 years (1996–2016) reports, Front. Vet. Sci., 4 (2017), 100. https://doi.org/10.3389/fvets.2017.00100 doi: 10.3389/fvets.2017.00100
    [12] N. E. Tambi, W. O. Maina, C. Ndi, An estimation of the economic impact of contagious bovine pleuropneumonia in Africa, Rev. Sci. Tech. OIE., 25 (2006), 999–1011. https://doi.org/10.20506/rst.25.3.1710 doi: 10.20506/rst.25.3.1710
    [13] T. S. Gorton, M. M. Barnett, T. Gull, R. A. French, Z. Lu, G. F. Kutish, et al., Development of real-time diagnostic assays specific for Mycoplasma mycoides subspecies mycoides Small Colony, Vet. Microbiol., 111 (2005), 51–58. https://doi.org/10.1016/j.vetmic.2005.09.013 doi: 10.1016/j.vetmic.2005.09.013
    [14] E. Sousa, How to approximate the fractional derivative of order 1 < α≤ 2, Int. J. Bifurcat. Chaos, 22 (2012), 1250075. https://doi.org/10.1142/S0218127412500757 doi: 10.1142/S0218127412500757
    [15] Q. M. Al-Mdallal, M. A. Hajji, T. Abdeljawad, On the iterative methods for solving fractional initial value problems: New perspective, J. Fractional Calculus Nonlinear Syst, 2 (2021), 76–81. https://doi.org/10.48185/jfcns.v2i1.297 doi: 10.48185/jfcns.v2i1.297
    [16] A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis of fractional nabla difference COVID-19 model, Results Phys., 22 (2021), 103888. https://doi.org/10.1016/j.rinp.2021.103888 doi: 10.1016/j.rinp.2021.103888
    [17] M. Lesnoff, G. Laval, P. Bonnet, K. Chalvet-Monfray, R. Lancelot, F. Thiaucourt, A mathematical model of the effects of chronic carriers on the within-herd spread of contagious bovine pleuropneumonia in an African mixed crop–livestock system, Pre. Vet. Med., 62 (2004), 101–117. https://doi.org/10.1016/j.prevetmed.2003.11.009 doi: 10.1016/j.prevetmed.2003.11.009
    [18] A. A. Aligaz, J. M. Munganga, Modelling the transmission dynamics of Contagious Bovine Pleuropneumonia in the presence of antibiotic treatment with limited medical supply, Math. Model. Anal., 26 (2021), 1–20. https://doi.org/10.3846/mma.2021.11795 doi: 10.3846/mma.2021.11795
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1311) PDF downloads(81) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog