Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions

  • Received: 25 December 2023 Revised: 10 February 2024 Accepted: 19 February 2024 Published: 21 March 2024
  • MSC : 26D15, 26D10, 26D07

  • This study focused on deriving Milne-type inequalities using expanded fractional integral operators. We began by establishing a key equality associated with these operators. Using this equality, we explored Milne-type inequalities for functions with convex derivatives, supported by an illustrative example for clarity. Additionally, we investigated Milne-type inequalities for bounded and Lipschitzian functions utilizing fractional expanded integrals. Finally, we extended our exploration to Milne-type inequalities involving functions of bounded variation.

    Citation: Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat. Milne-Type inequalities via expanded fractional operators: A comparative study with different types of functions[J]. AIMS Mathematics, 2024, 9(5): 11228-11246. doi: 10.3934/math.2024551

    Related Papers:

    [1] Hüseyin Budak, Abd-Allah Hyder . Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities. AIMS Mathematics, 2023, 8(12): 30760-30776. doi: 10.3934/math.20231572
    [2] Areej A Almoneef, Abd-Allah Hyder, Hüseyin Budak . Weighted Milne-type inequalities through Riemann-Liouville fractional integrals and diverse function classes. AIMS Mathematics, 2024, 9(7): 18417-18439. doi: 10.3934/math.2024898
    [3] Muhammad Umar, Saad Ihsan Butt, Youngsoo Seol . Milne and Hermite-Hadamard's type inequalities for strongly multiplicative convex function via multiplicative calculus. AIMS Mathematics, 2024, 9(12): 34090-34108. doi: 10.3934/math.20241625
    [4] Areej A. Almoneef, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat . Fractional Milne-type inequalities for twice differentiable functions. AIMS Mathematics, 2024, 9(7): 19771-19785. doi: 10.3934/math.2024965
    [5] Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379
    [6] Tariq A. Aljaaidi, Deepak B. Pachpatte . Some Grüss-type inequalities using generalized Katugampola fractional integral. AIMS Mathematics, 2020, 5(2): 1011-1024. doi: 10.3934/math.2020070
    [7] Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067
    [8] Hari M. Srivastava, Artion Kashuri, Pshtiwan Othman Mohammed, Abdullah M. Alsharif, Juan L. G. Guirao . New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Mathematics, 2021, 6(10): 11167-11186. doi: 10.3934/math.2021648
    [9] Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . $ k $-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460
    [10] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
  • This study focused on deriving Milne-type inequalities using expanded fractional integral operators. We began by establishing a key equality associated with these operators. Using this equality, we explored Milne-type inequalities for functions with convex derivatives, supported by an illustrative example for clarity. Additionally, we investigated Milne-type inequalities for bounded and Lipschitzian functions utilizing fractional expanded integrals. Finally, we extended our exploration to Milne-type inequalities involving functions of bounded variation.



    Fractional calculus has attracted significant attention from scholars because of its extensive applications in both theoretical and applied mathematics, as highlighted in various sources [1,2]. The fractional integral and derivative have no one representation, like the conventional integral and derivative; rather, representations change throughout time and across writers. It is well known that one of the most important research tools in mathematics is the inequality. Fractional inequalities, particularly those associated with Jensen, Hermite-Hadamard, and Simpson, constitute a significant and multifaceted field in mathematical analysis [3,4,5,6]. Each of these inequalities provides valuable insights into the relationships governed by fractional calculus, contributing to a nuanced comprehension of functions and their integral properties.

    Jensen's fractional inequality, which is an extension of the classical Jensen's inequality, investigates the convexity aspects of fractional integrals. It provides bounds on the fractional integral of a convex function, with applications spanning the probability theory, statistics, and diverse mathematical branches. Jensen's fractional inequality enhances our understanding of integral behavior for convex functions; see [7,8].

    The Hermite-Hadamard fractional inequality, pioneered by Hermite and later expanded by Hadamard, serves as a fundamental tool for exploring the convexity of functions and its extensions. This inequality establishes bounds on the integral mean of a function, offering connections between convexity and fractional calculus; see [9,10,11].

    Simpson's fractional inequality, a derivative of the classical Simpson's inequality, extends the exploration of inequalities into fractional calculus. It facilitates the estimation of the integral mean of a function based on its values at multiple points. Simpson's fractional inequality proves to be a valuable analytical tool, akin to its classical counterpart, shedding light on the behavior of functions and their fractional integrals; see [12,13,14,15,16,17,18,19].

    Fractional analysis is an ever-evolving field striving for continual innovation to provide solutions to the evolving challenges of the world [20]. Numerous fractional derivative and integral operators have been introduced since the inception of fractional analysis. Several of these operators hold significant importance in problem-solving within applied mathematics and analysis. Notable examples include Riemann-Liouville, expanded fractional integral operators, Caputo, Hadamard, Erdelyi-Kober, Marchaud, and Riesz, among others. Within fractional calculus, fractional derivatives are formulated through fractional integrals [21,22,23,24]. One particularly important and practical fractional integral operator is known as Riemann-Liouville fractional integrals, which can be defined as follows.

    Definition 1.1. Let ZL1[λ1,λ2]. The Riemann-Liouville fractional integrals Iσ1λ1+Z and Iσ1λ2Z of order σ1>0 are defined by

    Aσ1λ1+Z(p)=1Γ(σ1)pλ1(pq)σ11Z(q)dq,  p>λ1 (1.1)

    and

    Aσ1λ2Z(p)=1Γ(σ1)λ2p(qp)σ11Z(q)dq,  p<λ2, (1.2)

    respectively. Here, Γ(σ1)=0qσ11eqdq is the Gamma function and I0λ1+Z(p)=I0λ2Z(p)=Z(p).

    For more information about Riemann-Liouville fractional integrals, please refer to [22,25,26].

    We recall Beta function (see, e.g., [27, Section 1.1])

    B(σ1,σ2)={10qσ11(1q)σ21dq((σ1)>0;(σ2)>0)Γ(σ1)Γ(σ2)Γ(σ1+σ2)(σ1,σ2CZ0), (1.3)

    and the incomplete gamma function, defined for real numbers a>0 and x0 by

    Γ(a,x)=xeqqa1dq.

    Jarad et. al. [21] introduced a novel fractional integral operator, which called generalized fractional integral operators. Also, they gave some properties and relations between some other fractional integral operators, such as the Riemann-Liouville fractional integral and Hadamard fractional integrals.

    Let σ2C,Re(σ2)>0, then the left and right-sided fractional generalized integral operators are defined, respectively, as follows:

    σ2Aσ1λ1+Z(x)=1Γ(σ2)xλ1((xλ1)σ1(qλ1)σ1σ1)σ21Z(q)(qλ1)1σ1dq (1.4)
    σ2Aσ1λ2Z(x)=1Γ(σ2)λ2x((λ2x)σ1(λ2q)σ1σ1)σ21Z(q)(λ2q)1σ1dq. (1.5)

    A formal definition for convex function may be stated as follows:

    Definition 1.2. [28] Let I be a convex set on R. The function Z:IR is called convex on I if it satisfies the following inequality:

    Z(qp+(1q) γ)qF(p)+(1q)Z(γ) (1.6)

    for all (p,γ)I and q[0,1]. The mapping Z is a concave on I if the inequality (1.6) holds in reversed direction for all q[0,1] and p,γI.

    The primary objective of this research is to derive some Milne-type inequalities applicable with specific function classes through the utilization of expanded fractional integral operators (1.4) and (1.5). This study focuses on establishing a fundamental equality associated with the fractional expanded integral operators, thereby presenting various Milne-type inequalities applicable to functions with convex derivatives (FCD). Additionally, we give an illustrative example to elucidate the acquired outcomes. By employing the fractional expanded integrals, we explore some Milne-type inequalities for bounded and Lipschitzian functions. Moreover, this study deals with Milne-type inequalities, including functions of bounded variation.

    This paper is divided to six sections, starting with an introduction. In Section 2, we establish a crucial equality using fractional expanded integral operators. This equality forms the basis for proving Milne-type inequalities for FCD, backed by illustrative examples. Sections 3 and 4 explore Milne-type inequalities for bounded and Lipschitzian functions, respectively. Section 5 focuses on Milne-type inequalities for functions of bounded variation. Lastly, Section 6 encapsulates the research conclusions.

    Here, we showcase several Milne-type inequalities pertaining to FCD.

    Lemma 2.1. Let Z:[λ1,λ2]R be a differentiable mapping (λ1,λ2) such that ZL1([λ1,λ2]). The subsequent equation is true:

    13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]=λ2λ1410[(1(1q)σ1σ1)σ243σσ21][Z(2q2λ1+q2λ2)Z(q2λ1+2q2λ2)]dq,

    where σ1,σ2>0, B(σ1,σ2) and Γ are Euler Beta and Gamma functions, respectively.

    Proof. Through the application of integration by parts, we obtain

    J1=10[(1(1q)σ1σ1)σ243σσ21]Z(2q2λ1+q2λ2)dq=2λ2λ1[(1(1q)σ1σ1)σ243σσ21]Z(2q2λ1+q2λ2)|102σ2λ2λ110(1(1q)σ1σ1)σ21(1q)σ11Z(2q2λ1+q2λ2)dq=23σσ21(λ2λ1)Z(λ1+λ22)+83σσ21(λ2λ1)Z(λ1)(2λ2λ1)2σ2λ1+λ22λ1(1(2λ2λ1)σ1(λ1+λ22p)σ1σ1)σ21(2λ2λ1)σ11(λ1+λ22p)σ11Z(p)dp=23σσ21(λ2λ1)Z(λ1+λ22)+83σσ21(λ2λ1)Z(λ1)(2λ2λ1)σ1σ2+1σ2λ1+λ22λ1((λ2λ12)σ1(λ1+λ22p)σ1σ1)σ21Z(p)(λ1+λ22p)1σ1dp=23σσ21(λ2λ1)Z(λ1+λ22)+83σσ21(λ2λ1)Z(λ1)(2λ2λ1)σ1σ2+1Γ(σ2+1)σ2Aσ1λ1+λ22Z(λ1). (2.1)

    Similarly, we obtain

    J2=10[(1(1q)σ1σ1)σ243σσ21]Z(q2λ1+2q2λ2)dq=23σσ21(λ2λ1)Z(λ1+λ22)83σσ21(λ2λ1)Z(λ2)(2λ2λ1)σ1σ2+1Γ(σ2+1)σ2Aσ1λ1+λ22+Z(λ2). (2.2)

    From the equalities (2.1) and (2.2), the ensuing outcome is achieved:

    λ2λ14[J1J2]=13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)].

    So, Lemma 2.1 has been proven.

    Theorem 2.1. Suppose the assumptions stipulated in Lemma 2.1 are valid and the function |Z| is convex on [λ1,λ2], then we obtain the subsequent inequality.

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Jσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|λ2λ14σσ21(431σ1B(σ2+1,1σ1))(|Z(λ1)|+|Z(λ2)|), (2.3)

    where σ1,σ2>0, B(σ1,σ2), and Γ are Euler Beta and Gamma functions, respectively.

    Proof. Applying the absolute value to Lemma 2.1 and leveraging the convexity of |Z|, we obtain:

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Jσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|λ2λ1410|(1(1q)σ1σ1)σ243σσ21|[|Z(2q2λ1+q2λ2)|+|Z(q2λ1+2q2λ2)|]dqλ2λ1410[43σσ21(1(1q)σ1σ1)σ2][2q2|Z(λ1)|+q2|Z(λ2)|+q2|Z(λ1)|+2q2|Z(λ2)|]dq=λ2λ14σσ21(431σ1B(σ2+1,1σ1))(|Z(λ1)|+|Z(λ2)|).

    Therefore, we achieve the intended result.

    Remark 2.1. If we choose σ1=1 in Theorem 2.1, the ensuing Milne-type inequality holds for Riemann-Liouville fractional integrals.

    |13[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ21Γ(σ2+1)(λ2λ1)σ2[Jσ2λ1+λ22Z(λ1)+Aσ2λ1+λ22+Z(λ2)]|4σ2+112(σ2+1)(λ2λ1)(|Z(λ1)|+|Z(λ2)|).

    Theorem 2.2. Assuming the conditions stipulated in Lemma 2.1 are met, and considering that the mapping |Z|y, where y>1, exhibits convexity on the interval [λ1,λ2], the ensuing inequality holds:

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|λ2λ14σσ21(4x3x1σ1B(xσ2+1,1σ1))1x[(3|Z(λ1)|y+|Z(λ2)|y4)1y+(|Z(λ1)|y+3|Z(λ2)|y4)1y]λ2λ141yσσ21(4x3x1σ1B(xσ2+1,1σ1))1x(|Z(λ1)|+|Z(λ2)|), (2.4)

    where 1x+1y=1, σ1,σ2>0, B(σ1,σ2), and Γ are Euler Beta and Gamma functions, respectively.

    Proof. When we compute the absolute value of Lemma 2.1, the outcome is:

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|λ2λ14[10|(1(1q)σ1σ1)σ243σσ21||Z(2q2λ1+q2λ2)|dq+10|(1(1q)σ1σ1)σ243σσ21||Z(q2λ1+2q2λ2)|dq]. (2.5)

    By leveraging the "H"older inequality within inequality (2.5) and capitalizing on the convexity of |Z|y, we get

    10|(1(1q)σ1σ1)σ243σσ21||Z(2q2λ1+q2λ2)|dq(10|(1(1q)σ1σ1)σ243σσ21|xdq)1x(10|Z(2q2λ1+q2λ2)|ydq)1y(10[4x3xσxσ21(1(1q)σ1σ1)xσ2]dq)1x[10(2q2|Z(λ1)|y+q2|Z(λ2)|y)dq]1y=1σσ21(4x3x1σ1B(xσ2+1,1σ1))1x(3|Z(λ1)|y+|Z(λ2)|y4)1y. (2.6)

    Likewise, we can arrive at the inequality

    10|(1(1q)σ1σ1)σ243σσ21||Z(q2λ1+2q2λ2)|dq1σσ21(4x3x1σ1B(xσ2+1,1σ1))1x(|Z(λ1)|y+3|Z(λ2)|y4)1y. (2.7)

    By substituting (2.6) and (2.7) in (2.5), we have

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|λ2λ14(10[43σσ21(1(1q)σ1σ1)σ2]xdq)1p[(3|Z(λ1)|y+|Z(λ2)|y4)1y+(|Z(λ1)|y+3|Z(λ2)|y4)1y].

    Hence, the first inequality in Eq (2.4) has been successfully derived. Now, let's move forward with proving the second inequality. Let α1=3|Z(λ1)|y, β1=|Z(λ2)|y, α2=|Z(λ1)|y, and β2=3|Z(λ2)|y. By leveraging the facts that

    nu=1(αu+βu)vnu=1αvu+nu=1αvu, 0v<1,

    and 1+31y4, the desired outcome may be determined right away, and Theorem 2.2 has been fully proven.

    Remark 2.2. If we choose σ1=1 in Theorem 2.2, the following Milne-type inequality for Riemann-Liouville fractional integrals is derived:

    |13[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ21Γ(σ2+1)(λ2λ1)σ2[Jσ2λ1+λ22Z(λ1)+Aσ2λ1+λ22+Z(λ2)]|λ2λ14(4x3x1xσ2+1)1x[(3|Z(λ1)|y+|Z(λ2)|y4)1q+(|Z(λ1)|y+3|Z(λ2)|y4)1y]λ2λ141y(4x3x1xσ2+1)1x(|Z(λ1)|+|Z(λ2)|).

    Theorem 2.3. Assuming all the conditions of Lemma 2.1 are met, when the function |Z|y, where y1, demonstrates convex behavior over the interval [λ1,λ2], we get the subsequent inequality:

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|   λ2λ14σσ21(431σ1B(σ2+1,1σ1))11y×([(112σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z(λ1)|y   +12σ1[B(σ2+1,1σ1)B(σ2+1,2σ1)]|Z(λ2)|y]1y)[12σ1[B(σ2+1,1σ1)B(σ2+1,2σ1)]|Z(λ1)|y   +(112σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z(λ2)|y]1y), (2.8)

    where σ1,σ2>0, B(σ1,σ2) and Γ are Euler Beta and Gamma functions, respectively.

    Proof. By employing the power-mean inequality in (2.5) and taking into account the convex nature of |Z|y, we arrive at:

    10|(1(1q)σ1σ1)σ243σσ21||Z(2q2λ1+q2λ2)|dq   (10|(1(1q)σ1σ1)σ243σσ21|dq)11y      (10|(1(1q)σ1σ1)σ243σσ21||Z(2q2λ1+q2λ2)|ydq)1y   (43σσ211σσ2+11B(σ2+1,1σ1))11y      (10[43σσ21(1(1q)σ1σ1)σ2](2q2|Z(λ1)|y+q2|Z(λ2)|y)dq)1y   =(43σσ211σσ2+11B(σ2+1,1σ1))11y[(1σσ2112σσ2+11[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z(λ1)|y   +12σσ2+11[B(σ2+1,1σ1)B(σ2+1,2σ1)]|Z(λ2)|y]1y. (2.9)

    By a similar method used in (2.9), we have

    10|(1(1q)σ1σ1)σ243σσ21||Z(q2λ1+2q2λ2)|dq   (43σσ211σσ2+11B(σ2+1,1σ1))11y[12σσ2+11[B(σ2+1,1σ1)B(σ2+1,2σ1)]|Z(λ1)|y   +(1σσ2112σσ2+11[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z(λ2)|y]1y. (2.10)

    Substituting (2.9) and (2.10) in (2.5), we get

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|   λ2λ14σσ21(431σ1B(σ2+1,1σ1))11y   ×([(112σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z(λ1)|y   +12σ1[B(σ2+1,1σ1)B(σ2+1,2σ1)]|Z(λ2)|y]1y)   +[12σ1[B(σ2+1,1σ1)B(σ2+1,2σ1)]|Z(λ1)|y+(112σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z(λ2)|y]1y).

    This completes the proof.

    Remark 2.3. If we choose σ1=1 in Theorem 2.3, then we have the following Milne-type inequality for Riemann-Liouville fractional integrals

    |13[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ21Γ(σ2+1)(λ2λ1)σ2[Jσ2λ1+λ22Z(λ1)+Aσ2λ1+λ22+Z(λ2)]|λ2λ14(4σ2+13(σ2+1))11y×([(1σ2+32(σ2+1)(σ2+2))|Z(λ1)|y+σ2+12(σ2+1)(σ2+2)|Z(λ2)|y]1y+[σ2+12(σ2+1)(σ2+2)|Z(λ1)|y+(1σ2+32(σ2+1)(σ2+2))|Z(λ2)|y]1y).

    Example 2.1. Consider the function Z:[2,4]R, Z(q)=q33. It is clear that |Z| is convex on [2,4], then we have

    2Z(λ1)Z(λ1+λ22)+2Z(λ2)=39.

    By (1.4), we have

    σ2Aσ1λ1+λ22Z(λ1)= σ2Aσ13Z(2)=1Γ(σ2)32(1(3q)σ1σ1)σ21(3q)σ11q33dq=13σσ21Γ(σ2)32(1(3q)σ1)σ21[(3q)σ1+2+9(3q)σ1+127(3q)σ1+27(3q)σ11]dq=13σσ21Γ(σ2)10uσ21[(1u)3σ1+9(1u)2σ127(1u)1σ1+27]du=13σσ21Γ(σ2)[B(σ2,3σ1+1)+9B(σ2,2σ1+1)27B(σ2,1σ1+1)+27σ2]

    and similarly by (1.5), we have

     σ2Aσ1λ1+λ22+Z(λ2)= σ2Aσ13+Z(4)=13σσ21Γ(σ2)[B(σ2,3σ1+1)+9B(σ2,2σ1+1)+27B(σ2,1σ1+1)+27σ2].

    Hence, the computation of the left term in the inequalities (2.3), (2.4), and (2.8) results in:

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|=|213σσ212σ1σ21Γ(σ2+1)2σ1σ23σσ21Γ(σ2)[18B(σ2,2σ1+1)+54σ2]|=|7σσ213σ2σσ21[B(σ2,2σ1+1)+3σ2]|.

    Conversely, the right term in the inequality (2.3) is expressed as:

    λ2λ14σσ21(431σ1B(σ2+1,1σ1))(|Z(λ1)|+|Z(λ2)|)=12σσ21(431σ1B(σ2+1,1σ1))(4+16)=10σσ21(431σ1B(σ2+1,1σ1)).

    Similarly, for y=2, the right sides of the inequalities (2.4) and (2.8) reduce to

    λ2λ141yσσ21(4x3x1σ1B(xσ2+1,1σ1))1x(|Z(λ1)|+|Z(λ2)|)=20σσ21(1691σ1B(2σ2+1,1σ1))12

    and

    λ2λ14σσ21(431σ1B(σ2+1,1σ1))11y×([(112σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z(λ1)|y+12σ1[B(σ2+1,1σ1)B(σ2+1,2σ1)]|Z(λ2)|y]1y+[12σ1[B(σ2+1,1σ1)B(σ2+1,2σ1)]|Z(λ1)|y+(112σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])|Z(λ2)|y]1y)=12σσ21(431σ1B(σ2+1,1σ1))12×([16(112σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])+128σ1[B(σ2+1,1σ1)B(σ2+1,2σ1)]]12+[8σ1[B(σ2+1,1σ1)B(σ2+1,2σ1)]+256(112σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])]12),

    respectively. Consequently, we have the following inequalities from (2.4) and (2.8)

    |73σ2[B(σ2,2σ1+1)+3σ2]|10(431σ1B(σ2+1,1σ1)), (2.11)
    |73σ2[B(σ2,2σ1+1)+3σ2]|20(1691σ1B(2σ2+1,1σ1))12, (2.12)

    and

    |73σ2[B(σ2,2σ1+1)+3σ2]|12(431σ1B(σ2+1,1σ1))12×([16(112σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])+128σ1[B(σ2+1,1σ1)B(σ2+1,2σ1)]]12+[8σ1[B(σ2+1,1σ1)B(σ2+1,2σ1)]+256(112σ1[B(σ2+1,1σ1)+B(σ2+1,2σ1)])]12), (2.13)

    respectively. One can see the validity of the inequalities (2.11), (2.12), and (2.13) in Figures 13, respectively.

    Figure 1.  An example to Theorem 2.1, depending on σ1(0,1] and σ2(0,5], analyzed and visualized by MATLAB.
    Figure 2.  An example to Theorem 2.2, depending on σ1(0,1] and σ2(0,5], analyzed and visualized by MATLAB.
    Figure 3.  An example to Theorem 2.3, depending on σ1(0,1] and σ2(0,5], analyzed and visualized by MATLAB.

    Theorem 3.1. Assume that the conditions of Lemma 2.1 hold. If there exist ω,ΩR such that ωZ(q)Ω for q[λ1,λ2], then we establish

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|λ2λ112σσ21(431σ1B(σ2+1,1σ1))(Ωω),

    where σ1,σ2>0, B(σ1,σ2), and Γ are Euler Beta and Gamma functions, respectively.

    Proof. With the help of Lemma 2.1, we get

    13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]=λ2λ1410[(1(1q)σ1σ1)σ243σσ21][Z(2q2λ1+q2λ2)Z(q2λ1+2q2λ2)]dq=λ2λ1410[(1(1q)σ1σ1)σ243σσ21][ω+Ω2Z(q2λ1+2q2λ2)]dq+λ2λ1410[(1(1q)σ1σ1)σ243σσ21][Z(2q2λ1+q2λ2)ω+Ω2]dq. (3.1)

    By considering the absolute value of (3.1), we obtain:

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|λ2λ1410[43σσ21(1(1q)σ1σ1)σ2]|ω+Ω2Z(q2λ1+2q2λ2)|dq+10[43σσ21(1(1q)σ1σ1)σ2]|Z(2q2λ1+q2λ2)ω+Ω2|dq.

    From ωZ(q)Ω for q[λ1,λ2], we get

    |Z(2q2λ1+q2λ2)ω+Ω2|Ωω2, (3.2)

    and

    |ω+Ω2Z(q2λ1+2q2λ2)|Ωω2. (3.3)

    Using (3.2) and (3.3), we have

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|λ2λ14(Ωω)10[43σσ21(1(1q)σ1σ1)σ2]dq=λ2λ14(43σσ211σσ2+11B(σ2+1,1σ1))(Ωω).

    The proof of the theorem is finished.

    Remark 3.1. If we choose σ1=1 in Theorem 3.1, then we have the following Milne-type inequality for Riemann-Liouville fractional integrals

    |13[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ21Γ(σ2+1)(λ2λ1)σ2[Jσ2λ1+λ22Z(λ1)+Aσ2λ1+λ22+Z(λ2)]|4σ2+112(σ2+1)(λ2λ1)(Ωω).

    In this section, we introduce some fractional Milne-type inequalities applicable to Lipschitzian functions.

    Theorem 4.1. Suppose that the assumptions of Lemma 2.1 hold. If Z is a L-Lipschitzian function on [λ1,λ2], then the result yields the subsequent inequality:

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|=(λ2λ1)24σσ21(231σ1B(σ2+1,2σ1))L,

    where σ1,σ2>0, B(σ1,σ2), and Γ are Euler Beta and Gamma functions, respectively.

    Proof. With help of Lemma 2.1, since Z is L -Lipschitzian function, we get

    |13σσ21[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|=|λ2λ1410[43σσ21(1(1q)σ1σ1)σ2][Z(2q2λ1+q2λ2)Z(q2λ1+2q2λ2)]dq|λ2λ1410[43σσ21(1(1q)σ1σ1)σ2]|Z(2q2λ1+q2λ2)Z(q2λ1+2q2λ2)|dqλ2λ1410[43σσ21(1(1q)σ1σ1)σ2]L(1q)(λ2λ1)dq=(λ2λ1)24L(23σσ211σσ2+11B(σ2+1,2σ1)).

    This concludes the proof of this theorem.

    Remark 4.1. If we choose σ1=1 in Theorem 4.1 then the following Milne-type inequality for Riemann-Liouville fractional integrals is established:

    |13[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ21Γ(σ2+1)(λ2λ1)σ2[Jσ2λ1+λ22Z(λ1)+Aσ2λ1+λ22+Z(λ2)]|(λ2λ1)24σσ21(231(σ2+1)(σ2+2))L.

    In this section, we demonstrate a Milne-type inequality using expanded fractional integrals of bounded variation.

    Theorem 5.1. Let Z:[λ1,λ2]R be a mapping of bounded variation on [λ1,λ2], then we get

    |13[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21σσ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|23λ2λ1(Z),

    where σ1,σ2>0, B(σ1,σ2), and Γ are Euler Beta and Gamma functions and dc(Z) demonstrates the total variation of Z on [c,d].

    Proof. Define the function Kσ2σ1(p) by

    Kσ2σ1(p)={((λ2λ12)σ1(λ1+λ22p)σ1)σ2(λ2λ1)σ1σ232σ1σ22,λ1pλ1+λ22((λ2λ12)σ1(pλ1+λ22)σ1)σ2+(λ2λ1)σ1σ232σ1σ22,λ1+λ22<pλ2,

    then we have

    λ2λ1Kσ2σ1(p)dZ(p)=λ1+λ22λ1(((λ2λ12)σ1(λ1+λ22p)σ1)σ2(λ2λ1)σ1σ232σ1σ22)dZ(p)λ2λ1+λ22(((λ2λ12)σ1(pλ1+λ22)σ1)σ2(λ2λ1)σ1σ232σ1σ22)dZ(p).

    By applying integration by parts, the result is

    λ1+λ22λ1(((λ2λ12)σ1(λ1+λ22p)σ1)σ2(λ2λ1)σ1σ232σ1σ22)dZ(p)=(((λ2λ12)σ1(λ1+λ22p)σ1)σ2(λ2λ1)σ1σ232σ1σ22)Z(p)|λ1+λ22λ1σ1σ2λ1+λ22λ1((λ2λ12)σ1(λ1+λ22p)σ1)σ21(λ1+λ22p)σ11Z(p)dp=(λ2λ1)σ1σ232σ1σ2Z(λ1+λ22)+(λ2λ1)σ132σ1σ22Z(λ1)σσ21Γ(σ2+1)σ2Aσ1λ1+λ22+Z(λ2) (5.1)

    and, similarly,

    λ2λ1+λ22(((λ2λ12)σ1(pλ1+λ22)σ1)σ2(λ2λ1)σ1σ232σ1σ22)dZ(p)=(λ2λ1)σ132σ1σ22Z(λ2)+(λ2λ1)σ132σ1σ2Z(λ1+λ22)+σσ21Γ(σ2+1)σ2Aσ1λ1+λ22Z(λ1). (5.2)

    By (5.1) and (5.2), we have

    λ2λ1Kσ2σ1(p)dZ(p)=(λ2λ1)σ1σ22σ1σ21{13[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21σσ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]}.

    That is,

    |13[2Z(λ1)Z(λ1+λ22)+2Z(λ2)]2σ1σ21σσ21Γ(σ2+1)(λ2λ1)σ1σ2[σ2Aσ1λ1+λ22Z(λ1)+σ2Aσ1λ1+λ22+Z(λ2)]|=2σ1σ21(λ2λ1)σ1σ2λ2λ1Kσ1(p)dZ(p).

    It is well known that if g,Z:[λ1,λ2]R are such that g is continuous on [λ1,λ2] and Z is of bounded variation on [λ1,λ2], then λ2λ1g(q)dZ(q) exists and

    |λ2λ1g(q)dZ(q)|sup (5.3)

    Otherwise, utilizing (5.3), we have

    \begin{eqnarray*} &&\left \vert \frac{1}{3}\left[ 2\mathfrak{Z}\left( \lambda _{1}\right) - \mathfrak{Z}\left( \frac{\lambda _{1}+\lambda _{2}}{2}\right) +2\mathfrak{Z} \left( \lambda _{2}\right) \right] -\frac{2^{\sigma_1 \sigma_2 -1}\sigma_1 ^{\sigma_2 }\Gamma \left( \sigma_2 +1\right) }{\left( \lambda _{2}-\lambda _{1}\right) ^{\sigma_1 \sigma_2 }}\left[ {^{\sigma_2 }}\mathfrak{A}_{\frac{\lambda _{1}+\lambda _{2}}{2}-}^{\sigma_1 }\mathfrak{Z}\left( \lambda _{1}\right) +{^{\sigma_2 }} \mathfrak{A}_{\frac{\lambda _{1}+\lambda _{2}}{2}+}^{\sigma_1 }\mathfrak{Z} \left( \lambda _{2}\right) \right] \right \vert \\ && \\ & = &\frac{2^{\sigma_1 \sigma_2 -1}}{\left( \lambda _{2}-\lambda _{1}\right) ^{\sigma_1 \sigma_2 }}\left \vert \int \limits_{\lambda _{1}}^{\lambda _{2}}K_{\sigma_1 }(p )d\mathfrak{Z}(p )\right \vert \\ && \\ &\leq &\frac{2^{\sigma_1 \sigma_2 -1}}{\left( \lambda _{2}-\lambda _{1}\right) ^{\sigma_1 \sigma_2 }}\left[ \left \vert \int \limits_{\lambda _{1}}^{\frac{\lambda _{1}+\lambda _{2}}{2}}\left( \left( \left( \frac{\lambda _{2}-\lambda _{1}}{2} \right) ^{\sigma_1 }-\left( \frac{\lambda _{1}+\lambda _{2}}{2}-p \right) ^{\sigma_1 }\right) ^{\sigma_2 }-\frac{\left( \lambda _{2}-\lambda _{1}\right) ^{\sigma_1 \sigma_2 }}{3\cdot 2^{\sigma_1 \sigma_2 -2}}\right) d\mathfrak{Z}(p )\right \vert \right. \\ &+&\left. \left \vert \int \limits_{\frac{\lambda _{1}+\lambda _{2}}{2}}^{\lambda _{2}}\left( \left( \left( \frac{\lambda _{2}-\lambda _{1}}{2}\right) ^{\sigma_1 }-\left( p -\frac{\lambda _{1}+\lambda _{2}}{2}\right) ^{\sigma_1 }\right) ^{\sigma_2 }-\frac{\left( \lambda _{2}-\lambda _{1}\right) ^{\sigma_1 \sigma_2 }}{3\cdot 2^{\sigma_1 \sigma_2 -2}}\right) d\mathfrak{Z}(p )\right \vert \right] \\ &\leq &\frac{2^{\sigma_1 \sigma_2 -1}}{\left( \lambda _{2}-\lambda _{1}\right) ^{\sigma_1 \sigma_2 }}\left[ \sup\limits_{p \in \left[ \lambda _{1}, \frac{\lambda _{1}+\lambda _{2}}{2}\right] }\left \vert \left( \left( \frac{\lambda _{2}-\lambda _{1}}{2}\right) ^{\sigma_1 }-\left( \frac{\lambda _{1}+\lambda _{2}}{ 2}-p \right) ^{\sigma_1 }\right) ^{\sigma_2 }-\frac{\left( \lambda _{2}-\lambda _{1}\right) ^{\sigma_1 \sigma_2 }}{3\cdot 2^{\sigma_1 \sigma_2 -2}} \right \vert \bigvee \limits_{\lambda _{1}}^{\frac{\lambda _{1}+\lambda _{2}}{2}}( \mathfrak{Z})\right. \\ &+&\left. \sup\limits_{p \in \left[ \frac{\lambda _{1}+\lambda _{2}}{2}, \lambda _{2}\right] }\left \vert \left( \left( \frac{\lambda _{2}-\lambda _{1}}{2} \right) ^{\sigma_1 }-\left( p -\frac{\lambda _{1}+\lambda _{2}}{2}\right) ^{\sigma_1 }\right) ^{\sigma_2 }-\frac{\left( \lambda _{2}-\lambda _{1}\right) ^{\sigma_1 \sigma_2 }}{3\cdot 2^{\sigma_1 \sigma_2 -2}}\right \vert \bigvee \limits_{ \frac{\lambda _{1}+\lambda _{2}}{2}}^{\lambda _{2}}(\mathfrak{Z})\right] \\ & = &\frac{2^{\sigma_1 \sigma_2 -1}}{\left( \lambda _{2}-\lambda _{1}\right) ^{\sigma_1 \sigma_2 }}\left[ \frac{\left( \lambda _{2}-\lambda _{1}\right) ^{\sigma_1 \sigma_2 }}{ 3\cdot 2^{\sigma_1 \sigma_2 -2}}\bigvee \limits_{\lambda _{1}}^{\frac{\lambda _{1}+\lambda _{2}}{2}}(\mathfrak{Z})+\frac{\left( \lambda _{2}-\lambda _{1}\right) ^{\sigma_1 \sigma_2 }}{3\cdot 2^{\sigma_1 \sigma_2 -2}}\bigvee \limits_{ \frac{\lambda _{1}+\lambda _{2}}{2}}^{\lambda _{2}}(\mathfrak{Z})\right] \\ & = &\frac{2}{3}\bigvee \limits_{\lambda _{1}}^{\lambda _{2}}(\mathfrak{Z}). \end{eqnarray*}

    This finishes the proof.

    Remark 5.1. If we choose \sigma_1 = 1 in Theorem 5.1, then we have the following Milne-type inequality for Riemann-Liouville fractional integrals

    \begin{eqnarray*} &&\left \vert \frac{1}{3}\left[ 2\mathfrak{Z}\left( \lambda _{1}\right) - \mathfrak{Z}\left( \frac{\lambda _{1}+\lambda _{2}}{2}\right) +2\mathfrak{Z} \left( \lambda _{2}\right) \right] -\frac{2^{\sigma_2 -1}\Gamma \left( \sigma_2 +1\right) }{\left( \lambda _{2}-\lambda _{1}\right) ^{\sigma_2 }}\left[ \mathfrak{ J}_{\frac{\lambda _{1}+\lambda _{2}}{2}-}^{\sigma_2 }\mathfrak{Z}\left( \lambda _{1}\right) +\mathfrak{A}_{\frac{\lambda _{1}+\lambda _{2}}{2}+}^{\sigma_2 } \mathfrak{Z}\left( \lambda _{2}\right) \right] \right \vert \\ && \\ &\leq &\frac{2}{3}\bigvee \limits_{\lambda _{1}}^{\lambda _{2}}(\mathfrak{Z}). \end{eqnarray*}

    This research effectively demonstrated Milne-type inequalities across various types of functions using expanded fractional integral operators. By establishing an important equality connected to these operators, we uncovered several Milne-type inequalities that apply to FCDs. To illustrate these discoveries, we provided an example. Additionally, we investigated Milne-type inequalities for bounded and Lipschitzian functions using fractional expanded integrals. Finally, we extended our study to include Milne-type inequalities for functions with bounded variation.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under grant RGP.2/102/44.

    The authors declare that there are no conflicts of interest regarding the publication of this article.



    [1] B. Çelik, M. Ç. Gürbüz, M. E. Özdemir, E. Set, On integral inequalities related to the weighted and the extended Chebyshev functionals involving different fractional operators, J. Inequal. Appl., 2020 (2020), 1–10. https://doi.org/10.1186/s13660-020-02512-8 doi: 10.1186/s13660-020-02512-8
    [2] M. A. Barakat, A. H. Soliman, A. Hyder, Langevin equations with generalized proportional Hadamard-Caputo fractional derivative, Comput. Intel. Neurosc., 2021 (2021). https://doi.org/10.1155/2021/6316477 doi: 10.1155/2021/6316477
    [3] T. S. Du, Y. Peng, Hermite-Hadamard type inequalities for multiplicative Riemann- Liouville fractional integrals, J. Comput. Appl. Math., 440 (2024), 115582. https://doi.org/10.1016/j.cam.2023.115582 doi: 10.1016/j.cam.2023.115582
    [4] F. Ertuğral, M. Z. Sarikaya, H. Budak, On Hermite-Hadamard type inequalities associated with the generalized fractional integrals, Filomat, 36 (2022), 3981–3993. https://doi.org/10.2298/FIL2212981E doi: 10.2298/FIL2212981E
    [5] Y. Peng, H. Fu, T. S. Du, Estimations of bounds on the multiplicative fractional integral inequalities having exponential kernels, Commun. Math. Stat., 2022. https://doi.org/10.1007/s40304-022-00285-8 doi: 10.1007/s40304-022-00285-8
    [6] A. A. Almoneef, M. A. Barakat, A. Hyder, Analysis of the fractional HIV model under proportional Hadamard-Caputo operators, Fractal Fract., 7 (2023), 220. https://doi.org/10.3390/fractalfract7030220 doi: 10.3390/fractalfract7030220
    [7] M. A. Khan, M. Hanif, Z. A. H. Khan, K. Ahmad, Y. M. Chu, Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1–14. https://doi.org/10.1186/s13660-019-2112-9 doi: 10.1186/s13660-019-2112-9
    [8] M. A. Khan, J. Pecaric, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Math., 5 (2020), 4931–4945. https://doi.org/10.3934/math.2020315 doi: 10.3934/math.2020315
    [9] M. Iqbal, M. I. Bhatti, K. Nazeer, Generalization of inequalities analogous to Hermite–Hadamard inequality via fractional integrals, B. Korean Math. Soc., 52 (2015), 707–716. https://doi.org/10.4134/BKMS.2015.52.3.707 doi: 10.4134/BKMS.2015.52.3.707
    [10] M. Z. Sarikaya, H. Budak, Some Hermite-Hadamard type integral inequalities for twice differentiable mappings via fractional integrals, Facta Univ. Ser. Math., 29 (2014), 371–384.
    [11] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Misk. Math. Notes, 17 (2016), 1049–1059.
    [12] M. U. Awan, M. Z. Javed, M. T. Rassias, M. A. Noor, K. I. Noor, Simpson type inequalities and applications, J. Anal., 29 (2021), 1403–1419. https://doi.org/10.1007/s41478-021-00319-4 doi: 10.1007/s41478-021-00319-4
    [13] M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for s-convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
    [14] T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson's inequality via differentiable mapping using expanded (s, m)-convex functions, Appl. Math. Comput., 293 (2017), 358–369. https://doi.org/10.1016/j.amc.2016.08.045 doi: 10.1016/j.amc.2016.08.045
    [15] S. S. Dragomir, On Simpson's quadrature formula for mappings of bounded variation and applications, Tamkang J. Math., 30 (1999), 53–58. https://doi.org/10.5556/j.tkjm.30.1999.4207 doi: 10.5556/j.tkjm.30.1999.4207
    [16] M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 23 (2017), 1137–1145.
    [17] S. Hussain, S. Qaisar, More results on Simpson's type inequality through convexity for twice differentiable continuous mappings, SpringerPlus, 5 (2016), 1–9. https://doi.org/10.1186/s40064-016-1683-x doi: 10.1186/s40064-016-1683-x
    [18] J. Nasir, S. Qaisar, S. I. Butt, A. Qayyum, Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator, AIMS Math., 7 (2022), 3303–3320. https://doi.org/10.3934/math.2022184 doi: 10.3934/math.2022184
    [19] M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inf., 9 (2013), 37–45. https://doi.org/10.2478/jamsi-2013-0004 doi: 10.2478/jamsi-2013-0004
    [20] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
    [21] F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1–16. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
    [22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier, 2006.
    [23] A. Hyder, M. A. Barakat, A. Fathallah, Enlarged integral inequalities through recent fractional generalized operators, J. Inequal. Appl., 2022 (2022), 95. https://doi.org/10.1186/s13660-022-02831-y doi: 10.1186/s13660-022-02831-y
    [24] A. Hyder, M. A. Barakat, Novel improved fractional operators and their scientific applications, Adv. Differ. Equ., 2021 (2021), 1–24. https://doi.org/10.1186/s13662-021-03547-x doi: 10.1186/s13662-021-03547-x
    [25] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Wien: Springer-Verlag, 1997.
    [26] S. K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, NewYork: Wiley, 1993.
    [27] H. M. Srivastava, J. Choi, Zeta and q-Zeta functions and associated series and integrals, Amsterdam: Elsevier Science Publishers, 2011.
    [28] M. V. Mihai, M. U. Awan, M. A. Noor, J. K. Kim, K. I. Noor, Hermite-Hadamard inequalities and their applications, J. Inequal. Appl., 2018 (2018), 309. https://doi.org/10.1186/s13660-018-1895-4 doi: 10.1186/s13660-018-1895-4
  • This article has been cited by:

    1. Talib Hussain, Loredana Ciurdariu, Eugenia Grecu, New Perspectives of Hermite–Hadamard–Mercer-Type Inequalities Associated with ψk-Raina’s Fractional Integrals for Differentiable Convex Functions, 2025, 9, 2504-3110, 203, 10.3390/fractalfract9040203
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(991) PDF downloads(90) Cited by(1)

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog