Research article

Weighted Ostrowski, trapezoid and midpoint type inequalities for RiemannLiouville fractional integrals

  • Received: 07 October 2019 Accepted: 13 February 2020 Published: 20 February 2020
  • MSC : 26B25, 26D10, 26D15

  • Our first aim is to establish two new identities for differentiable function involving Riemann-Liouville fractional integrals. Then, we obtain some new weighted versions of fractional trapezoid and Ostrowski type inequalities. Moreover, we give some weighted fractional midpoint type inequalities as special cases.

    Citation: Hüseyin Budak, Ebru Pehlivan. Weighted Ostrowski, trapezoid and midpoint type inequalities for RiemannLiouville fractional integrals[J]. AIMS Mathematics, 2020, 5(3): 1960-1984. doi: 10.3934/math.2020131

    Related Papers:

  • Our first aim is to establish two new identities for differentiable function involving Riemann-Liouville fractional integrals. Then, we obtain some new weighted versions of fractional trapezoid and Ostrowski type inequalities. Moreover, we give some weighted fractional midpoint type inequalities as special cases.


    加载中


    [1] R. P. Agarwal, M. J. Luo, R. K. Raina, On Ostrowski type inequalities, Fasciculi Math., 56 (2016), 5-27. doi: 10.1515/fascmath-2016-0001
    [2] M. Alomari, M. Darus, U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (2010), 225-232. doi: 10.1016/j.camwa.2009.08.002
    [3] G. A. Anastassiou, General fractional Hermite-Hadamard inequalities using m-convexity and (s, m)-convexity, Front. Time Scales Inequal., 237 (2016), 255.
    [4] A. G. Azpeitia, Convex functions and the Hadamard inequality, Rev. Colombiana Math., 28 (1994), 7-12.
    [5] Y. Başcı, D. Baleanu, Ostrowski type Inequalities Involving ψ-Hilfer fractional Integrals, Mathematics, 7 (2019), 770.
    [6] H. Budak, M. Z. Sarikaya, E. Set, Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized s-convex in the second sense, J. Appl. Math. Comput. Mech., 15 (2016), 11-22.
    [7] J. de la Cal, J. Carcamob, L. Escauriaza, A general multidimensional Hermite-Hadamard type inequality, J. Math. Anal. Appl., 356 (2009), 659-663. doi: 10.1016/j.jmaa.2009.03.044
    [8] H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291. doi: 10.1016/j.jmaa.2016.09.018
    [9] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000, 2004, Available from: http://rgmia.org/papers/monographs/Master2.pdf.
    [10] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11 (1998), 91-95.
    [11] S. S. Dragomir, Ostrowski type inequalities for Riemann-Liouville fractional integrals of bounded variation, Hölder and Lipschitzian functions, RGMIA Res. Rep. Coll., 20 (2017), 48.
    [12] G. Farid, A. ur Rehman, M. Zahra, On Hadamard type inequalities for k-fractional integrals, Konurap J. Math., 4 (2016), 79-86.
    [13] L. Fejer, Über die Fourierreihen, II. Math. Naturwiss. Anz Ungar. Akad. Wiss., 24 (1906), 369-390.
    [14] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Springer Verlag, Wien, 1997, 223-276.
    [15] A. Guezane-Lakoud, F. Aissaoui, New fractional inequalities of Ostrowski type, Transylv. J. Math. Mech., 5 (2013), 103-106
    [16] M. Gúrbúz, Y. Taşdan, E. Set, Ostrowski type inequalities via the Katugampola fractional integrals, AIMS Mathematics, 5 (2020), 42-53. doi: 10.3934/math.2020004
    [17] M. Iqbal, S. Qaisar, M. Muddassar, A short note on integral inequality of type Hermite-Hadamard through convexity, J. Comput. Anal. Appl., 21 (2016), 946-953.
    [18] I. Iscan, Hermite-Hadamard-Fejer type inequalities for convex functions via fractional integrals, Stud. U. Babeş Bol. Math., 60 (2015), 355-366
    [19] İ. İşcan, On generalization of different type integral inequalities for s-convex functions via fractional integrals, Math. Sci. Appl., 2 (2014), 55-67.
    [20] M. Jleli, B. Samet, On Hermite-Hadamard type inequalities via fractional integrals of a function with respect to another function, J. Nonlinear Sci. Appl., 9 (2016), 1252-1260. doi: 10.22436/jnsa.009.03.50
    [21] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam, 2006.
    [22] M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via fractional integrals, arXiv:1701.00092.
    [23] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137-146.
    [24] W. Liu, A. Tuna, Diamond-α weighted Ostrowski type and Grüss type inequalities on time scales, Appl. Math. Comput., 270 (2015), 251-260.
    [25] W. Liu, X. Gao, Y. Wen, Approximating the finite Hilbert transform via some companions of Ostrowski's inequalities, B. Malays. Math. Sci. So., 39 (2015), 1499-1513.
    [26] W. Liu, A. Tuna, Y. Jiang, On weighted Ostrowski type, Trapezoid type, Grüss type and Ostrowski- Grüss like inequalities on time scales, Appl. Anal., 93 (2013), 551-571.
    [27] S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, USA, 1993.
    [28] M. A. Noor, M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals, TJMM, 5 (2013), 129-136.
    [29] M. A. Noor, K. I. Noor, M. U. Awan, Fractional Ostrowski inequalities for s-Godunova-Levin functions, Int. J. Anal. Appl., 5 (2014), 167-173.
    [30] J. E. Pečarić, F. Proschan, Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
    [31] A. M. Ostrowski, Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert, Comment. Math. Helv. 10 (1938), 226-227.
    [32] M. E. Özdemir, M. Avcı-Ardıç, H. Kavurmacı-Önalan, Hermite-Hadamard type inequalities for s-convex and s-concave functions via fractional integrals, Turk. J. Sci., 1 (2016), 28-40.
    [33] M. E. Ödemir, M. Avci, E. Set, On some inequalities of Hermite-Hadamard-type via m-convexity, Appl. Math. Lett., 23 (2010), 1065-1070. doi: 10.1016/j.aml.2010.04.037
    [34] M. E. Ödemir, M. Avci, H. Kavurmaci, Hermite-Hadamard-type inequalities via (α, m)-convexity, Comput. Math. Appl., 61 (2011), 2614-2620. doi: 10.1016/j.camwa.2011.02.053
    [35] I. Podlubni, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [36] S. Qaisar, S. Hussain, On Hermite-Hadamard type inequalities for functions whose first derivative absolute values are convex and concave, Fasciculi Math., 58 (2017), 155-166. doi: 10.1515/fascmath-2017-0011
    [37] A. Saglam, M. Z. Sarikaya, H. Yildirim, Some new inequalities of Hermite-Hadamard's type, Kyungpook Math. J., 50 (2010), 399-410. doi: 10.5666/KMJ.2010.50.3.399
    [38] M. Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals, P. Am. Math. Soc., 145 (2017), 1527-1538.
    [39] M. Z. Sarikaya, H. Filiz, Note on the Ostrowski type inequalities for fractional integrals, Vietnam J. Math., 42 (2014), 187-190. doi: 10.1007/s10013-014-0056-4
    [40] M. Z. Sarikaya, E. Set, H. Yaldiz, et al. Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048
    [41] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 7 (2016), 1049-1059.
    [42] M. Z. Sarikaya, H. Budak, Generalized Hermite-Hadamard type integral inequalities for fractional integrals, Filomat, 30 (2016), 1315-1326. doi: 10.2298/FIL1605315S
    [43] M. Z. Sarikaya, A. Akkurt, H. Budak, et al. Hermite-hadamard's inequalities for conformable fractional integrals, RGMIA Res. Rep. Coll., 19 (2016), 58140.
    [44] E. Set, M. E. Ozdemir, M. Z. Sarikaya, New inequalities of Ostrowski's type for s-convex functions in the second sense with applications, Facta U. Ser. Math. Inform., 27 (2012), 67-82.
    [45] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63 (2012), 1147-1154. doi: 10.1016/j.camwa.2011.12.023
    [46] E. Set, M. Z. Sarikaya, M. E. Ozdemir, et al. The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inform., 10 (2014), 69-83. doi: 10.2478/jamsi-2014-0014
    [47] E. Set,İ. İşcan, M. Z. Sarikaya, et al. On new inequalities of Hermite-Hadamard-Fejért ype for convex functions via fractional integrals, Appl. Math. Comput., 259 (2015), 875-881.
    [48] E. Set, A. O. Akdemir, I. Mumcu, Ostrowski type inequalities for functions whoose derivatives are convex via conformable fractional integrals, J. Adv. Math. Stud., 10 (2017), 386-395.
    [49] E. Set, A. O. Akdemir, A. Gözpınar, et al. Ostrowski type inequalities via new fractional conformable integrals, AIMS Mathematics, 4 (2019), 1684-1697. doi: 10.3934/math.2019.6.1684
    [50] S. F. Tahir, M. Mushtaq, M. Muddassar, A Note on integral inequalities on time scales associated with Ostrowski's type, J. Funct. Space., 2019 (2019), 4748373.
    [51] K. L. Tseng, G. S. Yang, K. C. Hsu, Some inequalities for differentiable mappings and applications to Fejer inequality and weighted trapozidal formula, Taiwanese J. Math., 15 (2011), 1737-1747. doi: 10.11650/twjm/1500406376
    [52] J. Wang, X. Li, M. Fečkan, et al. Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92 (2012), 2241-2253.
    [53] J. Wang, X. Li, C. Zhu, Refinements of Hermite-Hadamard type inequalities involving fractional integrals, Bull. Belg. Math. Soc. Simon Stevin, 20 (2013), 655-666. doi: 10.36045/bbms/1382448186
    [54] H. Yildirim, Z. Kirtay, Ostrowski inequality for generalized fractional integral and related inequalities, Malaya J. Mat., 2 (2014), 322-329.
    [55] C. Yildiz, M. E. Özdemir, M. Z. Sarikaya, New generalizations of Ostrowski-like type inequalities for fractional integrals, Kyungpook Math. J., 56 (2016), 161-172. doi: 10.5666/KMJ.2016.56.1.161
    [56] Y. Zhang, J. Wang, On some new Hermite-Hadamard inequalities involving Riemann-Liouville fractional integrals, J. Inequal. Appl., 2013 (2013), 220.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3162) PDF downloads(408) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog