Research article

Hopf bifurcation and stability analysis of a delay differential equation model for biodegradation of a class of microcystins

  • Received: 14 March 2024 Revised: 20 April 2024 Accepted: 28 April 2024 Published: 03 June 2024
  • MSC : 34K18, 34K20, 92B05

  • In this paper, a delay differential equation model is investigated, which describes the biodegradation of microcystins (MCs) by Sphingomonas sp. and its degrading enzymes. First, the local stability of the positive equilibrium and the existence of the Hopf bifurcation are obtained. Second, the global attractivity of the positive equilibrium is obtained by constructing suitable Lyapunov functionals, which implies that the biodegradation of microcystins is sustainable under appropriate conditions. In addition, some numerical simulations of the model are carried out to illustrate the theoretical results. Finally, the parameters of the model are determined from the experimental data and fitted to the data. The results show that the trajectories of the model fit well with the trend of the experimental data.

    Citation: Luyao Zhao, Mou Li, Wanbiao Ma. Hopf bifurcation and stability analysis of a delay differential equation model for biodegradation of a class of microcystins[J]. AIMS Mathematics, 2024, 9(7): 18440-18474. doi: 10.3934/math.2024899

    Related Papers:

  • In this paper, a delay differential equation model is investigated, which describes the biodegradation of microcystins (MCs) by Sphingomonas sp. and its degrading enzymes. First, the local stability of the positive equilibrium and the existence of the Hopf bifurcation are obtained. Second, the global attractivity of the positive equilibrium is obtained by constructing suitable Lyapunov functionals, which implies that the biodegradation of microcystins is sustainable under appropriate conditions. In addition, some numerical simulations of the model are carried out to illustrate the theoretical results. Finally, the parameters of the model are determined from the experimental data and fitted to the data. The results show that the trajectories of the model fit well with the trend of the experimental data.



    加载中


    [1] C. J. Gobler, Climate change and harmful algal blooms: insights and perspective, Harmful Algae, 91 (2020), 101731. https://doi.org/10.1016/j.hal.2019.101731 doi: 10.1016/j.hal.2019.101731
    [2] R. I. Woolway, S. Sharma, J. P. Smol, Lakes in hot water: the impacts of a changing climate on aquatic ecosystems, BioScience, 72 (2022), 1050–1061. https://doi.org/10.1093/biosci/biac052 doi: 10.1093/biosci/biac052
    [3] J. C. Ho, A. M. Michalak, N. Pahlevan, Widespread global increase in intense lake phytoplankton blooms since the 1980s, Nature, 574 (2019), 667–670. https://doi.org/10.1038/s41586-019-1648-7 doi: 10.1038/s41586-019-1648-7
    [4] X. Hou, L. Feng, Y. Dai, C. Hu, L. Gibson, J. Tang, et al., Global mapping reveals increase in lacustrine algal blooms over the past decade, Nat. Geosci., 15 (2022), 130–134. https://doi.org/10.1038/s41561-021-00887-x doi: 10.1038/s41561-021-00887-x
    [5] J. Huisman, G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H. Verspagen, P. M. Visser, Cyanobacterial blooms, Nat. Rev. Microbiol., 16 (2018), 471–483. https://doi.org/10.1038/s41579-018-0040-1 doi: 10.1038/s41579-018-0040-1
    [6] R. Cavicchioli, W. J. Ripple, K. N. Timmis, F. Azam, L. R. Bakken, M. Baylis, et al., Scientists' warning to humanity: microorganisms and climate change, Nat. Rev. Microbiol., 17 (2019), 569–586. https://doi.org/10.1038/s41579-019-0222-5 doi: 10.1038/s41579-019-0222-5
    [7] W. A. Wurtsbaugh, H. W. Paerl, W. K. Dodds, Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum, WIREs Water, 6 (2019), e1373. https://doi.org/10.1002/wat2.1373 doi: 10.1002/wat2.1373
    [8] L. Chen, J. Chen, X. Zhang, P. Xie, A review of reproductive toxicity of microcystins, J. Hazard. Mater., 301 (2016), 381–399. https://doi.org/10.1016/j.jhazmat.2015.08.041 doi: 10.1016/j.jhazmat.2015.08.041
    [9] X. Wan, A. D. Steinman, Y. Gu, G. Zhu, X. Shu, Q. Xue, et al., Occurrence and risk assessment of microcystin and its relationship with environmental factors in lakes of the eastern plain ecoregion, China, Environ. Sci. Pollut. Res., 27 (2020), 45095–45107. https://doi.org/10.1007/s11356-020-10384-0 doi: 10.1007/s11356-020-10384-0
    [10] R. E. Honkanen, J. Zwiller, R. E. Moore, S. L. Daily, B. S. Khatra, M. Dukelow, et al., Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases, J. Biol. Chem., 265 (1990), 19401–19404. https://doi.org/10.1016/S0021-9258(17)45384-1 doi: 10.1016/S0021-9258(17)45384-1
    [11] D. Huo, N. Gan, R. Geng, Q. Cao, L. Song, G. Yu, et al., Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins, Harmful Algae, 109 (2021), 102106. https://doi.org/10.1016/j.hal.2021.102106 doi: 10.1016/j.hal.2021.102106
    [12] Q. Cao, A. D. Steinman, X. Wan, L. Xie, Bioaccumulation of microcystin congeners in soil-plant system and human health risk assessment: a field study from Lake Taihu region of China, Environ. Pollut., 240 (2018), 44–50. https://doi.org/10.1016/j.envpol.2018.04.067 doi: 10.1016/j.envpol.2018.04.067
    [13] E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, et al., Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil, New Engl. J. Med., 338 (1998), 873–878. https://doi.org/10.1056/NEJM199803263381304 doi: 10.1056/NEJM199803263381304
    [14] L. Díez-Quijada, M. Puerto, D. Gutiérrez-Praena, M. Liana-Ruiz-Cabello, A. Jos, A. M. Camean, Microcystin-RR: occurrence, content in water and food and toxicological studies, Environ. Res., 168 (2019), 467–489. https://doi.org/10.1016/j.envres.2018.07.019 doi: 10.1016/j.envres.2018.07.019
    [15] World Health Organization, Guidelines for drinking-water quality: first addendum to the fourth edition. World Health Organization, 2017. Available from: https://www.who.int/publications/i/item/9789241549950.
    [16] T. W. Lambert, C. F. B. Holmes, S. E. Hrudey, Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment, Water Res., 30 (1996), 1411–1422. https://doi.org/10.1016/0043-1354(96)00026-7 doi: 10.1016/0043-1354(96)00026-7
    [17] B. L. Yuan, J. H. Qu, M. L. Fu, Removal of cyanobacterial microcystin-LR by ferrate oxidation–coagulation, Toxicon, 40 (2002), 1129–1134. https://doi.org/10.1016/S0041-0101(02)00112-5 doi: 10.1016/S0041-0101(02)00112-5
    [18] A. K. Y. Lam, P. M. Fedorak, E. E. Prepas, Biotransformation of the cyanobacterial hepatotoxin microcystin-LR, as determined by HPLC and protein phosphatase bioassay, Environ. Sci. Technol., 29 (1995), 242–246. https://doi.org/10.1021/es00001a030 doi: 10.1021/es00001a030
    [19] G. J. Jones, D. G. Bourne, R. L. Blakeley, H. Doelle, Degradation of the cyanobacteria hepatotoxin microcystin by aquatic bacteria, Natural Toxins, 2 (1994), 228–235. https://doi.org/10.1002/nt.2620020412 doi: 10.1002/nt.2620020412
    [20] D. G. Bourne, G. J. Jones, R. L. Blakeley, A. Jones, A. P. Negri, P. Riddles, Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR, Appl. Environ. Microbiol., 62 (1996), 4086–4094. https://doi.org/10.1128/aem.62.11.4086-4094.1996 doi: 10.1128/aem.62.11.4086-4094.1996
    [21] S. Takenaka, M. F. Watanabe, Microcystin LR degradation by Pseudomonas aeruginosa alkaline protease, Chemosphere, 34 (1997), 749–757. https://doi.org/10.1016/S0045-6535(97)00002-7 doi: 10.1016/S0045-6535(97)00002-7
    [22] J. Rapala, K. A. Berg, C. Lyra, R. M. Niemi, W. Manz, S. Suomalainen, et al., Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin, Int. J. Syst. Evol. Microbiol., 55 (2005), 1563–1568. https://doi.org/10.1099/ijs.0.63599-0 doi: 10.1099/ijs.0.63599-0
    [23] L. A. Lawton, A. Welgamage, P. M. Manage, C. Edwards, Novel bacterial strains for the removal of microcystins from drinking water, Water Sci. Technol., 63 (2011), 1137–1142. https://doi.org/10.2166/wst.2011.352 doi: 10.2166/wst.2011.352
    [24] H. D. Park, Y. Sasaki, T. Maruyama, E. Yanagisawa, A. Hiraishi, K. Kato, Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake, Environ. Toxicol., 16 (2001), 337–343. https://doi.org/10.1002/tox.1041 doi: 10.1002/tox.1041
    [25] Q. Ding, K. Liu, K. Xu, R. Sun, J. Zhang, L. Yin, et al., Further understanding of degradation pathways of microcystin-LR by an indigenous Sphingopyxis sp. in environmentally relevant pollution concentrations, Toxins, 10 (2018), 536. https://doi.org/10.3390/toxins10120536 doi: 10.3390/toxins10120536
    [26] F. Yang, F. Huang, H. Feng, J. Wei, I. Y. Massey, G. Liang, et al., A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium, Water Res., 174 (2020), 115638. https://doi.org/10.1016/j.watres.2020.115638 doi: 10.1016/j.watres.2020.115638
    [27] H. Yan, Y. Deng, H. Zou, X. Li, C. Ye, Isolation and activity of bacteria for the biodegradation of microcystins, (Chinese), Environmental Science, 25 (2004), 49–53. https://doi.org/10.13227/j.hjkx.2004.06.010 doi: 10.13227/j.hjkx.2004.06.010
    [28] H. L. Smith, P. Waltman, The theory of the chemostat: dynamics of microbial competition, Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511530043
    [29] Y. Kuang, Delay differential equations with applications in population dynamics, New York: Academic Press, 1993.
    [30] X. Tai, W. Ma, S. Guo, H. Yan, C. Yin, A class of dynamic delayed model describing flocculation of microorganism and its theoretical analysis, (Chinese), Mathametics in Practice and Theory, 13 (2015), 198–209.
    [31] S. Guo, W. Ma, Global dynamics of a microorganism flocculation model with time delay, Commun. Pure Appl. Anal., 16 (2017), 1883–1891. https://doi.org/10.3934/cpaa.2017091 doi: 10.3934/cpaa.2017091
    [32] S. Guo, W. Ma, X. Q. Zhao, Global dynamics of a time-delayed microorganism flocculation model with saturated functional responses, J. Dyn. Diff. Equat., 30 (2018), 1247–1271. https://doi.org/10.1007/s10884-017-9605-3 doi: 10.1007/s10884-017-9605-3
    [33] K. Song, S. Guo, W. Ma, H. Yan, A class of dynamic models describing microbial flocculant with nutrient competition and metabolic products in wastewater treatment, Adv. Differ. Equ., 2018 (2018), 33. https://doi.org/10.1186/s13662-018-1473-6 doi: 10.1186/s13662-018-1473-6
    [34] K. Yang, W. Ma, Z. Jiang, H. Yan, Differential equation model describing degradation of microcystins (MCs) and its theoretical analysis, (Chinese), Mathematics in Practice and Theory, 51 (2021), 231–247.
    [35] K. Song, W. Ma, S. Guo, Global behavior of a dynamic model with biodegradation of Microcystins, J. Appl. Anal. Comput., 9 (2019), 1261–1276. https://doi.org/10.11948/2156-907X.20180215 doi: 10.11948/2156-907X.20180215
    [36] M. R. Droop, Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri, J. Mar. Biol. Assoc. UK, 48 (1968), 689–733. https://doi.org/10.1017/S0025315400019238 doi: 10.1017/S0025315400019238
    [37] J. Caperon, Time lag in population growth response of isochrysis galbana to a variable nitrate environment, Ecology, 50 (1969), 188–192. https://doi.org/10.2307/1934845 doi: 10.2307/1934845
    [38] H. I. Freedman, J. W. H. So, P. Waltman, Coexistence in a model of competition in the chemostat incorporating discrete delays, SIAM J. Appl. Math., 49 (1989), 859–870. https://doi.org/10.1137/0149050 doi: 10.1137/0149050
    [39] T. F. Thingstad, T. I. Langeland, Dynamics of chemostat culture: the effect of a delay in cell response, J. Theor. Biol., 48 (1974), 149–159. https://doi.org/10.1016/0022-5193(74)90186-6 doi: 10.1016/0022-5193(74)90186-6
    [40] K. Song, W. Ma, Z. Jiang, Bifurcation analysis of modeling biodegradation of microcystins, Int. J. Biomath., 12 (2019), 1950028. https://doi.org/10.1142/S1793524519500281 doi: 10.1142/S1793524519500281
    [41] J. Yang, S. Ding, J. Yang, Advances in process for microbial enzymes separation and purification, (Chinese), Modern Chemical Industry, 2007 (2007), 19–23. https://doi.org/10.16606/j.cnki.issn0253-4320.2007.06.005 doi: 10.16606/j.cnki.issn0253-4320.2007.06.005
    [42] H. Chen, W. Liu, Y. Du, G. Chen, B. Fang, Progress of operation of NADPH metabolism in industrial strains, (Chinese), Chemical Industry and Engineering Progress, 31 (2012), 2535–2541. https://doi.org/10.16085/j.issn.1000-6613.2012.11.035 doi: 10.16085/j.issn.1000-6613.2012.11.035
    [43] H. Yan, J. Wang, J. Chen, W. Wei, H, Wang, H. Wang, Characterization of the first step involved in enzymatic pathway for microcystin-RR biodegraded by Sphingopyxis sp. USTB-05, Chemosphere, 87 (2012), 12–18. https://doi.org/10.1016/j.chemosphere.2011.11.030 doi: 10.1016/j.chemosphere.2011.11.030
    [44] Z. Jiang, W. Ma, Y. Takeuchi, Dynamics for phytoplankton-zooplankton system with time delays, Funkcialaj Ekvacioj, 60 (2017), 279–304. https://doi.org/10.1619/fesi.60.279 doi: 10.1619/fesi.60.279
    [45] E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165. https://doi.org/10.1137/S0036141000376086 doi: 10.1137/S0036141000376086
    [46] S. Ruan, J. Wei, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, Math. Med. Biol., 18 (2001), 41–52. https://doi.org/10.1093/imammb/18.1.41 doi: 10.1093/imammb/18.1.41
    [47] K. Guo, W. Ma, Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays, Math. Biosci. Eng., 18 (2021), 643–672. https://doi.org/10.3934/mbe.2021035 doi: 10.3934/mbe.2021035
    [48] M. Li, K. Guo, W. Ma, Uniform persistence and global attractivity in a delayed virus dynamic model with apoptosis and both virus-to-cell and cell-to-cell infections, Mathematics, 10 (2022), 975. https://doi.org/10.3390/math10060975 doi: 10.3390/math10060975
    [49] I. Barbǎlat, Systèmes d'équations différentielles d'oscillations non linéaires, (French), Revue de Mathématiques Pures et Appliquées, 4 (1959), 267–270.
    [50] S. A. DeLurgio, Forecasting principles and applications, Boston: Iwin McGraw-Hill, 1998.
    [51] C. D. Lewis, Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting, Boston: Butterworth Scientific, 1982.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(493) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Figures(13)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog