Research article

Weighted Milne-type inequalities through Riemann-Liouville fractional integrals and diverse function classes

  • Received: 13 March 2024 Revised: 17 April 2024 Accepted: 08 May 2024 Published: 03 June 2024
  • MSC : 26D07, 26D10, 26D15

  • This research paper investigated weighted Milne-type inequalities utilizing Riemann-Liouville fractional integrals across diverse function classes. A key contribution lies in the establishment of a fundamental integral equality, facilitated by the use of a nonnegative weighted function, which is pivotal for deriving the main results. The paper systematically proved weighted Milne-type inequalities for various function classes, including differentiable convex functions, bounded functions, Lipschitzian functions, and functions of bounded variation. The obtained results not only contribute to the understanding of Milne-type inequalities but also offer insights that pave the way for potential future research in the considered topics. Furthermore, it is evident that the results obtained encompass numerous findings that were previously presented in various studies as special cases.

    Citation: Areej A Almoneef, Abd-Allah Hyder, Hüseyin Budak. Weighted Milne-type inequalities through Riemann-Liouville fractional integrals and diverse function classes[J]. AIMS Mathematics, 2024, 9(7): 18417-18439. doi: 10.3934/math.2024898

    Related Papers:

  • This research paper investigated weighted Milne-type inequalities utilizing Riemann-Liouville fractional integrals across diverse function classes. A key contribution lies in the establishment of a fundamental integral equality, facilitated by the use of a nonnegative weighted function, which is pivotal for deriving the main results. The paper systematically proved weighted Milne-type inequalities for various function classes, including differentiable convex functions, bounded functions, Lipschitzian functions, and functions of bounded variation. The obtained results not only contribute to the understanding of Milne-type inequalities but also offer insights that pave the way for potential future research in the considered topics. Furthermore, it is evident that the results obtained encompass numerous findings that were previously presented in various studies as special cases.



    加载中


    [1] P. J. Davis, P. Rabinowitz, Methods of numerical integration, Chelmsford: Courier Corporation, 2007.
    [2] S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533–579.
    [3] M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for $s$-convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
    [4] J. H. Chen, X. J. Huang, Some new inequalities of Simpson's type for s-convex functions via fractional integrals, Filomat, 31 (2017), 4989–4997. https://doi.org/10.2298/FIL1715989C doi: 10.2298/FIL1715989C
    [5] M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 23 (2017), 1137–1145.
    [6] X. R. Hai, S. H. Wang, Simpson type inequalities for convex function based on the generalized fractional integrals, Turkish J. Ineq., 5 (2021), 1–15.
    [7] A. A. Hyder, A. A. Almoneef, H. Budak, Improvement in some inequalities via Jensen-Mercer inequality and fractional extended Riemann-Liouville integrals, Axioms, 12 (2023), 1–19. https://doi.org/10.3390/axioms12090886 doi: 10.3390/axioms12090886
    [8] J. Park, Generalizations of the Simpson-like type inequalities for co-ordinated $s$-convex mappings in the second sense, Int. J. Math. Math. Sci., 2012 (2012), 1–16. https://doi.org/10.1155/2012/715751 doi: 10.1155/2012/715751
    [9] M. Z. Sarikaya, E. Set, M. E. Ozdemir, On new inequalities of Simpson's type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inform., 9 (2013), 37–45. https://intapi.sciendo.com/pdf/10.2478/jamsi-2013-0004.
    [10] F. Hezenci, H. Budak, H. Kara, New version of fractional Simpson type inequalities for twice differentiable functions, Adv. Differ. Equ., 2021 (2021), 1–10. https://doi.org/10.1186/s13662-021-03615-2 doi: 10.1186/s13662-021-03615-2
    [11] H. Budak, A. A. Hyder, Enhanced bounds for Riemann-Liouville fractional integrals: novel variations of Milne inequalities, AIMS Math., 8 (2023), 30760–30776. https://doi.org/10.3934/math.20231572 doi: 10.3934/math.20231572
    [12] S. Iftikhar, P. Kumam, S. Erden, Newton's-type integral inequalities via local fractional integrals, Fractals, 28 (2020), 2050037. https://doi.org/10.1142/S0218348X20500371 doi: 10.1142/S0218348X20500371
    [13] Y. M. Li, S. Rashid, Z. Hammouch, D. Baleanu, Y. M. Chu, New Newton's type estimates pertaining to local fractional integral via generalized $p$-convexity with applications, Fractals, 29 (2021), 2140018. https://doi.org/10.1142/S0218348X21400181 doi: 10.1142/S0218348X21400181
    [14] S. Iftikhar, S. Erden, P. Kumam, M. U. Awan, Local fractional Newton's inequalities involving generalized harmonic convex functions, Adv. Differ. Equ., 2020 (2020), 1–14. https://doi.org/10.1186/s13662-020-02637-6 doi: 10.1186/s13662-020-02637-6
    [15] T. Sitthiwirattham, K. Nonlaopon, M. A. Ali, H. Budak, Riemann-Liouville fractional Newton's type inequalities for differentiable convex functions, Fractal Fract., 6 (2022), 1–15. https://doi.org/10.3390/fractalfract6030175 doi: 10.3390/fractalfract6030175
    [16] F. Hezenci, H. Budak, P. Kösem, A new version of Newton's inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., 53 (2023), 49–64. https://doi.org/10.1216/rmj.2023.53.49 doi: 10.1216/rmj.2023.53.49
    [17] F. Hezenci, H. Budak, Some perturbed Newton type inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., 53 (2023), 1117–1127. https://doi.org/10.1216/rmj.2023.53.1117 doi: 10.1216/rmj.2023.53.1117
    [18] S. Q. Gao, W. Y. Shi, On new inequalities of Newton's type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math., 74 (2012), 33–41.
    [19] M. Djenaoui, Milne type inequalities for differentiable $s$-convex functions, Honam Math. J., 44 (2022), 325–338. https://doi.org/10.5831/HMJ.2022.44.3.325 doi: 10.5831/HMJ.2022.44.3.325
    [20] H. Budak, P. Kösem, H. Kara, On new Milne-type inequalities for fractional integrals, J. Inequal. Appl., 2023 (2023), 10. https://doi.org/10.1186/s13660-023-02921-5 doi: 10.1186/s13660-023-02921-5
    [21] M. A. Ali, Z. Y. Zhang, M. Fečkan, On some error bounds for Milne's formula in fractional calculus, Mathematics, 11 (2023), 146. https://doi.org/10.3390/math11010146 doi: 10.3390/math11010146
    [22] H. D. Desta, H. Budak, K. Hasan, New perspectives on fractional Milne-type inequalities: Insights from twice-differentiable functions, Univers. J. Math. Appl., 7 (2023), 30–37. https://doi.org/10.32323/ujma.1397051 doi: 10.32323/ujma.1397051
    [23] İ. Demir, A new approach of Milne-type inequalities based on proportional Caputo-Hybrid operator, J. Adv. Appl. Comput. Math., 10 (2023), 102–119. https://doi.org/10.15377/2409-5761.2023.10.10 doi: 10.15377/2409-5761.2023.10.10
    [24] T. S. Du, H. Wang, M. A. Khan, Y. Zhang, Certain integral inequalities considering generalized $m$-convexity on fractal sets and their applications, Fractals, 27 (2019), 1950117. https://doi.org/10.1142/S0218348X19501172 doi: 10.1142/S0218348X19501172
    [25] I. B. Siala, H. Budakb, M. A. Alic, Some Milne's rule type inequalities in quantum calculus, Filomat, 37 (2023), 9119–9134.
    [26] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Vienna: Springer, 1997.
    [27] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [28] M. W. Alomari, Z. Liu, New error estimations for the Milne's quadrature formula in terms of at most first derivatives, Konuralp J. Math., 1 (2013), 17–23.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(502) PDF downloads(34) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog