Research article Special Issues

Optical solitons for Triki-Biswas equation by two analytic approaches

  • Received: 09 July 2019 Accepted: 10 December 2019 Published: 09 January 2020
  • MSC : 35C08, 35C15, 32W50

  • The present study is devoted to using two analytic approaches to study the Triki-Biswas equation (TBE). The TBE model plays a vital role in propagation of short pulses of width around regions of sub-10 fs in optical. The analytic approaches used are the sine-Gordon expansion (SGEM) and the Riccatti Bernoulli sub-ODE (RBSO) methods. Chirped kink-type, bright envelope and singular solitons are formally derived.

    Citation: Aliyu Isa Aliyu, Ali S. Alshomrani, Mustafa Inc, Dumitru Baleanu. Optical solitons for Triki-Biswas equation by two analytic approaches[J]. AIMS Mathematics, 2020, 5(2): 1001-1010. doi: 10.3934/math.2020069

    Related Papers:

  • The present study is devoted to using two analytic approaches to study the Triki-Biswas equation (TBE). The TBE model plays a vital role in propagation of short pulses of width around regions of sub-10 fs in optical. The analytic approaches used are the sine-Gordon expansion (SGEM) and the Riccatti Bernoulli sub-ODE (RBSO) methods. Chirped kink-type, bright envelope and singular solitons are formally derived.


    加载中


    [1] G. B. Whitham, Linear and Nonlinear Waves, John Whiley, New york, 1974.
    [2] A. Hesegawa, Y. Kodama, Solitons in Optical Communication, Oxford, Oxford University Press, 1995.
    [3] H. Triki, A. Biswas, Sub pico-second chirped envelope solitons and conservation laws in monomode optical fibers for a new derivative nonlinear Schrödinger model, Optik, 173 (2018), 235-241. doi: 10.1016/j.ijleo.2018.08.026
    [4] S. Arshed, Sub-pico second chirped optical pulses with Triki-Biswas equation by exp-expansion method and the first integral method, Optik, 179 (2019), 518-525. doi: 10.1016/j.ijleo.2018.10.220
    [5] Q. Zhou, M. Ekici, A. Sonmezoglu, Exact chirped singular soliton solutions of Triki-Biswas equation, Optik, 181 (2019), 338-342. doi: 10.1016/j.ijleo.2018.11.054
    [6] S. T. R. Rizvi, I. Afzal, K. Ali, Chirped optical solitons for Triki-Biswas equation, Mod. Phys. Lett. B, 33 (2019), 1950264.
    [7] N. A. Kudryashov, First integrals and solutions of the traveling wave reduction for the Triki-Biswas equation, Optik, 185 (2019), 275-281. doi: 10.1016/j.ijleo.2019.03.087
    [8] E. C. Aslan, M. Inc, Optical soliton solutions of the NLSE with quadratic-cubic-Hamiltonian perturbations and modulation instability analysis, Optik, 196 (2019), 162661.
    [9] H. Triki, A. Biswas, Perturbation of dispersive shallow water waves, Ocean Eng., 63 (2013), 1-7. doi: 10.1016/j.oceaneng.2013.01.014
    [10] A. Biswas, A. J. M. Jawad, W. N. Manrakhan, et al. Optical solitons and complexitons of the Schrödinger-Hirota equation, Opt. Laser Technol., 44 (2012), 2265-2269. doi: 10.1016/j.optlastec.2012.02.028
    [11] A. Biswas, C. M. Khalique, Stationary solutions for nonlinear dispersive Schrödinger's equation, Nonlinear Dynamics, 63 (2011), 623-626.
    [12] Q. Zhou, A. Biswas, Optical solitons in parity-time-symmetric mixed linear and nonlinear lattice with non-Kerr law nonlinearity, Superlattices and Microstructures, 109 (2017), 588-598. doi: 10.1016/j.spmi.2017.05.049
    [13] M. Saha, A. K. Sarma, A. Biswas, Dark optical solitons in power law media with time-dependent coefficients, Phys. Lett. A, 373 (2009), 4438-4441. doi: 10.1016/j.physleta.2009.10.011
    [14] M. Inc, A. I. Aliyu, A. Yusuf, et al. Soliton solutions and conservation laws for lossy nonlinear transmission line equation, Superlattices and Microstructures, 113 (2018), 319-336. doi: 10.1016/j.spmi.2017.11.010
    [15] X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ-NY, 2015 (2015), 117.
    [16] E. Yasar, Y. Yıldırım, Y. Emrullah, New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method, Results Phys., 9 (2018), 1666-1672. doi: 10.1016/j.rinp.2018.04.058
    [17] A. Biswas, Y. Yıldırım, E. Yasar, et al. Optical soliton perturbation in parabolic law medium having weak non-local nonlinearity by a couple of strategic integration architectures, Results Phys., 13 (2019), 102334.
    [18] A. Biswas, Y. Yıldırım, E. Yasar, et al. Optical solitons for Lakshmanan-Porsezian-Daniel model by modified simple equation method, Optik, 160 (2018), 24-32. doi: 10.1016/j.ijleo.2018.01.100
    [19] A. Biswas, Y. Yıldırım, E. Yasar, et al. Optical solitons with differential group delay for coupled Fokas-Lenells equation using two integration schemes, Optik, 165 (2018), 74-86. doi: 10.1016/j.ijleo.2018.03.100
    [20] A. Biswas, Y. Yıldırım, E. Yasar, et al. Optical soliton perturbation with quadratic-cubic nonlinearity using a couple of strategic algorithms, Chinese J. Phys., 56 (2018), 1990-1998. doi: 10.1016/j.cjph.2018.09.009
    [21] A. M. Wazwaz, L. Kaur, Optical solitons for nonlinear Schrödinger (NLS) equation in normal dispersive regimes, Optik, 184 (2019), 428-435. doi: 10.1016/j.ijleo.2019.04.118
    [22] A. M. Wazwaz, L. Kaur, Optical solitons and Peregrine solitons for nonlinear Schrödinger equation by variational iteration method, Optik, 179 (2019), 804-809. doi: 10.1016/j.ijleo.2018.11.004
    [23] L. Kaur, A. M. Wazwaz, Lump, breather and solitary wave solutions to new reduced form of the generalized BKP equation, Int. J. Numer. Method. H., 29 (2019), 569-579. doi: 10.1108/HFF-07-2018-0405
    [24] L. Kaur, A. M. Wazwaz, Bright-dark optical solitons for Schrödinger-Hirota equation with variable coefficients, Optik, 179 (2019), 479-484. doi: 10.1016/j.ijleo.2018.09.035
    [25] X. Guan, W. Liu, Q. Zhou, et al. Some lump solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation, Appl. Math. Comput., 366 (2020), 124757.
    [26] W. Liu, Y. Zhang, A. M. Wazwaz, et al. Analytic study on triple-S, triple-triangle structure interactions for solitons in inhomogeneous multi-mode fiber, Appl. Math. Comput., 366 (2020), 325-331.
    [27] X. Guan, Q. Zhou, W. Liu, Lump and lump strip solutions to the (3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation, The European Physical Journal Plus, 134 (2019), 371.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4164) PDF downloads(551) Cited by(12)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog