Research article

Fractional Milne-type inequalities for twice differentiable functions

  • Received: 10 May 2024 Revised: 31 May 2024 Accepted: 04 June 2024 Published: 17 June 2024
  • MSC : 26D15, 26D10, 26D07

  • In this study, a specific identity was derived for functions that possess two continuous derivatives. Through the utilization of this identity and Riemann-Liouville fractional integrals, several fractional Milne-type inequalities were established for functions whose second derivatives inside the absolute value are convex. Additionally, an example and a graphical representation are included to clarify the core findings of our research.

    Citation: Areej A. Almoneef, Abd-Allah Hyder, Hüseyin Budak, Mohamed A. Barakat. Fractional Milne-type inequalities for twice differentiable functions[J]. AIMS Mathematics, 2024, 9(7): 19771-19785. doi: 10.3934/math.2024965

    Related Papers:

  • In this study, a specific identity was derived for functions that possess two continuous derivatives. Through the utilization of this identity and Riemann-Liouville fractional integrals, several fractional Milne-type inequalities were established for functions whose second derivatives inside the absolute value are convex. Additionally, an example and a graphical representation are included to clarify the core findings of our research.



    加载中


    [1] P. J. Davis, P. Rabinowitz, Methods of numerical integration, Chelmsford: Courier Corporation, 2007.
    [2] M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for $s$-convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
    [3] J. H. Chen, X. J. Huang, Some new inequalities of Simpson's type for s-convex functions via fractional integrals, Filomat, 31 (2017), 4989–4997. https://doi.org/10.2298/FIL1715989C doi: 10.2298/FIL1715989C
    [4] M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 23 (2017), 1137–1145.
    [5] X. R. Hai, S. H. Wang, Simpson type inequalities for convex function based on the generalized fractional integrals, Turkish J. Ineq., 5 (2021), 1–15.
    [6] J. Park, Hermite-Hadamard and Simpson-Like type inequalities for differentiable ($\alpha$, m)-convex mappings, Int. J. Math. Math. Sci., 2012 (2012), 809689. https://doi.org/10.1155/2012/809689 doi: 10.1155/2012/809689
    [7] M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inf., 9 (2013), 37–45.
    [8] X. M. Yuan, L. Xu, T. S. Du, Simpson-like inequalities for twice differentiable $(s, P)$-convex mappings involving with AB-fractional integrals and their applications, Fractals, 31 (2023), 2350024. https://doi.org/10.1142/S0218348X2350024X doi: 10.1142/S0218348X2350024X
    [9] S. Iftikhar, P. Kumam, S. Erden, Newton's-type integral inequalities via local fractional integrals, Fractals, 28 (2020), 2050037. https://doi.org/10.1142/S0218348X20500371 doi: 10.1142/S0218348X20500371
    [10] Y. M. Li, S. Rashid, Z. Hammouch, D. Baleanu, Y. M. Chu, New Newton's type estimates pertaining to local fractional integral via generalized $p$-convexity with applications, Fractals, 29 (2021), 2140018. https://doi.org/10.1142/S0218348X21400181 doi: 10.1142/S0218348X21400181
    [11] S. Iftikhar, S. Erden, P. Kumam, M. U. Awan, Local fractional Newton's inequalities involving generalized harmonic convex functions, Adv. Differ. Equ., 2020 (2020), 1–14. https://doi.org/10.1186/s13662-020-02637-6 doi: 10.1186/s13662-020-02637-6
    [12] T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, H. Budak, Riemann-liouville fractional Newton's type inequalities for differentiable convex functions, Fractal Fract., 6 (2022), 175. https://doi.org/10.3390/fractalfract6030175 doi: 10.3390/fractalfract6030175
    [13] L. L. Zhang, Y. Peng, T. S. Du, On multiplicative Hermite-Hadamard-and Newton-type inequalities for multiplicatively $({P}, m)$-convex functions, J. Math. Anal. Appl., 534 (2024), 128117. https://doi.org/10.1016/j.jmaa.2024.128117 doi: 10.1016/j.jmaa.2024.128117
    [14] F. Hezenci, H. Budak, Some perturbed Newton type inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., 53 (2023), 1117–1127. https://doi.org/10.1216/rmj.2023.53.1117 doi: 10.1216/rmj.2023.53.1117
    [15] S. Q. Gao, W. Y. Shi, On new inequalities of Newton's type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math., 74 (2012), 33–41.
    [16] M. Shepherd, R. Skinner, A. D. Booth, A numerical method for calculating Green's functions, Can. Elect. Eng. J., 1 (1976), 14–17. https://doi.org/10.1109/CEEJ.1976.6830834 doi: 10.1109/CEEJ.1976.6830834
    [17] M. Djenaoui, Milne type inequalities for differentiable $s$-convex functions, Honam Math. J., 44 (2022), 325–338. https://doi.org/10.5831/HMJ.2022.44.3.325 doi: 10.5831/HMJ.2022.44.3.325
    [18] H. Budak, P. Kösem, H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., 2023 (2023), 10. https://doi.org/10.1186/s13660-023-02921-5 doi: 10.1186/s13660-023-02921-5
    [19] M. A. Ali, Z. Y. Zhang, M. Fečkan, On some error bounds for Milne's formula in fractional calculus, Mathematics, 11 (2023), 146. https://doi.org/10.3390/math11010146 doi: 10.3390/math11010146
    [20] H. Budak, A. A. Hyder, Enhanced bounds for Riemann-Liouville fractional integrals: Novel variations of Milne inequalities, AIMS Math., 8 (2023), 30760–30776. https://doi.org/10.3934/math.20231572 doi: 10.3934/math.20231572
    [21] İ. Demir, A new approach of Milne-type inequalities based on proportional Caputo-Hybrid operator, J. Adv. Appl. Comput. Math., 10 (2023), 102–119. https://doi.org/10.15377/2409-5761.2023.10.10 doi: 10.15377/2409-5761.2023.10.10
    [22] T. S. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities considering generalized $m$-convexity on fractal sets and their applications, Fractals, 27 (2019), 1950117. https://doi.org/10.1142/S0218348X19501172 doi: 10.1142/S0218348X19501172
    [23] I. B. Siala, H. Budakb, M. A. Alic, Some Milne's rule type inequalities in quantum calculus, Filomat, 37 (2023), 9119–9134. https://doi.org/10.2298/FIL2327119S doi: 10.2298/FIL2327119S
    [24] R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order, Vienna: Springer, 1997.
    [25] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(600) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog