Research article

Some Grüss-type inequalities using generalized Katugampola fractional integral

  • Received: 14 November 2019 Accepted: 30 December 2019 Published: 09 January 2020
  • MSC : 26A33, 26D10

  • The main objective of this paper is to obtain a generalization of some Grüss-type inequalities in case of functional bounds by using a generalized Katugampola fractional integral. We obtained new Grüss type inequalitys with functional bounds via the generalized fractional integral operators having same and different parameters. Results obtained are more generalized in nature.

    Citation: Tariq A. Aljaaidi, Deepak B. Pachpatte. Some Grüss-type inequalities using generalized Katugampola fractional integral[J]. AIMS Mathematics, 2020, 5(2): 1011-1024. doi: 10.3934/math.2020070

    Related Papers:

    [1] Gauhar Rahman, Kottakkaran Sooppy Nisar, Feng Qi . Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Mathematics, 2018, 3(4): 575-583. doi: 10.3934/Math.2018.4.575
    [2] Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112
    [3] Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some $ q $-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192
    [4] Marwa M. Tharwat, Marwa M. Ahmed, Ammara Nosheen, Khuram Ali Khan, Iram Shahzadi, Dumitru Baleanu, Ahmed A. El-Deeb . Dynamic inequalities of Grüss, Ostrowski and Trapezoid type via diamond-$ \alpha $ integrals and Montgomery identity. AIMS Mathematics, 2024, 9(5): 12778-12799. doi: 10.3934/math.2024624
    [5] Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004
    [6] Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Fahd Jarad, Y. S. Hamed, Khadijah M. Abualnaja . Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function. AIMS Mathematics, 2021, 6(8): 8001-8029. doi: 10.3934/math.2021465
    [7] J. Vanterler da C. Sousa, E. Capelas de Oliveira . The Minkowski’s inequality by means of a generalized fractional integral. AIMS Mathematics, 2018, 3(1): 131-147. doi: 10.3934/Math.2018.1.131
    [8] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
    [9] Sajid Iqbal, Muhammad Samraiz, Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad . Some new Grüss inequalities associated with generalized fractional derivative. AIMS Mathematics, 2023, 8(1): 213-227. doi: 10.3934/math.2023010
    [10] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly $ (\alpha, m) $-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
  • The main objective of this paper is to obtain a generalization of some Grüss-type inequalities in case of functional bounds by using a generalized Katugampola fractional integral. We obtained new Grüss type inequalitys with functional bounds via the generalized fractional integral operators having same and different parameters. Results obtained are more generalized in nature.


    Fractional calculus is the study of integrations and derivatives in case of non-integer order, which is a generalized form of classical integrals and derivatives. The importance of fractional calculus is due to its multiple applications in several important scientific fields such as fluid dynamics, physics, computer networking, biology, control theory, signal processing, image processing and other fields. During the last few decades, fractional calculus have been studied extensively and one can observe a number of researchers have shown deep interest it, which led to the expansion and development of its concept by a number of authors.

    Mathematical inequalities play an important role in a number of mathematical fields, especially those associated with finding the continuous dependence and uniqueness of solutions for fractional differential equations and others. This sensitive importance has stimulated a number of researchers recently to invent a number of useful inequalities.

    In 1935, G. Grüss proved the renowned integral inequality [11] (see also [15]):

    |1babav(x)u(x)dx1(ba)2bav(x)dxbau(x)dx|14(Mm)(Pp), (1.1)

    where v,u are two integrable functions on [a,b], satisfying the conditions

        mv(x)M,    pu(x)P,  x[a,b],  m,M,p,PR.

    In recent years, the inequalities involving fractional calculus play a very important role in all mathematical fields which gave rise to important theories in mathematics, engineering, physics and other fields of science.

    A remarkably large number inequalities of above type involving the special fractional integral (such as the Liouville, Riemann–Liouville, Erdé lyi-Kober, Katugampola, Hadamard and Weyl types) have been investigated by many researchers and received considerable attention to it, see([2,3,5,6,7,8,9,10,14,17,18,21,22]).

    Grüss-type inequality has important applications in a number of mathematical fields, like an integral arithmetic mean, difference equations and h-integral arithmetic mean (see [1,16]).

    Dahmani et al. [4], in (2010), proved the following fractional version inequality by using Riemann–Liouville fractional integral

    |xαΓ(α+1)Jα(vu)(x)Jαv(x)Jαu(x)|(xαΓ(α+1))2(Mm)(Pp), (1.2)

    for one parameter, and

    (xαΓ(α+1)Jβ(vu)(x)+xβΓ(β+1)Jα(vu)(x)Jαv(x)Jβu(x)Jβv(x)Jαu(x))2[(MxαΓ(α+1)Jαv(x))(Jβv(x)mxβΓ(β+1))  +(Jαv(x)mxαΓ(α+1))(MxβΓ(β+1)Jβv(x))] ×[(PxαΓ(α+1)Jαu(x))(Jβu(x)pxβΓ(β+1))  +(Jαu(x)pxαΓ(α+1))(PxβΓ(β+1)Jβu(x))] (1.3)

    for two parameters, where v,u are two integrable functions on [0,), satisfying the conditions

       mv(x)M,    pu(x)P, x[0,),  m,M,p,PR. (1.4)

    In (2014), Tariboon et al. [20], replaced the constants which appeared as bounds of the functions v and u by four integrable functions on [0,), as

    φ1(x)v(x)φ2(x)  and  ψ1(x)u(x)ψ2(x),

    they obtained the inequality

    |xαΓ(α+1)Jα(vu)(x)Jαv(x)Jαu(x)|T(v,φ1,φ2)T(u,ψ1,ψ2),

    where T(s,q,w) is defined by

    T(s,q,w)=(Jαω(x)Jαs(x))(Jαs(x)Jαq(x))+xαΓ(α+1)Jα(sq)(x)Jαs(x)Jαq(x)+xαΓ(α+1)Jα(sω)(x)Jαs(x)Jαω(x)xαΓ(α+1)Jα(qω)(x)+Jαq(x)Jαω(x).

    Motivated from above mentioned results, our purpose in this paper is to establish some new results on Grüss-type inequalities in case of functional bounds using the generalized Katugampola fractional integral.

    In this section, we give some definitions and properties will be used in our paper. For more details, please see Refs. [12,13,19].

    Definition 2.1. Consider the space Xpc(a,b)(cR,1p), of those complex valued Lebesgue measurable functions v on (a,b) for which the norm vXpc<, such that

    vXpc=(bx|xcv|pdxx)1p,   (1p<)

    and

    vXc=supessx(a,b)[xc|v|].

    In particular, when c=1/p, the space Xpc(a,b) coincides with the space Lp(a,b).

    Definition 2.2. The left- and right-sided fractional integrals of a function v where v Xpc(a,b), α>0, and β,ρ,η,kR, are defined respectively by

     ρJα,βa+;η,kv(x)=ρ1βxkΓ(α)xaτρ(η+1)1(xρτρ)1αv(τ)dτ,        0a<x<b, (2.1)

    and

     ρJα,βb;η,kv(x)=ρ1βxρηΓ(α)bxτk+ρ1(τρxρ)1αv(τ)dτ,        0a<x<b, (2.2)

    if the integral exist.

    To present and discuss our new results in this paper we use only the left-sided fractional integrals. The right sided fractional integrals can be proved similarly. Also we consider a=0, in (2.1), to obtain

    ρIα,βη,kv(x)=ρ1βxkΓ(α)x0τρ(η+1)1(xρτρ)1αv(τ)dτ.

    The above fractional integral has the following Composition (index) formulae

     ρJα1,β1a+;η1,k1 ρJα2,β2a+;η2,ρη1v= ρJα1+α2,β1+β2a+;η2,k1v,
     ρJα1,β1b;η1,ρη2 ρJα2,β2b;η2,k2v= ρJα1+α2,β1+β2a+;η1,k2v.

    For the convenience of establishing our results we define the following function as in [19]: let x>0, α>0, ρ,k,β,ηR, then

    Λρ,βx,k(α,η)=Γ(η+1)Γ(η+α+1)ρβxk+ρ(η+α).

    If η=0, a=0, k=0 and taking the limit ρ1, then the Definition (2.2) reduce to Liouville fractional integral and if η=0, k=0, with taking the limit ρ1, then we can get Riemann-Liouville fractional integral. It is reduce to Weyl fractional integral, when η=0, a=, k=0 and taking the limit ρ1. For Erdélyi-Kober fractional integral, we put β=0, k=ρ(α+η). We can also getting Katugampola fractional integral by taking β=α, k=0, η=0. And finally Hadamard fractional integral when β=α, k=0, η=0+ and taking the limit ρ1.

    The definition (2.2) is more generalized and can be reduce to six cases by change its parameters with appropriate choice.

    Now, we give our main results on Grüss-type inequalities in case of functional bounds.

    Theorem 3.1. Let v be an integrable function on [0,). Assume that there exist two integrable functions z1,z2 on [0,) such that

    z1(x)v(x)z2(x)      x[0,). (3.1)

    Then, for all x>0, α>0, ρ>0, δ>0, β,η,k,λR, we have

    ρJα,βη,kz2(x)ρJδ,λη,kv(x)+ρJα,βη,kv(x)ρJδ,λη,kz1(x)ρJα,βη,kv(x)ρJδ,λη,kv(x)+ρJα,βη,kz2(x)ρJδ,λη,kz1(x). (3.2)

    Proof. From the condition (3.1), for all τ0, σ0, we have

    ( v(σ)z1(σ))(z2(τ)v(τ))0.

    Therefore

    v(σ)z2(τ)+z1(σ)v(τ)v(σ)v(τ)+z1(σ)z2(τ). (3.3)

    Multiplying both sides of (3.3) by ρ1βxkΓ(α)τρ(η+1)1(xρτρ)1α, where τ(0,x) and integrating with respect to τ over (0,x), we get

    v(σ)ρ1βxkΓ(α)x0τρ(η+1)1(xρτρ)1αz2(τ)dτ+z1(σ)ρ1βxkΓ(α)x0τρ(η+1)1(xρτρ)1αv(τ)dτv(σ)ρ1βxkΓ(α)x0τρ(η+1)1(xρτρ)1αv(τ)dτ+z1(σ)ρ1βxkΓ(α)x0τρ(η+1)1(xρτρ)1αz2(τ)dτ,

    so we have

    v(σ) ρJα,βη,kz2(x)+z1(σ) ρJα,βη,kv(x)v(σ) ρJα,βη,kv(x)+z1(σ) ρJα,βη,kz2(x). (3.4)

    Multiplying both sides of (3.4) by ρ1βxkΓ(δ)σρ(η+1)1(xρσρ)1δ, where σ(0,x), we obtain

    ρ1βxkΓ(δ)σρ(η+1)1(xρσρ)1δv(σ) ρJα,βη,kz2(x)+ρ1βxkΓ(δ)σρ(η+1)1(xρσρ)1δz1(σ) ρJα,βη,kv(x)ρ1βxkΓ(δ)σρ(η+1)1(xρσρ)1δv(σ) ρJα,βη,k+ρ1βxkΓ(δ)σρ(η+1)1(xρσρ)1δz1(σ) ρJα,βη,kz2(x). (3.5)

    Integrating both sides of (3.5) with respect to σ over (0,x), we get

     ρJα,βη,kz2(x)ρ1λxkΓ(δ)x0σρ(η+1)1(xρσρ)1δv(σ)dσ+ ρJα,βη,kv(x)ρ1λxkΓ(δ)x0σρ(η+1)1(xρσρ)1δz1(σ)dσ ρJα,βη,kv(x)ρ1λxkΓ(δ)x0σρ(η+1)1(xρσρ)1δv(σ)dσ+ ρJα,βη,kz2(x)ρ1λxkΓ(δ)x0σρ(η+1)1(xρσρ)1δz1(σ)dσ.

    Hence

     ρJα,βη,kz2(x) ρJδ,λη,kv(x)+ ρJα,βη,kv(x) ρJδ,λη,kz1(x) ρJα,βη,kv(x) ρJδ,λη,kv(x)+ ρJα,βη,kz2(x) ρJδ,λη,kz1(x),

    which is inequality (3.2).

    Corollary 3.2. Let z be an integrable function on [0,) satisfying mz(x)M, for all x[0,) and m,MR. Then, for all x>0 and α>0, ρ>0, δ>0, β,η,k,λR, we have

    MΛρ,βx,k(α,η)ρJδ,λη,kv(x)+mΛρ,λx,k(δ,η)ρJα,βη,kv(x)ρJα,βη,kv(x)ρJδ,λη,kv(x)+mMΛρ,βx,k(α,η)Λρ,λx,k(δ,η).

    Remark 3.3. If we put η=0, k=0, and taking the limit ρ1, then Theorem (3.1), reduces to Theorem 2 and Corollary (3.2), reduces to Corollary 3 in [20].

    Now we give the lemma required for proving our next theorem.

    Lemma 3.1. Let v,z1,z2 are integrable functions on [0,) satisfying the condition (3.1), then for all x>0 and α>0, ρ>0, β,η,kR, we have

    Λρ,βx,k(α,η)ρJα,βη,kv2(x)(ρJα,βη,kv(x))2                                       =(ρJα,βη,kz2(x)ρJα,βη,kv(x))(ρJα,βη,kv(x)ρJα,βη,kz1(x))Λρ,βx,k(α,η)ρJα,βη,k[(z2(x)v(x))(v(x)z1(x))]+Λρ,βx,k(α,η)ρJα,βη,k(z1v)(x)ρJα,βη,kz1(x)ρJα,βη,kv(x)+Λρ,βx,k(α,η)ρJα,βη,k(z2v)(x)ρJα,βη,kz2(x)ρJα,βη,kv(x)Λρ,βx,k(α,η)ρJα,βη,k(z1z2)(x)+ρJα,βη,kz2(x)ρJα,βη,kz1(x). (3.6)

    Proof. For any τ,σ>0, we have

    (z2(σ)v(σ))(v(τ)z1(τ))+(z2(τ)v(τ))(v(σ)z1(σ))(z2(τ)v(τ))(v(τ)z1(τ))(z2(σ)v(σ))(v(σ)z1(σ))=v2(τ)+v2(σ)2v(τ)v(σ)  +z2(σ)v(τ)+z1(τ)v(σ)z1(τ)z2(σ)+z2(τ)v(σ)+z1(σ)v(τ)z1(σ)z2(τ)  z2(τ)v(τ)+z1(τ)z2(τ)z1(τ)v(τ)z2(σ)v(σ)+z1(σ)z2(σ)z1(σ)v(σ). (3.7)

    Multiplying both sides of (3.7) by ρ1βxkΓ(α)τρ(η+1)1(xρτρ)1α, where τ(0,x) and integrating over (0,x) with respect to the variable τ, we obtain

    (z2(σ)v(σ))( ρJα,βη,kv(x) ρJα,βη,kz1(x))+(v(σ)z1(σ))( ρJα,βη,kz2(x) ρJα,βη,kv(x)) ρJα,βη,k[(z2(τ)v(τ))(v(τ)z1(τ))][(z2(σ)v(σ))(v(σ)z1(σ))]Λρ,βx,k(α,η)    = ρJα,βη,kv2(x)+v2(σ)Λρ,βx,k(α,η)2v(σ) ρJα,βη,kv(x)  +z2(σ) ρJα,βη,kv(x)+v(σ) ρJα,βη,kz1(x)z2(σ) ρJα,βη,kz1(x)+v(σ) ρJα,βη,kz2(x)  +z1(σ) ρJα,βη,kv(x)z1(σ) ρJα,βη,kz2(x) ρJα,βη,k(z2v)(x)+ ρJα,βη,k(z1z2)(x)   ρJα,βη,k(z1v)(x)Λρ,βx,k(α,η)z2(σ)v(σ)+Λρ,βx,k(α,η)z1(σ)z2(σ)Λρ,βx,k(α,η)z1(σ)v(σ). (3.8)

    Now multiplying both sides of (3.8) by ρ1βxkΓ(α)σρ(η+1)1(xρσρ)1α, where σ(0,x) and integrating over (0,x) with respect to the variable σ, we obtain

    ( ρJα,βη,kz2(x) ρJα,βη,kv(x))( ρJα,βη,kv(x) ρJα,βη,kz1(x))+( ρJα,βη,kv(x) ρJα,βη,kz1(x))( ρJα,βη,kz2(x) ρJα,βη,kv(x)) ρJα,βη,k[(z2(x)v(x))(v(x)z1(x))]Λρ,βx,k(α,η) ρJα,βη,k[(z2(x)v(x))(v(x)z1(x))]Λρ,βx,k(α,η)=Λρ,βx,k(α,η) ρJα,βη,kv2(x)+Λρ,βx,k(α,η) ρJα,βη,kv2(x)2 ρJα,βη,kv(x) ρJα,βη,kv(x)  + ρJα,βη,kz2(x) ρJα,βη,kv(x)+ ρJα,βη,kv(x) ρJα,βη,kz1(x) ρJα,βη,kz2(x) ρJα,βη,kz1(x)  + ρJα,βη,kv(x) ρJα,βη,kz2(x)+ ρJα,βη,kz1(x) ρJα,βη,kv(x) ρJα,βη,kz1(x) ρJα,βη,kz2(x)  Λρ,βx,k(α,η) ρJα,βη,k(z2v)(x)+Λρ,βx,k(α,η) ρJα,βη,k(z1z2)(x)Λρ,βx,k(α,η) ρJα,βη,k(z1v)(x)  Λρ,βx,k(α,η) ρJα,βη,k(z2v)(x)+Λρ,βx,k(α,η) ρJα,βη,k(z1z2)(x)Λρ,βx,k(α,η) ρJα,βη,k(z1v)(x),

    which yields the required identity (3.6).

    Our next result is on Grüss-type inequalities in case of functional bounds with same parameters.

    Theorem 3.4. Let v,u be two integrable functions on [0,). Suppose z1,z2,γ1 and γ2 be four integrable functions on [0,) satisfying the condition

    z1(x)v(x)z2(x)     and    γ1(x)u(x)γ2(x),     x[0,). (3.9)

    Then for all x>0 and α>0, ρ>0, β,η,kR, we have

    [Λρ,βx,k(α,η)ρJα,βη,k(vu)(x)(ρJα,βη,kv(x)ρJα,βη,ku(x))]2T(v,z1,z2)T(u,γ1,γ2), (3.10)

    where T(φ,ψ,ω) as in [20], is defined by

    T(φ,ψ,ω)=(ρJα,βη,kω(x)ρJα,βη,kφ(x))(ρJα,βη,kφ(x)ρJα,βη,kψ(x))+Λρ,βx,k(α,η)ρJα,βη,k(φψ)(x)ρJα,βη,kφ(x)ρJα,βη,kψ(x)+Λρ,βx,k(α,η)ρJα,βη,k(φω)(x)ρJα,βη,kφ(x)ρJα,βη,kω(x)Λρ,βx,k(α,η)ρJα,βη,k(ψω)(x)+ρJα,βη,kψ(x)ρJα,βη,kω(x).

    Proof. Define

    H(τ,σ):=( v(τ)v(σ))(u(τ)u(σ)),     τ,σ(0,x),x>0. (3.11)

    Multiplying both sides of (3.11) by ρ1βxkΓ(α)τρ(η+1)1(xρτρ)1α, where τ(0,x) and integrating over (0,x) with respect to the variable τ, we obtain

    ρ1βxkΓ(α)x0τρ(η+1)1(xρτρ)1αH(τ,σ)dτ:= ρJα,βη,k(uv)(x)+Λρ,βx,k(α,η)v(σ)u(σ)u(σ) ρJα,βη,kv(x)v(σ) ρJα,βη,ku(x). (3.12)

    Now multiplying both sides of (3.12) by ρ1βxkΓ(α)σρ(η+1)1(xρσρ)1α, where σ(0,x) and integrating the resulting identity over (0,x) with respect to the variable σ, we get

    ρ2(1β)x2k2Γ2(α)x0x0τρ(η+1)1(xρτρ)1ασρ(η+1)1(xρσρ)1αH(τ,σ)dτdσ:=Λρ,βx,k(α,η) ρJα,βη,k(uv)(x) ρJα,βη,ku(x) ρJα,βη,kv(x). (3.13)

    Applying the Cauchy-Schwarz inequality to (3.13), we can write

    (Λρ,βx,k(α,η) ρJα,βη,k(uv)(x) ρJα,βη,ku(x) ρJα,βη,kv(x))2(Λρ,βx,k(α,η) ρJα,βη,ku2(x)( ρJα,βη,ku(x))2)  ×(Λρ,βx,k(α,η) ρJα,βη,kv2(x)( ρJα,βη,kv(x))2). (3.14)

    Since

    (z2(x)v(x))(v(x)z1(x))0,(γ2(x)u(x))(u(x)γ1(x))0, (3.15)

    for all x[0,), we have

    Λρ,βx,k(α,η) ρJα,βη,k(z2(x)v(x))(v(x)z1(x))0

    and

    Λρ,βx,k(α,η) ρJα,βη,k(γ2(x)u(x))(u(x)γ1(x))0.

    Thus, from lemma (3.1), we have

    Λρ,βx,k(α,η) ρJα,βη,kv2(x)( ρJα,βη,kv(x))2( ρJα,βη,kz2(x) ρJα,βη,kv(x))( ρJα,βη,kv(x) ρJα,βη,kz1(x))  +Λρ,βx,k(α,η) ρJα,βη,k(z1v)(x) ρJα,βη,kz1(x) ρJα,βη,kv(x)  +Λρ,βx,k(α,η) ρJα,βη,k(z2v)(x) ρJα,βη,kz2(x) ρJα,βη,kv(x)  Λρ,βx,k(α,η) ρJα,βη,k(z1z2)(x)+ ρJα,βη,kz2(x) ρJα,βη,kz1(x)   =T(v,z1,z2) (3.16)

    and

    Λρ,βx,k(α,η) ρJα,βη,ku2(x)( ρJα,βη,ku(x))2( ρJα,βη,kγ2(x) ρJα,βη,ku(x))( ρJα,βη,ku(x) ρJα,βη,kγ1(x))  +Λρ,βx,k(α,η) ρJα,βη,k(γ1u)(x) ρJα,βη,kγ1(x) ρJα,βη,ku(x)  +Λρ,βx,k(α,η) ρJα,βη,k(γ2u)(x) ρJα,βη,kγ2(x) ρJα,βη,ku(x)  Λρ,βx,k(α,η) ρJα,βη,k(γ1γ2)(x)+ ρJα,βη,kγ2(x) ρJα,βη,kγ1(x)   =T(u,γ1,γ2). (3.17)

    Combining the inequalities (3.16), (3.17) with inequality (3.14), we obtain inequality (3.10).

    Remark 3.5. If we put T(v,z1,z2)=T(v,m,M)    and    T(u,γ1,γ2)=T(v,p,P), in Theorem (3.4), where m,M,p,P are constants, then inequality (3.10) reduces to

    |Λρ,βx,k(α,η) ρJα,βη,k(vu)(x)( ρJα,βη,kv(x) ρJα,βη,ku(x))|(Λρ,βx,k(α,η))2(Mm)(Pp),

    which is a result given in [19].

    Lemma 3.2. Let v,z1,z2 are integrable functions on [0,) satisfying the condition (3.1), then for all x>0 and α>0, δ>0, ρ>0, β,λ,η,kR, we have

    Λρ,λx,k(δ,η)ρJα,βη,kv2(x)+Λρ,βx,k(α,η)ρJδ,λη,kv2(x)2ρJδ,λη,kv(x)ρJα,βη,kv(x)=(ρJδ,λη,kz2(x)ρJδ,λη,kv(x))(ρJα,βη,kv(x)ρJα,βη,kz1(x))+(ρJδ,λη,kv(x)ρJδ,λη,kz1(x))(ρJα,βη,kz2(x)ρJα,βη,kv(x))ρJα,βη,k[(z2(x)v(x))(v(x)z1(x))]Λρ,λx,k(δ,η)ρJδ,λη,k[(z2(x)v(x))(v(x)z1(x))]Λρ,βx,k(α,η)ρJδ,λη,kz2(x)ρJα,βη,kv(x)ρJδ,λη,kv(x)ρJα,βη,kz2(x)ρJδ,λη,kv(x)ρJα,βη,kz1(x)ρJδ,λη,kz1(x)ρJα,βη,kv(x)+ρJδ,λη,kz2(x)ρJα,βη,kz1(x)+ρJδ,λη,kz1(x)ρJα,βη,kz2(x)+Λρ,λx,k(δ,η)[ρJα,βη,k(z1v)(x)+ρJα,βη,k(z2v)(x)ρJα,βη,k(z1z2)(x)]+Λρ,βx,k(α,η)[ρJδ,λη,k(z1v)(x)+ρJδ,λη,k(z2v)(x)ρJδ,λη,k(z1z2)(x)]. (3.18)

    Proof. In Lemma (3.1), multiplying both sides of (3.8) by ρ1λxkΓ(δ)σρ(η+1)1(xρσρ)1δ, where σ(0,x) and integrating the resulting identity over (0,x) with respect to the variable σ, we obtain

    ( ρJδ,λη,kz2(x) ρJδ,λη,kv(x))( ρJα,βη,kv(x) ρJα,βη,kz1(x))+( ρJδ,λη,kv(x) ρJδ,λη,kz1(x))( ρJα,βη,kz2(x) ρJα,βη,kv(x)) ρJα,βη,k[(z2(x)v(x))(v(x)z1(x))]Λρ,λx,k(δ,η) ρJδ,λη,k[(z2(x)v(x))(v(x)z1(x))]Λρ,βx,k(α,η)=Λρ,λx,k(δ,η) ρJα,βη,kv2(x)+Λρ,βx,k(α,η) ρJδ,λη,kv2(x)2 ρJδ,λη,kv(x) ρJα,βη,kv(x)   + ρJδ,λη,kz2(x) ρJα,βη,kv(x)+ ρJδ,λη,kv(x) ρJα,βη,kz1(x) ρJδ,λη,kz2(x) ρJα,βη,kz1(x)   + ρJδ,λη,kv(x) ρJα,βη,kz2(x)+ ρJδ,λη,kz1(x) ρJα,βη,kv(x) ρJδ,λη,kz1(x) ρJα,βη,kz2(x)   Λρ,λx,k(δ,η) ρJα,βη,k(z2v)(x)+Λρ,λx,k(δ,η) ρJα,βη,k(z1z2)(x)Λρ,λx,k(δ,η) ρJα,βη,k(z1v)(x)   Λρ,βx,k(α,η) ρJδ,λη,k(z2v)(x)+Λρ,βx,k(α,η) ρJδ,λη,kz1z2(x)Λρ,βx,k(α,η) ρJδ,λη,kz1v(x),

    which gives (3.18) and proves the lemma.

    In our next theorem, we prove the result with different parameters. Here we use Lemma (3.2) to proving the result.

    Theorem 3.6. Let v,u be two integrable functions on [0,) and suppose z1,z2,γ1 and γ2 be four integrable functions on [0,) satisfying the condition (3.9), then for all x>0 and α>0, δ>0, ρ>0, β,λ,η,kR, we have

    |Λρ,λx,k(δ,η)ρJα,βη,k(uv)(x)+Λρ,βx,k(α,η)ρJδ,λη,k(vu)(x)ρJδ,λη,ku(x)ρJα,βη,kv(x)ρJδ,λη,kv(x)ρJα,βη,ku(x)|K(v,z1,z2)K(u,γ1,γ2), (3.19)

    where K(φ,ψ,ω) is defined by

    K(φ,ψ,ω)=(ρJδ,λη,kω(x)ρJδ,λη,kφ(x))(ρJα,βη,kφ(x)ρJα,βη,kψ(x))+(ρJδ,λη,kφ(x)ρJδ,λη,kψ(x))(ρJα,βη,kω(x)ρJα,βη,kφ(x))ρJδ,λη,kω(x)ρJα,βη,kφ(x)ρJδ,λη,kφ(x)ρJα,βη,kω(x)ρJδ,λη,kφ(x)ρJα,βη,kψ(x)ρJδ,λη,kψ(x)ρJα,βη,kφ(x)+ρJδ,λη,kω(x)ρJα,βη,kψ(x)+ρJδ,λη,kψ(x)ρJα,βη,kω(x)+Λρ,λx,k(δ,η)[ρJα,βη,k(ψφ)(x)+ρJα,βη,k(ωφ)(x)ρJα,βη,k(ψω)(x)]+Λρ,βx,k(α,η)[ρJδ,λη,k(ψφ)(x)+ρJδ,λη,k(ωφ)(x)ρJδ,λη,k(ψω)(x)].

    Proof. In Theorem (3.4), multiplying both sides of (3.12) by ρ1λxkΓ(δ)σρ(η+1)1(xρσρ)1δ, where σ(0,x) and integrating the resulting identity over (0,x) with respect to the variable σ, we obtain

    ρ2βλx2kΓ(α)Γ(δ)x0x0τρ(η+1)1(xρτρ)1ασρ(η+1)1(xρσρ)1δH(τ,σ)dτdσ:=Λρ,λx,k(δ,η) ρJα,βη,k(uv)(x)+Λρ,βx,k(α,η) ρJδ,λη,k(vu)(x)    ρJδ,λη,ku(x) ρJα,βη,kv(x) ρJδ,λη,kv(x) ρJα,βη,ku(x). (3.20)

    Applying Cauchy-Schwarz inequality for double integrals, we get

    [Λρ,λx,k(δ,η) ρJα,βη,k(uv)(x)+Λρ,βx,k(α,η) ρJδ,λη,kvu(x) ρJδ,λη,ku(x) ρJα,βη,kv(x) ρJδ,λη,kv(x) ρJα,βη,ku(x)]2(Λρ,λx,k(δ,η) ρJα,βη,kv2(x)+Λρ,βx,k(α,η) ρJδ,λη,kv2(x)2 ρJδ,λη,kv(x) ρJα,βη,kv(x)) ×(Λρ,λx,k(δ,η) ρJα,βη,ku2(x)+Λρ,βx,k(α,η) ρJδ,λη,ku2(x)2 ρJδ,λη,ku(x) ρJα,βη,ku(x)). (3.21)

    Since

    (z2(x)v(x))(v(x)z1(x))0    

    and

    (γ2(x)u(x))(u(x)γ1(x))0,

    for all x[0,), we have

    ( ρJα,βη,k[(z2(x)v(x))(v(x)z1(x))]Λρ,λx,k(δ,η)+ ρJδ,λη,k[(z2(x)v(x))(v(x)z1(x))]Λρ,βx,k(α,η)) 0,

    and

    ( ρJα,βη,k[(γ2(x)u(x))(u(x)γ1(x))]Λρ,λx,k(δ,η) + ρJδ,λη,k[(γ2(x)u(x))(u(x)γ1(x))]Λρ,βx,k(α,η)) 0.

    Thus, from Lemma (3.2), we have

    Λρ,λx,k(δ,η) ρJα,βη,kv2(x)+Λρ,βx,k(α,η) ρJδ,λη,kv2(x)2 ρJδ,λη,kv(x) ρJα,βη,kv(x)( ρJδ,λη,kz2(x) ρJδ,λη,kv(x))( ρJα,βη,kv(x) ρJα,βη,kz1(x)) +( ρJδ,λη,kv(x) ρJδ,λη,kz1(x))( ρJα,βη,kz2(x) ρJα,βη,kv(x))  ρJδ,λη,kz2(x) ρJα,βη,kv(x) ρJδ,λη,kv(x) ρJα,βη,kz2(x)  ρJδ,λη,kv(x) ρJα,βη,kz1(x) ρJδ,λη,kz1(x) ρJα,βη,kv(x) + ρJδ,λη,kz2(x) ρJα,βη,kz1(x)+ ρJδ,λη,kz1(x) ρJα,βη,kz2(x) +Λρ,λx,k(δ,η)[ ρJα,βη,k(z1v)(x)+ ρJα,βη,k(z2v)(x) ρJα,βη,k(z1z2)(x)] +Λρ,βx,k(α,η)[ ρJδ,λη,k(z1v)(x)+ ρJδ,λη,k(z2v)(x) ρJδ,λη,k(z1z2)(x)] =K(v,z1,z2) (3.22)

    and

    Λρ,λx,k(δ,η) ρJα,βη,ku2(x)+Λρ,βx,k(α,η) ρJδ,λη,ku2(x)2 ρJδ,λη,ku(x) ρJα,βη,ku(x)( ρJδ,λη,kγ2(x) ρJδ,λη,ku(x))( ρJα,βη,ku(x) ρJα,βη,kγ1(x)) +( ρJδ,λη,ku(x) ρJδ,λη,kγ1(x))( ρJα,βη,kγ2(x) ρJα,βη,ku(x))  ρJδ,λη,kγ2(x) ρJα,βη,ku(x) ρJδ,λη,ku(x) ρJα,βη,kγ2(x)  ρJδ,λη,ku(x) ρJα,βη,kγ1(x) ρJδ,λη,kγ1(x) ρJα,βη,ku(x) + ρJδ,λη,kγ2(x) ρJα,βη,kγ1(x)+ ρJδ,λη,kγ1(x) ρJα,βη,kγ2(x) +Λρ,λx,k(δ,η)[ ρJα,βη,k(γ1u)(x)+ ρJα,βη,k(γ2u)(x) ρJα,βη,k(γ1γ2)(x)] +Λρ,βx,k(α,η)[ ρJδ,λη,k(γ1u)(x)+ ρJδ,λη,k(γ2u)(x) ρJδ,λη,k(γ1γ2)(x)] =K(u,γ1,γ2). (3.23)

    From the inequalities (3.22), (3.23) and inequality (3.21), we obtain inequality (3.19).

    Now we give the following result.

    Theorem 3.7. Let v,u be two integrable functions on [0,) and suppose z1,z2,γ1 and γ2 be four integrable functions on [0,) satisfying the condition (3.9), then for all x>0 and α>0, δ>0, ρ>0, β,λ,η,kR, the following inequalities holds:

    (a)ρJδ,λη,ku(x)ρJα,βη,kz2(x)+ρJδ,λη,kγ1(x)ρJα,βη,kv(x)   geqρJδ,λη,kγ1(x)ρJα,βη,kz2(x)+ρJδ,λη,ku(x)ρJα,βη,kv(x),(b)ρJδ,λη,kz1(x)ρJα,βη,ku(x)+ρJα,βη,kγ2(x)ρJδ,λη,kv(x)   geqρJδ,λη,kz1(x)ρJα,βη,kγ2(x)+ρJδ,λη,kv(x)ρJα,βη,ku(x),(c)ρJα,βη,kz2(x)ρJδ,λη,kγ2(x)+ρJα,βη,kv(x)ρJδ,λη,ku(x)   geqρJα,βη,kz2(x)ρJδ,λη,ku(x)+ρJδ,λη,kγ2(x)ρJα,βη,kv(x),(d)ρJα,βη,kz1(x)ρJδ,λη,kγ1(x)+ρJα,βη,kv(x)ρJδ,λη,ku(x)   geqρJα,βη,kz1(x)ρJδ,λη,ku(x)+ρJδ,λη,kγ1(x)ρJα,βη,kv(x).

    Proof. To prove (a), from the condition (3.9), we have for x[0,) that

    (z2(τ)v(τ))(u(σ)γ1(σ))0. (3.24)

    Therefore

    z2(τ)u(σ)+v(τ)γ1(σ)z2(τ)γ1(σ)+v(τ)u(σ). (3.25)

    Multiplying both sides of (3.25) by ρ1βxkΓ(α)τρ(η+1)1(xρτρ)1α, where τ(0,x) and integrating over (0,x) with respect to the variable τ, we obtain

    u(σ) ρJα,βη,kz2(x)+γ1(σ) ρJα,βη,kv(x)γ1(σ) ρJα,βη,kz2(x)+u(σ) ρJα,βη,kv(x). (3.26)

    Now multiplying both sides of (3.26) by ρ1λxkΓ(δ)σρ(η+1)1(xρσρ)1δ, where σ(0,x) and integrating the resulting inequality over (0,x) with respect to the variable σ, we get the desired inequality (a).To prove (b),(c) and (d), we use the following inequalities:

     (B)      (γ2(τ)u(τ))(v(σ)z1(σ))0,
     (C)      (z2(τ)v(τ))(u(σ)γ2(σ))0,
     (D)      (z1(τ)v(τ))(u(σ)γ1(σ))0.

    The next corollary is a special case of Theorem (3.7).

    Corollary 3.8. Let v,u be two integrable functions on [0,) and suppose that there exist the constants n,N,m, M satisfying the condition

    mv(x)M     and    nu(x)N,     x[0,),

    , then for all x>0 and α>0, δ>0, ρ>0, β,λ,η,kR, we have:

    (i)MΛρ,βx,k(α,η)ρJδ,λη,ku(x)+nΛρ,λx,k(δ,η)ρJα,βη,kv(x)nMΛρ,λx,k(δ,η)Λρ,βx,k(α,η)+ρJδ,λη,ku(x)ρJα,βη,kv(x),(ii)mΛρ,λx,k(δ,η)ρJα,βη,ku(x)+NΛρ,βx,k(α,η)ρJδ,λη,kv(x)mNΛρ,λx,k(δ,η)Λρ,βx,k(α,η)+ρJδ,λη,kv(x)ρJα,βη,ku(x),(iii)MNΛρ,βx,k(α,η)Λρ,λx,k(δ,η)+ρJα,βη,kv(x)ρJδ,λη,ku(x)MΛρ,βx,k(α,η)ρJδ,λη,ku(x)+NΛρ,λx,k(δ,η)ρJα,βη,kv(x),(iv)mnΛρ,βx,k(α,η)Λρ,λx,k(δ,η)+ρJα,βη,kv(x)ρJδ,λη,ku(x)mΛρ,βx,k(α,η)ρJδ,λη,ku(x)+nΛρ,λx,k(δ,η)ρJα,βη,kv(x).

    Remark 3.9. If we put η=0, k=0, and taking the limit ρ1, then Theorem (3.7), reduces to Theorem 5 and Corollary (3.8), reduces to Corollary 6 in [20].

    All authors declare no conflict of interest in this paper.



    [1] E. Akin, S. Aslıyüce, A. F. Güvenilir, et al. Discrete Grüss type inequality on fractional calculus, J. Inequal. Appl., 2015 (2015), 174.
    [2] V. L. Chinchane, D. B. Pachpatte, A note on fractional integral inequality involving convex functions using saigo fractional integral, Indian J. Math., 61 (2019), 27-39.
    [3] V. L. Chinchane, D. B. Pachpatte, On some new Grüss-type inequality using Hadamard fractional integral operator, J. Fract. Calc. Appl., 5 (2014), 1-10.
    [4] Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (2010), 93-99.
    [5] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlin. Sci., 9 (2010), 493-497.
    [6] S. S. Dragomir, A generalization of Grüss inequality in inner product spaces and applications, J. Math. Anal. Appl., 237 (1999), 74-82. doi: 10.1006/jmaa.1999.6452
    [7] S. S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pur. Appl. Math., 31 (2000), 397-415.
    [8] T. S. Du, J. G. Liao, L. Z. Chen, et al. Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α, m)-preinvex functions, J. Inequal. Appl., 2016 (2016), 306.
    [9] T. Du, M. U. Awan, A. Kashuri, et al. Some k-fractional extensions of the trapezium inequalities through generalized relative semi-(m, h)-preinvexity, Appl. Anal., 2019 (2019), 1-21.
    [10] N. Elezovic, L. J. Marangunic, J. Pecaric, Some improvements of Grüss type inequality, J. Math. Inequal., 1 (2007), 425-436.
    [11] G. Gruss, Uber das maximum des absoluten betrages von, Math. Z., 39 (1935), 215-226. doi: 10.1007/BF01201355
    [12] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1-15.
    [13] U. N. Katugampola, New fractional integral unifying six existing fractional integrals, 2016, arXiv:1612.08596 (eprint).
    [14] A. M. D Mercer, P. Mercer, New proofs of the Grüss inequality, Aust. J. Math. Anal. Appl., 1 (2004), 12.
    [15] D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis, Springer, 1993.
    [16] N. Minculete, L. Ciurdariu, A generalized form of Grüss type inequality and other integral inequalities, J. Inequal. Appl., 2014 (2014), 119.
    [17] B. G. Pachpatte, A note on Chebyshev-Grüss inequalities for differential equations, Tamsui Oxf. J. Math. sci., 22 (2006), 29-37.
    [18] B. G. Pachpatte, On multidimensional Grüss type integral inequalities, J. Inequal. Pure Appl. Math., 3 (2002), 27.
    [19] J. V. C. Sousa, D. S. Oliveira, E. C. de Oliveira, Grüss-type inequalities by means of generalized fractional integrals, B. Braz. Math. Soc., 50 (2019), 1029-1047. doi: 10.1007/s00574-019-00138-z
    [20] J. Tariboon, S. K. Ntouyas, W. Sudsutad, Some new Riemann-Liouville fractional integral inequalities, Int. J. Math. Math. Sci., 2014 (2014).
    [21] G. Wang, P. Agarwal, M. Chand, Certain Grüss type inequalities involving the generalized fractional integral operator, J. Inequal. Appl., 2014 (2014), 147.
    [22] C. Zhu, W. Yang, Q. Zhao, Some new fractional q-integral Grüss-type inequalities and other inequalities, J. Inequal. Appl., 2012 (2012), 299.
  • This article has been cited by:

    1. Deepak PACHPATTE, Tariq A. ALJAAİDİ, NEW GENERALIZATION OF REVERSE MINKOWSKI’S INEQUALITY FOR FRACTIONAL INTEGRAL, 2020, 2587-2648, 10.31197/atnaa.756605
    2. Tariq A. Aljaaidi, Deepak B. Pachpatte, The Minkowski’s inequalities via $$\psi$$-Riemann–Liouville fractional integral operators, 2020, 0009-725X, 10.1007/s12215-020-00539-w
    3. Tariq A. Aljaaidi, Deepak B. Pachpatte, Mohammed S. Abdo, Thongchai Botmart, Hijaz Ahmad, Mohammed A. Almalahi, Saleh S. Redhwan, (k, ψ)-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities, 2021, 5, 2504-3110, 172, 10.3390/fractalfract5040172
    4. Wengui Yang, Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function, 2022, 6, 2504-3110, 182, 10.3390/fractalfract6040182
    5. Omar Mutab Alsalami, Soubhagya Kumar Sahoo, Muhammad Tariq, Asif Ali Shaikh, Clemente Cesarano, Kamsing Nonlaopon, Some New Fractional Integral Inequalities Pertaining to Generalized Fractional Integral Operator, 2022, 14, 2073-8994, 1691, 10.3390/sym14081691
    6. Asha B. Nale, Satish K. Panchal, Vaijanath L. Chinchane, Grüss-type fractional inequality via Caputo-Fabrizio integral operator, 2022, 14, 2066-7752, 262, 10.2478/ausm-2022-0018
    7. Tariq A. Aljaaidi, Deepak B. Pachpatte, Wasfi Shatanawi, Mohammed S. Abdo, Kamaleldin Abodayeh, Generalized proportional fractional integral functional bounds in Minkowski’s inequalities, 2021, 2021, 1687-1847, 10.1186/s13662-021-03582-8
    8. Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal, A comprehensive review of Grüss-type fractional integral inequality, 2023, 9, 2473-6988, 2244, 10.3934/math.2024112
    9. Saleh S. Redhwan, Tariq A. Aljaaidi, Ali Hasan Ali, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, New Grüss’s inequalities estimates considering the φ-fractional integrals, 2024, 11, 26668181, 100836, 10.1016/j.padiff.2024.100836
    10. Nale Asha B., Satish K. Panchal, L. Chinchane Vaijanath , Certain fractional integral inequalities using generalized Katugampola fractional integral operator, 2020, 8, 23193786, 809, 10.26637/MJM0803/0013
    11. Bhagwat R. Yewale, Deepak B. Pachpatte, 2023, 9781119879671, 45, 10.1002/9781119879831.ch3
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3697) PDF downloads(417) Cited by(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog