Processing math: 82%
Research article

Hopf bifurcation and stability analysis of a delay differential equation model for biodegradation of a class of microcystins

  • In this paper, a delay differential equation model is investigated, which describes the biodegradation of microcystins (MCs) by Sphingomonas sp. and its degrading enzymes. First, the local stability of the positive equilibrium and the existence of the Hopf bifurcation are obtained. Second, the global attractivity of the positive equilibrium is obtained by constructing suitable Lyapunov functionals, which implies that the biodegradation of microcystins is sustainable under appropriate conditions. In addition, some numerical simulations of the model are carried out to illustrate the theoretical results. Finally, the parameters of the model are determined from the experimental data and fitted to the data. The results show that the trajectories of the model fit well with the trend of the experimental data.

    Citation: Luyao Zhao, Mou Li, Wanbiao Ma. Hopf bifurcation and stability analysis of a delay differential equation model for biodegradation of a class of microcystins[J]. AIMS Mathematics, 2024, 9(7): 18440-18474. doi: 10.3934/math.2024899

    Related Papers:

    [1] Li Wang, Qunying Wu . Almost sure convergence theorems for arrays under sub-linear expectations. AIMS Mathematics, 2022, 7(10): 17767-17784. doi: 10.3934/math.2022978
    [2] Mingzhou Xu, Xuhang Kong . Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(4): 8504-8521. doi: 10.3934/math.2023428
    [3] Lunyi Liu, Qunying Wu . Complete integral convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(9): 22319-22337. doi: 10.3934/math.20231138
    [4] Mingzhou Xu, Kun Cheng, Wangke Yu . Complete convergence for weighted sums of negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2022, 7(11): 19998-20019. doi: 10.3934/math.20221094
    [5] Shuyan Li, Qunying Wu . Complete integration convergence for arrays of rowwise extended negatively dependent random variables under the sub-linear expectations. AIMS Mathematics, 2021, 6(11): 12166-12181. doi: 10.3934/math.2021706
    [6] Mingzhou Xu . Complete convergence and complete moment convergence for maximal weighted sums of extended negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(8): 19442-19460. doi: 10.3934/math.2023992
    [7] Mingzhou Xu . Complete convergence of moving average processes produced by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2023, 8(7): 17067-17080. doi: 10.3934/math.2023871
    [8] Mingzhou Xu . On the complete moment convergence of moving average processes generated by negatively dependent random variables under sub-linear expectations. AIMS Mathematics, 2024, 9(2): 3369-3385. doi: 10.3934/math.2024165
    [9] He Dong, Xili Tan, Yong Zhang . Complete convergence and complete integration convergence for weighted sums of arrays of rowwise m-END under sub-linear expectations space. AIMS Mathematics, 2023, 8(3): 6705-6724. doi: 10.3934/math.2023340
    [10] Chengcheng Jia, Qunying Wu . Complete convergence and complete integral convergence for weighted sums of widely acceptable random variables under the sub-linear expectations. AIMS Mathematics, 2022, 7(5): 8430-8448. doi: 10.3934/math.2022470
  • In this paper, a delay differential equation model is investigated, which describes the biodegradation of microcystins (MCs) by Sphingomonas sp. and its degrading enzymes. First, the local stability of the positive equilibrium and the existence of the Hopf bifurcation are obtained. Second, the global attractivity of the positive equilibrium is obtained by constructing suitable Lyapunov functionals, which implies that the biodegradation of microcystins is sustainable under appropriate conditions. In addition, some numerical simulations of the model are carried out to illustrate the theoretical results. Finally, the parameters of the model are determined from the experimental data and fitted to the data. The results show that the trajectories of the model fit well with the trend of the experimental data.



    The limit theorem plays a pivotal role in the study of probability theory. Furthermore, the almost sure convergence is integral to the development of the limit theorem, a subject many scholars have studied. So far, a lot of excellent results have been obtained under the condition that the model holds with certainty. However, many uncertain phenomena of quantum mechanics and risk management cannot be explained by additive probability or expectation. To deal with this issue, many scholars have made great attempts and efforts. In particular, Peng [1,2] proposed the theory frame of the sub-linear expectations under a generic function space to solve this distributional uncertainty. In recent years, based on Peng, more and more scholars in the industry have done extensive research and obtained many related results; the study of the almost sure convergence has remained a hot-button issue. For example, Chen [3], Cheng [4], and Feng and Lan [5] obtained the SLLN (strong law of large numbers) of i.i.d.r.v. (independent identically distributed random variables), and Cheng [6] studied the SLLN of independent r.v. with supi1ˆE[|Xi|l(|Xi|)]<. Through further research, Wu and Jiang [7] obtained the SLLN of the extended independent and identically distributed r.v.; Chen and Liu [8], Gao et al. [9], and Liang and Wu [10] proved the SLLN of ND (negatively dependent) r.v.; Zhang [11] built the exponential inequality and the law of logarithm of independent and ND r.v.; Wang and Wu [12] and Feng [13] offered the almost sure covergence for weighted sums of ND r.v.; Zhang [14] derived the SLLN of the extended independent and END (extended negatively dependent) r.v.; Wang and Wu [15] obtained the almost sure convergence of END r.v.; Lin [16] achieved the SLLN of WND (widely negative dependence) r.v.; and Hwang [17] investigated the almost sure convergence of WND r.v..

    Anna [18] proposed the definition of WNOD r.v. for the first time and obtained the limiting conclusions for WNOD r.v. in Peng's theory frame. Based on Yan's results [19], this paper promotes them to the sub-linear expectation space. Compared to the previously mentioned ND and END r.v., dominating coefficients g(n) have been added to the definition of WNOD r.v., leading to a broader range. Besides, the sub-additivity property of the sub-linear expectation and capacity is added, making the research more meaningful and complex. Finally, the conclusions of almost sure convergence for WNOD r.v. are achieved. This paper contributes to the relevant research results of limiting behavior of WNOD r.v. in Peng's theory frame.

    Our essay is arranged as follows: Section 2 recommends interrelated definitions and properties as well as some important lemmas in the frame. Section 3 gives the conclusions including two theorems and two corollaries. Section 4 shows that the process of proving the conclusions is given in detail.

    Running through this essay, we point out that c will be a positive constant, its value is not important, and it may take different values according to the situation. axbx means limxaxbx=1. anbn means there must be a positive number c, satifying ancbn when n is large enough. Denote log(y)=ln(max{e,y}).

    This article uses the theory frame and concepts proposed by Peng [1,2]. Suppose (Ω,F) is a given measurable space and H is a linear space of real functions defined on (Ω,F) so that if X1,X2,,XnH, then φ(X1,X2,,Xn)H for every φCl, Lip (Rn), where φCl, Lip (Rn) shows the linear space of (local Lipschitz) functions φ satisfying

    |φ(x)φ(y)|c(1+|x|m+|y|m)|xy|,x,yRn,

    for some c>0,mN depending on φ. H is considered as a space of random variable. In this circumstance, we denote XH.

    Definition 2.1. (Peng [1]). A sub-linear expectation ˆE on H is a function ˆE:H[,] satisfying the following properties: for all X,YH, we have

    (a) Monotonicity: if XY, then ˆE(X)ˆE(Y);

    (b) Constant preserving: ˆE(c)=c;

    (c) Sub-additivity: ˆE(X+Y)ˆE(X)+ˆE(Y);

    (d) Positive homogeneity: ˆE(λX)=λˆE(X),λ0.

    The triple (Ω,H,ˆE) is known as a sub-linear expectation space.

    Next, give the definition of the conjugate expectation ˆE of ˆE by

    ˆE(X):=ˆE(X),XH.

    By the above definitions of ˆE and ˆE, the following inequality is feasible for all X,YH,

    ˆE(X)ˆE(X),ˆE(XY)ˆE(X)ˆE(Y),ˆE(X+c)=ˆE(X)+c,|ˆE(XY)|ˆE|XY|.

    When we are talking about ˆE and ˆE in the course of the proof, we often use the above formula.

    Definition 2.2. (Peng [1]). Make GF, a function V:G[0,1] is described to be a capacity, when

    V()=0,V(Ω)=1 and V(A)V(B) for AB,A,BG.

    Similar to sub-linear expectations, it is known as sub-additive when V(AB)V(A)+V(B) for every A,BG. Now, represent V and V, respectively corresponing to ˆE and ˆE, using

    V(A):=inf{ˆE[ξ],IAξ,ξH},V(A):=1V(Ac),AF,

    where Ac denotes the complement set of A.

    From the definion and sub-additivity property of (V, V), the following formulas are true

    ˆEζV(C)ˆEη,ˆEζV(C)ˆEη,ifζI(C)η,ζ,ηH.

    And now we have Markov inequality:

    V(|Y|y)ˆE|Y|P/yp,y>0,p>0.

    Definition 2.3. (Peng [1]). The Choquet integrals (CV) is defined as follows

    CV(X)=0V(Xx)dx+0[V(Xx)1]dx,

    where V and V can replace V when required.

    Definition 2.4. (Zhang [11]). (ⅰ) ˆE is referred to be countably sub-additive, when

    ˆE(X)n=1ˆE(Xn), whenever Xn=1Xn,X,XnH,X0,Xn0,n1.

    (ⅱ)V is referred to be countably sub-additive when

    V(n=1An)n=1V(An),AnF.

    Definition 2.5. {Xn,n1} is a sequence of r.v. and it is known to be stochastically dominated by a random variable X if for a positive number c, there has

    ˆE[f(|Xn|)]cˆE[f(|X|)],forn1,0fCl,Lip(R).

    Definition 2.6. (Anna [18]. Widely negative orthant dependent (WNOD)) {Xn,n1} is called to be widely negative orthant dependent if there is a finite positive array {g(n),n1} satisfying for every n1,

    ˆE(ni=1φi(Xi))g(n)ni=1ˆE (φi(Xi)), 

    where φiCb,Lip(R),φi0,1in and all functions φi are uniformly monotonous. Where the coefficients g(n) (n1) are known as dominating coefficients.

    It is visible that, when {Xn,n1} is widely negative orthant dependent and all functions fk(x)Cl,Lip(R) (where k=1,2,,n) are uniformly monotonous, then {fn(Xn),n1} is also widely negative orthant dependent.

    Definition 2.7. (Seneta [20]). (ⅰ) A positive function l(x) defined on [a,),a>0 is known to be a slowly varying function, satisfying

    limxl(tx)l(x)=1,foreacht0.

    (ⅱ) Each slowly varying function l(x) can be expressed as

    l(x)=C(x)exp{x1f(y)ydy},

    whenever limxC(x)=c>0, as well as limyf(y)=0.

    In this article, we want to research the almost sure convergence of WNOD sequence under sub-linear expectations. Since V is only sub-addictive, the definition of almost sure convergence is a little different and is described in detail in Wu and Jiang [7].

    Next, we give some lemmas before reaching our conclusions.

    Lemma 2.1. (Seneta [20]). For α>0, there is a non-decreasing function φ(x) and a non-increasing function ξ(x) such that

    xαl(x)φ(x),xαl(x)ξ(x),x,

    where l(x) is a slowly varying function.

    In the following section, we assume l(x),x>0 is a non-decreasing slowly varying function that can be expressed as l(x)=cexp{x1f(y)ydy}, where c>0, limxf(x)=0.

    Let

    τn=nl(n)1,n1. (2.1)
    Xn=τ1/pnI(Xn<τ1/pn)+XnI(|Xn|τ1/pn)+τ1/pnI(Xn>τ1/pn). (2.2)
    Xn=XnXn=(Xn+τ1/pn)I(Xn<τ1/pn)+(Xnτ1/pn)I(Xn>τ1/pn). (2.3)

    Lemma 2.2. Assume XH,0<p<2,τn defined by Eq (2.1).

    (ⅰ) For every c>0,

    CV(|X|p)<n=1l1(n)V(|X|p>cτn)<. (2.4)

    (ⅱ) When CV(|X|p)<, and now for every c>0,

    k=12kl(2k)V(|X|p>cτ2k)<. (2.5)

    Proof. (ⅰ) Obviously,

    CV(|X|p)<CV(|X|p/c)<.
    CV(|X|p/c)1V(|X|p>cx)dx1l(y)yl(y)f(y)yl2(y)V(|X|p>cyl(y))dy(makex=yl(y))11l(y)V(|X|p>cτy)dy.

    So

    CV(|X|p)<n=1l1(n)V(|X|p>cτn)<.

    (ⅱ) For every positive c, using the conclusion of (ⅰ), because of the monotonically increasing property of l(x),

    >n=1l1(n)V(|X|p>cτn)=k=12k1n<2kl1(n)V(|X|p>cτn)k=12k1n<2kl1(2k)V(|X|p>cτ2k)=21k=12kl1(2k)V(|X|p>cτ2k).

    As such, we have completed the proof of (ⅱ).

    Lemma 2.3. {Xn,n1} is a sequence of random variables, as well as stochastically dominated by a r.v. X and CV(|X|p)<,1p<2, ˆE has countable sub-additivity, then

    n=1τ2/pnl1(n)ˆE(Xn)2<, (2.6)

    moreover, when 1<p<2,

    n=1τ1/pnl1(n)ˆE|Xn|<. (2.7)

    Where Xn,Xn are respectively defined by Eqs (2.2) and (2.3).

    Proof. For 0<μ<1, assume an even function h(x)Cl,Lip(R) and h(x) when x>0, so that the value of h(x) is [0,1], for xR and h(x)1 when |x|μ, h(x)0 when |x|>1. We have

    I(|x|μ)h(|x|)I(|x|1),I(|x|>1)1h(x)I(|x|>μ). (2.8)

    For α=1,2,

    |Xk|α=|Xk|αI(|Xk|τ1/pk)+τα/pkI(|Xk|>τ1/pk)|Xk|αh(μ|Xk|τ1/pk)+τα/pk(1h(|Xk|τ1/pk)). (2.9)
    |Xk|α=|Xk+τ1/pk|αI(Xk<τ1/pk)+|Xkτ1/pk|αI(Xk>τ1/pk)=||Xk|+τ1/pk|αI(Xk<τ1/pk)+||Xk|τ1/pk|αI(Xk>τ1/pk)=||Xk|τ1/pk|αI(|Xk|>τ1/pk)|Xk|αI(|Xk|>τ1/pk)|Xk|α(1h(|Xk|τ1/pk)). (2.10)

    So, by (2.8) and Definition 2.7,

    ˆE|Xk|αˆE|Xk|αh(μ|Xk|τ1/pk)+τα/pkˆE(1h(|Xk|τ1/pk))ˆE|X|αh(μ|X|τ1/pk)+τα/pkˆE(1h(|X|τ1/pk))ˆE|X|αh(μ|X|τ1/pk)+τα/pkV(|X|>μτ1/pk). (2.11)
    ˆE|Xk|αˆE|X|α(1h(|X|τ1/pk)). (2.12)

    Assume that hj(x)Cl,Lip(R),j1, consider that the value of hj(x) is [0,1] for xR. hj(x)1 when τ1/p2j1<|x|τ1/p2j; hj(x)0 when |x|μτ1/p2j1 or |x|>(1+μ)τ1/p2j. The following formulas can be derived,

    I(τ1/p2j1<|x|τ1/p2j)hj(|x|)I(μτ1/p2j1<|x|(1+μ)τ1/p2j). (2.13)
    |X|rh(|X|τ1/p2k)1+kj=1|X|rhj(|X|),r>0. (2.14)
    |X|r(1h(|X|τ1/p2k))j=k|X|rhj(|X|μ),r>0. (2.15)

    First, prove (2.6). For 1p<2, by (2.11) and (2.4),

    H1:=n=1τ2/pnl1(n)ˆE(Xn)2n=1τ2/pnl1(n)[ˆE(X2h(μ|X|τ1/pn))+τ2/pnV(|X|>μτ1/pn)]=n=1τ2/pnl1(n)ˆE[X2h(μ|X|τ1/pn)]+n=1l1(n)V(|X|>μτ1/pn)n=1τ2/pnl1(n)ˆE[X2h(μ|X|τ1/pn)].

    Then, because h(x) is decreasing in (0,), according to Lemma 2.1, τ2/pnl1(n) is decreasing in (0,). So,

    H1k=12k1n<2kτ2/pnl1(n)ˆE[X2h(μ|X|τ1/pn)]k=12k1n<2kτ2/p2k1l1(2k1)ˆE[X2h(μ|X|τ1/p2k)]k=12k1n<2kτ2/p2kl1(2k)ˆE[X2h(μ|X|τ1/p2k)]k=12kτ2/p2kl1(2k)ˆE[X2h(μ|X|τ1/p2k)].

    Last by (2.14), (2.13), and (2.5),

    H1k=12kτ2/p2kl1(2k)+k=12kτ2/p2kl1(2k)kj=1ˆE(X2hj(μ|X|))j=1k=j2kτ2/p2kl1(2k)ˆE(X2hj(μ|X|))j=12jτ2/p2jl1(2j)τ2/p2jV(|X|>τ1/p2j1)j=12jl(2j)V(|X|>τ1/p2j)<.

    Therefore, (2.6) holds.

    Next, our proof of (2.7) is similar to (2.6). For 1<p<2, by (2.12) and the monotonically decreasing propety of h(x) in (0,), according to Lemma 2.1, τ1/pnl1(n) is decreasing in (0,), we have,

    H2:=n=1τ1/pnl1(n)ˆE|Xn|n=1τ1/pnl1(n)ˆE[|X|(1h(|X|τ1/pn))]=k=12k1n<2kτ1/pnl1(n)ˆE[|X|(1h(|X|τ1/pn))]k=12kτ1/p2k1l1(2k1)ˆE[|X|(1h(|X|τ1/p2k1))]k=12kτ1/p2kl1(2k)ˆE[|X|(1h(|X|τ1/p2k))].

    Then, from (2.15), (2.13), and (2.5), countable sub-additivity of ˆE,

    H2k=12kτ1/p2kl1(2k)j=kˆE(|X|hj(|X|μ))=j=1jk=12kτ1/p2kl1(2k)ˆE(|X|hj(|X|μ))j=12jτ1/p2jl1(2j)τ1/p2jV(|X|>μ2τ1/p2j1)j=12jl(2j)V(|X|>μ2τ1/p2j)<.

    Therefore, (2.7) holds.

    Lemma 2.4. (Zhang [11] Borel-Cantelli Lemma) Suppose {Bn;n1} is an array of matters in F. Suppose V has countable sub-additivity. We can obtain V(Bn;i.o.)=0 provided that n=1V(Bn)<, where (Bn;i.o.)=n=1m=nBm.

    Theorem 3.1. Suppose {Xn,n1} is a sequence of WNOD r.v., and its dominating coefficients are g(n). The sequence is stochastically dominated by a r.v. X. ˆE and V both have countable sub-additivity, and satisfying

    CV(|X|p)<,1<p<2. (3.1)

    Make {ank,1kn,n1} be a positive sequence according to

    max1knank=O(τ1/pnl1(n)),n, (3.2)

    where τn is defined by (2.1).

    If for some 0<δ<1,

    n=1e(δ2)l(n)g(n)<, (3.3)

    then,

    lim supnnk=1ank(XkˆEXk)0a.s.V, (3.4)
    lim infnnk=1ank(XkˆEXk)0a.s.V, (3.5)

    in particular, when ˆEXk=ˆEXk, then

    limnnk=1ank(XkˆEXk)=0a.s.V. (3.6)

    Remark 3.1. Theorem 3.1 under sub-linear expectations space is an extension of Theorem 2.1 of Yan [19] of the classical probability space.

    Remark 3.2. If g(n)=M, for each n1, then the sequence is simplified to END. When let l(n)=logn,n1, for 0<δ<1,

    n=1e(δ2)l(n)g(n)=Mn=1n(2δ)<,

    condition (3.3) is satisfied. By Theorem 3.1, Eqs (3.4)–(3.6) hold.

    Remark 3.3. We can obtain different conclusions by taking different forms of slowly varying function l(x). By taking l(n)=logn and l(n)=exp{(logn)ν}(0<ν<1), we will get the following two corollaries.

    Corollary 3.1. Suppose {Xn,n1} is a sequence of WNOD r.v., and its dominating coefficients are g(n). The sequence is stochastically dominated by a r.v. X. Besides, the sequence is satisfied (3.1). ˆE and V both have countable sub-additivity. Make sure {ank,1kn,n1} is a positive sequence according to

    max1knank=O(1n1/plog11/pn),n. (3.7)

    For some 0<b<1δ,

    g(n)nbc, (3.8)

    then (3.4)–(3.6) hold.

    Corollary 3.2. Suppose {Xn,n1} is a sequence of WNOD random variables, and its dominating coefficients are g(n). The sequence is stochastically dominated by a r.v. X. Besides, the sequence is satisfied (3.1). ˆE and V both have countable sub-additivity. Make sure {ank,1kn,n1} is a positive sequence according to

    max1knank=O(n1/pe(1+1/p)(logn)ν),n, (3.9)

    where 0<ν<1.

    For some m>0,

    g(n)nmc, (3.10)

    then (3.4)–(3.6) hold.

    Then, we will think about the situation of p=1.

    Theorem 3.2. Suppose {Xn,n1} is a sequence of WNOD r.v., and its dominating coefficients are g(n) and are satisfied (3.3). The sequence is stochastically dominated by a r.v. X. ˆE and V both have countable sub-additivity, and satisfying

    CV(|X|log|X|)<. (3.11)

    Suppose {ank,1kn,n1} is a positive sequence according to

    max1knank=O(n1),n, (3.12)

    then (3.4)–(3.6) hold.

    Because the sequence {Xk,k1} fulfills the criterion of Theorem 3.1, making {Xk,k1} as a substitute for {Xk,k1} in formula (3.4), by ˆEX=ˆE(X), there is

    0lim supnnk=1ank((Xk)ˆE(Xk))=lim supnnk=1ank((Xk)+ˆEXk)=lim supnnk=1ank((XkˆEXk)).
    lim infnnk=1ank(XkˆEXk)0.

    Therefore, (3.5) holds. Then, by ˆEXk=ˆEXk, (3.4) and (3.5), we can get (3.6). So we just need to prove (3.4).

    We denote Xn, Xn respectively by equations (2.2) and (2.3). By Definition 2.6, {XkˆEXk,k1} is also WNOD. Denote ˜Xk:=XkˆEXk.

    Therefore,

    nk=1ank(XkˆEXk)=nk=1ank˜Xk+nk=1ankXk+nk=1ank(ˆEXkˆEXk):=I1+I2+I3.

    So, if we want to prove (3.4), just prove

    lim supnIi0a.s.V,i=1,2,andlimnI3=0. (4.1)

    By (3.2) and the formula ex1+x+x22e|x|,x[,], for all t>0,1kn as well as large enough n,

    exp{tank˜Xk}1+tank˜Xk+t2a2nk(˜Xk)22exp{tank|˜Xk|}1+tank˜Xk+cτ2/pnl2(n)t2(˜Xk)2exp{ctl1(n)}. (4.2)

    By Definition 2.6, let φi(x)=etXi,i1, we can get for WNOD r.v.,

    ˆEexp{tni=1Xi}g(n)ni=1ˆEexp{tXi}. (4.3)

    By (4.2), (4.3), and the inequality 1+xex,xR, for all t>0 as well as large enough n,

    ˆEexp{tnk=1ank˜Xk}g(n)nk=1ˆEexp{tank˜Xk}g(n)nk=1ˆE[1+tank˜Xk+cτ2/pnl2(n)t2(˜Xk)2exp{ctl1(n)}]g(n)nk=1[1+cτ2/pnl2(n)t2exp{ctl1(n)}ˆE(˜Xk)2]g(n)exp{cτ2/pnl2(n)t2exp{ctl1(n)}nk=1ˆE(˜Xk)2].

    For ε>0, let t=2ε1l(n). According to Markov inequality, we can get

    V{nk=1ank˜Xk>ε}eεtˆEexp{tnk=1ank˜Xk}eεtg(n)exp{cτ2/pnl2(n)t2exp{ctl1(n)}nk=1ˆE(˜Xk)2]e2l(n)g(n)exp{cε2exp{cε1}l(n)τ2/pnl1(n)nk=1ˆE(˜Xk)2}.

    Combining ˆE(˜Xk)24ˆE(Xk)2, (2.6), and Kronecker's Lemma,

    τ2/pnl1(n)nk=1ˆE(˜Xk)20,n.

    So, for 0<δ<1, and large enough n, l(n) is non-decreasing in (0,), we can get

    cε2exp{cε1}τ2/pnl1(n)nk=1ˆE(˜Xk)2l(n)δl(1)δl(n).

    Therefore, by (3.3),

    n=1V{nk=1ank˜Xk>ε}cn=1e2l(n)g(n)eδl(n)=cn=1e(δ2)l(n)g(n)<.

    Because V has countable sub-additivity, and for every ε>0, we obtain from Lemma 2.4,

    lim supnI10,a.s.V. (4.4)

    For each n, there must be a m such that 2m1n<2m, by (2.12) and (3.2), h(x) is decreasing in (0,), according to Lemma 2.1, τ1/pnl1(n) is decreasing in (0,),

    H3:=nk=1ank|ˆEXkˆEXk|nk=1ankˆE|Xk|nk=1ankˆE[|X|(1h(|X|τ1/pk))]τ1/pnl1(n)nˆE[|X|(1h(|X|τ1/pn))]2mτ1/p2m1l(2m1)ˆE[|X|(1h(|X|τ1/p2m1))]2mτ1/p2ml(2m)ˆE[|X|(1h(|X|τ1/p2m))].

    Then, by (2.15) and (2.13), ˆE is countably sub-additive,

    H32mτ1/p2ml(2m)j=mˆE[|X|hj(|X|μ)]2mτ1/p2ml(2m)j=mτ1/p2jV(|X|>μ2τ1/p2j1)j=m2jτ1/p2jl(2j)τ1/p2jV(|X|>μ2τ1/p2j)=j=m2jl(2j)V(|X|>μ2τ1/p2j).

    Combining (2.5), we get

    limnI3=0. (4.5)

    If we want to prove (3.4), just prove

    lim supnI20,a.s.V. (4.6)

    Using (3.2) as well as the Lemma 2.1,

    max2mn<2m+1|nk=1ankXk|cmax2mn<2m+1τ1/pnl1(n)nk=1|Xk|cτ1/p2ml1(2m)2m+1k=1|Xk|,

    for ε>0, by (2.7) and Markov inequality,

    m=1V(max2mn<2m+1|nk=1ankXk|>ε)m=1V(cτ1/p2ml1(2m)2m+1k=1|Xk|>ε)cm=1τ1/p2ml1(2m)2m+1k=1ˆE|Xk|=ck=1ˆE|Xk|m:2m+1kτ1/p2ml1(2m)k=1τ1/pkl1(k)ˆE|Xk|<.

    By Lemma 2.4, for \forall \varepsilon > 0 ,

    \limsup\limits_{m\to \infty} \max\limits_{2^{m}\le n < 2^{m+1} } \left |\sum\limits_{k = 1}^{n} a_{nk} X_{k}^{\prime \prime } \right | \le \varepsilon , \mathrm{a.s.\mathbb{V}}.

    Combining \left | \sum_{k = 1}^{n} a_{nk} X^{\prime \prime } \right | \le \max_{2^{m}\le n < 2^{m+1} } \left | \sum_{k = 1}^{n} a_{nk} X_{k}^{\prime \prime } \right | and the arbitrariness of \varepsilon , (4.6) holds. So far, Theorem 3.1 has been proved.

    Let l\left (n \right) = \mathrm{log}\left (n \right) , for 0 < b < 1-\delta , by (3.8), we have

    \sum\limits_{n = 1}^{\infty} \mathrm{e}^{\left ( \delta -2 \right )l\left ( n \right ) } g\left ( n \right ) = \sum\limits_{n = 1}^{\infty} n^{\delta -2}g\left ( n \right ) = \sum\limits_{n = 1}^{\infty} n^{\delta -2+b}g\left ( n \right )n^{-b}\le c\sum\limits_{n = 1}^{\infty} n^{\delta -2+b} < \infty.

    Then, (3.4) holds. From Theorem 3.1, Eqs (3.4)–(3.6) hold.

    Let l\left (n \right) = \mathrm{exp} \left \{ \left (\mathrm{log}n \right)^{\nu } \right \}, 0 < \nu < 1. For \forall q > 0 , we have

    \left ( \mathrm{log}n \right )^{\nu } \ge q\mathrm{log}\mathrm{log}n,

    so,

    \mathrm{exp}\left \{ \left ( \mathrm{log}n \right )^{\nu } \right \} \ge \mathrm{e}^{q\mathrm{log}\mathrm{log}n} = \mathrm{log}^{q}n\ge q\mathrm{log}n.

    By (3.10), 0 < \delta < 1 , when q > \frac{m+1}{2-\delta } , we have

    \begin{equation*} \begin{aligned} \sum\limits_{n = 1}^{\infty} \mathrm{e}^{\left ( \delta -2 \right )l\left ( n \right ) } g\left ( n \right )& = \sum\limits_{n = 1}^{\infty}\mathrm{exp}\left \{ \left ( \delta -2 \right ) \mathrm{exp}\left \{ \mathrm{log}^{\nu } n \right \} \right \}g\left ( n \right ) \\ &\le \sum\limits_{n = 1}^{\infty}\mathrm{exp}\left \{ \left ( \delta -2 \right )q\mathrm{log}n \right \}g\left ( n \right ) \\ & = \sum\limits_{n = 1}^{\infty}n^{ \left ( \delta -2 \right )q+m} g\left ( n \right ) n^{-m} \\ &\le c\sum\limits_{n = 1}^{\infty}n^{ \left ( \delta -2 \right )q+m}\\ & < \infty . \end{aligned} \end{equation*}

    Then, (3.4) holds. From Theorem 3.1, Eqs (3.4)–(3.6) hold.

    When p = 1 , C_{\mathbb{V} } \left (\left | X \right | \right) \le C_{\mathbb{V} } \left (\left | X \right |\mathrm{log}\left | X \right | \right) < \infty , thus (4.4) and (4.5) are still valid, we just need to prove (4.6). Imitating the proof of Lemma 2.2, from C_{\mathbb{V} } \left (\left | X \right |\mathrm{log}\left | X \right | \right) < \infty , we can obtain

    \begin{equation} \sum\limits_{k = 1}^{\infty } \frac{2^{k}k }{l\left ( 2^{k} \right ) } \mathbb{V}\left ( \left | X \right | > c\tau _{2^{k} } \right ) < \infty. \end{equation} (4.7)

    Combining (2.12) and the monotonically decreasing property of h\left (x \right) in \left (0, \infty \right) ,

    \begin{equation*} \begin{aligned} H_{4}:& = \sum\limits_{n = 1}^{\infty}\frac{1}{n} \hat{\mathbb{E}} \left | X_{n}^{\prime \prime } \right | \le \sum\limits_{n = 1}^{\infty}\frac{1}{n} \hat{\mathbb{E}}\left | X \right | \left ( 1-h\left ( \frac{\left | X \right | }{\tau _{n} } \right ) \right ) \\ & = \sum\limits_{k = 1}^{\infty}\sum\limits_{2^{k-1}\le n < 2^{k}} \frac{1}{n} \hat{\mathbb{E}}\left | X \right | \left ( 1-h\left ( \frac{\left | X \right | }{\tau _{n} } \right ) \right ) \\ &\le \sum\limits_{k = 1}^{\infty}2^{k-1} \frac{1}{2^{k-1} } \hat{\mathbb{E}}\left | X \right | \left ( 1-h\left ( \frac{\left | X \right | }{\tau _{2^{k-1} } } \right ) \right ) \\ &\ll \sum\limits_{k = 1}^{\infty} \hat{\mathbb{E}}\left | X \right | \left ( 1-h\left ( \frac{\left | X \right | }{\tau _{2^{k} } } \right ) \right ) .\\ \end{aligned} \end{equation*}

    Then, by (2.15) and (4.7),

    \begin{equation*} \begin{aligned} H_{4}&\ll \sum\limits_{k = 1}^{\infty}\sum\limits_{j = k}^{\infty} \hat{\mathbb{E}}\left | X \right | h_{j} \left ( \frac{\left | X\right | }{\mu } \right ) \\ &\le \sum\limits_{j = 1}^{\infty}j\tau _{2^{j} } \mathbb{V}\left ( \left | X \right | > \mu ^{2} \tau _{2^{j-1} } \right ) \\ &\ll \sum\limits_{j = 1}^{\infty}\frac{2^{j}j }{l\left ( 2^{j} \right ) } \mathbb{V}\left ( \left | X \right | > \mu ^{2} \tau _{2^{j} } \right ) \\ & < \infty. \end{aligned} \end{equation*}

    For \forall \varepsilon > 0 , by (3.12) and Markov inequality,

    \begin{equation*} \begin{aligned} \sum\limits_{m = 1}^{\infty } \mathbb{V}\left ( \max\limits_{2^{m} \le n < 2^{m+1} } \left | \sum\limits_{k = 1}^{n} a_{nk}X_{k}^{\prime \prime } > \varepsilon \right | \right ) &\le c\sum\limits_{m = 1}^{\infty }\max\limits_{2^{m} \le n < 2^{m+1} }\frac{1}{n} \sum\limits_{k = 1}^{n}\hat{\mathbb{E}}\left | X_{k}^{\prime \prime } \right | \\ &\le c\sum\limits_{m = 1}^{\infty }\frac{1}{2^{m}} \sum\limits_{k = 1}^{2^{m+1} } \hat{\mathbb{E}}\left | X_{k}^{\prime \prime } \right | \\ & = c\sum\limits_{k = 1}^{\infty} \hat{\mathbb{E}}\left | X_{k}^{\prime \prime } \right |\sum\limits_{m:2^{m+1} > k }\frac{1}{2^{m} } \\ &\ll c\sum\limits_{k = 1}^{\infty} \frac{1}{k} \hat{\mathbb{E}}\left | X_{k}^{\prime \prime } \right | \\ & < \infty. \end{aligned} \end{equation*}

    By Lemma 2.4, for \forall \varepsilon > 0 ,

    \limsup\limits_{m\to \infty} \max\limits_{2^{m}\le n < 2^{m+1} } \left |\sum\limits_{k = 1}^{n} a_{nk} X_{k}^{\prime \prime } \right | \le \varepsilon , \mathrm{a.s.\mathbb{V}}.

    Combining \left | \sum_{k = 1}^{n} a_{nk} X^{\prime \prime } \right | \le \max_{2^{m}\le n < 2^{m+1} } \left | \sum_{k = 1}^{n} a_{nk} X_{k}^{\prime \prime } \right | and the arbitrariness of \varepsilon , (4.6) holds. So far, Theorem 3.2 has been proved.

    Almost sure convergence of WNOD r.v. in Peng's theory frame is built through this essay. It is based on the corresponding definition of stochastic domination in the sub-linear expectation space, as well as the properties of WNOD r.v. and the related proving methods. Compared with the previous research of ND, END, and so on, the research in this paper is suitable for a wider range of r.v.. So, broader conclusions are reached. In future research work, we will further consider investigating more meaningful conclusions.

    Baozhen Wang: Conceptualization, Formal analysis, Investigation, Methodology, Writing-original draft, Writing-review & editing; Qunying Wu: Funding acquisition, Formal analysis, Writing-review & editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This paper was supported by the National Natural Science Foundation of China (12061028) and Guangxi Colleges and Universities Key Laboratory of Applied Statistics.

    In this article, all authors disclaim any conflict of interest.



    [1] C. J. Gobler, Climate change and harmful algal blooms: insights and perspective, Harmful Algae, 91 (2020), 101731. https://doi.org/10.1016/j.hal.2019.101731 doi: 10.1016/j.hal.2019.101731
    [2] R. I. Woolway, S. Sharma, J. P. Smol, Lakes in hot water: the impacts of a changing climate on aquatic ecosystems, BioScience, 72 (2022), 1050–1061. https://doi.org/10.1093/biosci/biac052 doi: 10.1093/biosci/biac052
    [3] J. C. Ho, A. M. Michalak, N. Pahlevan, Widespread global increase in intense lake phytoplankton blooms since the 1980s, Nature, 574 (2019), 667–670. https://doi.org/10.1038/s41586-019-1648-7 doi: 10.1038/s41586-019-1648-7
    [4] X. Hou, L. Feng, Y. Dai, C. Hu, L. Gibson, J. Tang, et al., Global mapping reveals increase in lacustrine algal blooms over the past decade, Nat. Geosci., 15 (2022), 130–134. https://doi.org/10.1038/s41561-021-00887-x doi: 10.1038/s41561-021-00887-x
    [5] J. Huisman, G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H. Verspagen, P. M. Visser, Cyanobacterial blooms, Nat. Rev. Microbiol., 16 (2018), 471–483. https://doi.org/10.1038/s41579-018-0040-1 doi: 10.1038/s41579-018-0040-1
    [6] R. Cavicchioli, W. J. Ripple, K. N. Timmis, F. Azam, L. R. Bakken, M. Baylis, et al., Scientists' warning to humanity: microorganisms and climate change, Nat. Rev. Microbiol., 17 (2019), 569–586. https://doi.org/10.1038/s41579-019-0222-5 doi: 10.1038/s41579-019-0222-5
    [7] W. A. Wurtsbaugh, H. W. Paerl, W. K. Dodds, Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum, WIREs Water, 6 (2019), e1373. https://doi.org/10.1002/wat2.1373 doi: 10.1002/wat2.1373
    [8] L. Chen, J. Chen, X. Zhang, P. Xie, A review of reproductive toxicity of microcystins, J. Hazard. Mater., 301 (2016), 381–399. https://doi.org/10.1016/j.jhazmat.2015.08.041 doi: 10.1016/j.jhazmat.2015.08.041
    [9] X. Wan, A. D. Steinman, Y. Gu, G. Zhu, X. Shu, Q. Xue, et al., Occurrence and risk assessment of microcystin and its relationship with environmental factors in lakes of the eastern plain ecoregion, China, Environ. Sci. Pollut. Res., 27 (2020), 45095–45107. https://doi.org/10.1007/s11356-020-10384-0 doi: 10.1007/s11356-020-10384-0
    [10] R. E. Honkanen, J. Zwiller, R. E. Moore, S. L. Daily, B. S. Khatra, M. Dukelow, et al., Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases, J. Biol. Chem., 265 (1990), 19401–19404. https://doi.org/10.1016/S0021-9258(17)45384-1 doi: 10.1016/S0021-9258(17)45384-1
    [11] D. Huo, N. Gan, R. Geng, Q. Cao, L. Song, G. Yu, et al., Cyanobacterial blooms in China: diversity, distribution, and cyanotoxins, Harmful Algae, 109 (2021), 102106. https://doi.org/10.1016/j.hal.2021.102106 doi: 10.1016/j.hal.2021.102106
    [12] Q. Cao, A. D. Steinman, X. Wan, L. Xie, Bioaccumulation of microcystin congeners in soil-plant system and human health risk assessment: a field study from Lake Taihu region of China, Environ. Pollut., 240 (2018), 44–50. https://doi.org/10.1016/j.envpol.2018.04.067 doi: 10.1016/j.envpol.2018.04.067
    [13] E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. M. Holmes, et al., Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil, New Engl. J. Med., 338 (1998), 873–878. https://doi.org/10.1056/NEJM199803263381304 doi: 10.1056/NEJM199803263381304
    [14] L. Díez-Quijada, M. Puerto, D. Gutiérrez-Praena, M. Liana-Ruiz-Cabello, A. Jos, A. M. Camean, Microcystin-RR: occurrence, content in water and food and toxicological studies, Environ. Res., 168 (2019), 467–489. https://doi.org/10.1016/j.envres.2018.07.019 doi: 10.1016/j.envres.2018.07.019
    [15] World Health Organization, Guidelines for drinking-water quality: first addendum to the fourth edition. World Health Organization, 2017. Available from: https://www.who.int/publications/i/item/9789241549950.
    [16] T. W. Lambert, C. F. B. Holmes, S. E. Hrudey, Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment, Water Res., 30 (1996), 1411–1422. https://doi.org/10.1016/0043-1354(96)00026-7 doi: 10.1016/0043-1354(96)00026-7
    [17] B. L. Yuan, J. H. Qu, M. L. Fu, Removal of cyanobacterial microcystin-LR by ferrate oxidation–coagulation, Toxicon, 40 (2002), 1129–1134. https://doi.org/10.1016/S0041-0101(02)00112-5 doi: 10.1016/S0041-0101(02)00112-5
    [18] A. K. Y. Lam, P. M. Fedorak, E. E. Prepas, Biotransformation of the cyanobacterial hepatotoxin microcystin-LR, as determined by HPLC and protein phosphatase bioassay, Environ. Sci. Technol., 29 (1995), 242–246. https://doi.org/10.1021/es00001a030 doi: 10.1021/es00001a030
    [19] G. J. Jones, D. G. Bourne, R. L. Blakeley, H. Doelle, Degradation of the cyanobacteria hepatotoxin microcystin by aquatic bacteria, Natural Toxins, 2 (1994), 228–235. https://doi.org/10.1002/nt.2620020412 doi: 10.1002/nt.2620020412
    [20] D. G. Bourne, G. J. Jones, R. L. Blakeley, A. Jones, A. P. Negri, P. Riddles, Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR, Appl. Environ. Microbiol., 62 (1996), 4086–4094. https://doi.org/10.1128/aem.62.11.4086-4094.1996 doi: 10.1128/aem.62.11.4086-4094.1996
    [21] S. Takenaka, M. F. Watanabe, Microcystin LR degradation by Pseudomonas aeruginosa alkaline protease, Chemosphere, 34 (1997), 749–757. https://doi.org/10.1016/S0045-6535(97)00002-7 doi: 10.1016/S0045-6535(97)00002-7
    [22] J. Rapala, K. A. Berg, C. Lyra, R. M. Niemi, W. Manz, S. Suomalainen, et al., Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin, Int. J. Syst. Evol. Microbiol., 55 (2005), 1563–1568. https://doi.org/10.1099/ijs.0.63599-0 doi: 10.1099/ijs.0.63599-0
    [23] L. A. Lawton, A. Welgamage, P. M. Manage, C. Edwards, Novel bacterial strains for the removal of microcystins from drinking water, Water Sci. Technol., 63 (2011), 1137–1142. https://doi.org/10.2166/wst.2011.352 doi: 10.2166/wst.2011.352
    [24] H. D. Park, Y. Sasaki, T. Maruyama, E. Yanagisawa, A. Hiraishi, K. Kato, Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake, Environ. Toxicol., 16 (2001), 337–343. https://doi.org/10.1002/tox.1041 doi: 10.1002/tox.1041
    [25] Q. Ding, K. Liu, K. Xu, R. Sun, J. Zhang, L. Yin, et al., Further understanding of degradation pathways of microcystin-LR by an indigenous Sphingopyxis sp. in environmentally relevant pollution concentrations, Toxins, 10 (2018), 536. https://doi.org/10.3390/toxins10120536 doi: 10.3390/toxins10120536
    [26] F. Yang, F. Huang, H. Feng, J. Wei, I. Y. Massey, G. Liang, et al., A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium, Water Res., 174 (2020), 115638. https://doi.org/10.1016/j.watres.2020.115638 doi: 10.1016/j.watres.2020.115638
    [27] H. Yan, Y. Deng, H. Zou, X. Li, C. Ye, Isolation and activity of bacteria for the biodegradation of microcystins, (Chinese), Environmental Science, 25 (2004), 49–53. https://doi.org/10.13227/j.hjkx.2004.06.010 doi: 10.13227/j.hjkx.2004.06.010
    [28] H. L. Smith, P. Waltman, The theory of the chemostat: dynamics of microbial competition, Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511530043
    [29] Y. Kuang, Delay differential equations with applications in population dynamics, New York: Academic Press, 1993.
    [30] X. Tai, W. Ma, S. Guo, H. Yan, C. Yin, A class of dynamic delayed model describing flocculation of microorganism and its theoretical analysis, (Chinese), Mathametics in Practice and Theory, 13 (2015), 198–209.
    [31] S. Guo, W. Ma, Global dynamics of a microorganism flocculation model with time delay, Commun. Pure Appl. Anal., 16 (2017), 1883–1891. https://doi.org/10.3934/cpaa.2017091 doi: 10.3934/cpaa.2017091
    [32] S. Guo, W. Ma, X. Q. Zhao, Global dynamics of a time-delayed microorganism flocculation model with saturated functional responses, J. Dyn. Diff. Equat., 30 (2018), 1247–1271. https://doi.org/10.1007/s10884-017-9605-3 doi: 10.1007/s10884-017-9605-3
    [33] K. Song, S. Guo, W. Ma, H. Yan, A class of dynamic models describing microbial flocculant with nutrient competition and metabolic products in wastewater treatment, Adv. Differ. Equ., 2018 (2018), 33. https://doi.org/10.1186/s13662-018-1473-6 doi: 10.1186/s13662-018-1473-6
    [34] K. Yang, W. Ma, Z. Jiang, H. Yan, Differential equation model describing degradation of microcystins (MCs) and its theoretical analysis, (Chinese), Mathematics in Practice and Theory, 51 (2021), 231–247.
    [35] K. Song, W. Ma, S. Guo, Global behavior of a dynamic model with biodegradation of Microcystins, J. Appl. Anal. Comput., 9 (2019), 1261–1276. https://doi.org/10.11948/2156-907X.20180215 doi: 10.11948/2156-907X.20180215
    [36] M. R. Droop, Vitamin B12 and marine ecology. IV. The kinetics of uptake, growth and inhibition in Monochrysis lutheri, J. Mar. Biol. Assoc. UK, 48 (1968), 689–733. https://doi.org/10.1017/S0025315400019238 doi: 10.1017/S0025315400019238
    [37] J. Caperon, Time lag in population growth response of isochrysis galbana to a variable nitrate environment, Ecology, 50 (1969), 188–192. https://doi.org/10.2307/1934845 doi: 10.2307/1934845
    [38] H. I. Freedman, J. W. H. So, P. Waltman, Coexistence in a model of competition in the chemostat incorporating discrete delays, SIAM J. Appl. Math., 49 (1989), 859–870. https://doi.org/10.1137/0149050 doi: 10.1137/0149050
    [39] T. F. Thingstad, T. I. Langeland, Dynamics of chemostat culture: the effect of a delay in cell response, J. Theor. Biol., 48 (1974), 149–159. https://doi.org/10.1016/0022-5193(74)90186-6 doi: 10.1016/0022-5193(74)90186-6
    [40] K. Song, W. Ma, Z. Jiang, Bifurcation analysis of modeling biodegradation of microcystins, Int. J. Biomath., 12 (2019), 1950028. https://doi.org/10.1142/S1793524519500281 doi: 10.1142/S1793524519500281
    [41] J. Yang, S. Ding, J. Yang, Advances in process for microbial enzymes separation and purification, (Chinese), Modern Chemical Industry, 2007 (2007), 19–23. https://doi.org/10.16606/j.cnki.issn0253-4320.2007.06.005 doi: 10.16606/j.cnki.issn0253-4320.2007.06.005
    [42] H. Chen, W. Liu, Y. Du, G. Chen, B. Fang, Progress of operation of NADPH metabolism in industrial strains, (Chinese), Chemical Industry and Engineering Progress, 31 (2012), 2535–2541. https://doi.org/10.16085/j.issn.1000-6613.2012.11.035 doi: 10.16085/j.issn.1000-6613.2012.11.035
    [43] H. Yan, J. Wang, J. Chen, W. Wei, H, Wang, H. Wang, Characterization of the first step involved in enzymatic pathway for microcystin-RR biodegraded by Sphingopyxis sp. USTB-05, Chemosphere, 87 (2012), 12–18. https://doi.org/10.1016/j.chemosphere.2011.11.030 doi: 10.1016/j.chemosphere.2011.11.030
    [44] Z. Jiang, W. Ma, Y. Takeuchi, Dynamics for phytoplankton-zooplankton system with time delays, Funkcialaj Ekvacioj, 60 (2017), 279–304. https://doi.org/10.1619/fesi.60.279 doi: 10.1619/fesi.60.279
    [45] E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165. https://doi.org/10.1137/S0036141000376086 doi: 10.1137/S0036141000376086
    [46] S. Ruan, J. Wei, On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion, Math. Med. Biol., 18 (2001), 41–52. https://doi.org/10.1093/imammb/18.1.41 doi: 10.1093/imammb/18.1.41
    [47] K. Guo, W. Ma, Global dynamics of an SI epidemic model with nonlinear incidence rate, feedback controls and time delays, Math. Biosci. Eng., 18 (2021), 643–672. https://doi.org/10.3934/mbe.2021035 doi: 10.3934/mbe.2021035
    [48] M. Li, K. Guo, W. Ma, Uniform persistence and global attractivity in a delayed virus dynamic model with apoptosis and both virus-to-cell and cell-to-cell infections, Mathematics, 10 (2022), 975. https://doi.org/10.3390/math10060975 doi: 10.3390/math10060975
    [49] I. Barbǎlat, Systèmes d'équations différentielles d'oscillations non linéaires, (French), Revue de Mathématiques Pures et Appliquées, 4 (1959), 267–270.
    [50] S. A. DeLurgio, Forecasting principles and applications, Boston: Iwin McGraw-Hill, 1998.
    [51] C. D. Lewis, Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting, Boston: Butterworth Scientific, 1982.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(817) PDF downloads(35) Cited by(0)

Figures and Tables

Figures(13)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog