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Abstract: In this paper, a delay differential equation model is investigated, which describes the
biodegradation of microcystins (MCs) by Sphingomonas sp. and its degrading enzymes. First, the local
stability of the positive equilibrium and the existence of the Hopf bifurcation are obtained. Second, the
global attractivity of the positive equilibrium is obtained by constructing suitable Lyapunov functionals,
which implies that the biodegradation of microcystins is sustainable under appropriate conditions. In
addition, some numerical simulations of the model are carried out to illustrate the theoretical results.
Finally, the parameters of the model are determined from the experimental data and fitted to the data.
The results show that the trajectories of the model fit well with the trend of the experimental data.
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1. Introduction

With global warming and increasing eutrophication [1], the frequency and distribution of harmful
cyanobacterial blooms in lake ecosystems are increasing worldwide [2–4]. When cyanobacteria, also
known as “blue-green algae”, congregate in large numbers in freshwater lakes, they form harmful
algal blooms. These blooms produce a variety of secondary toxic metabolites called cyanotoxins [5].
Harmful algal blooms can have negative impacts on various aspects, including food security, tourism,
local economies, human health, drinking water, and aquatic food [6, 7].

Among the many different types of cyanotoxins produced by cyanobacteria, the most abundant,
widespread, and harmful cyanotoxins are microcystins (MCs) [8, 9]. MCs comprise a set of cyclic
heptapeptide hepatotoxins produced by freshwater species of cyanobacteria, which share the common
structure cyclo (-Adda-D-Glu-M-dha-D-Ala-L-X-D-MeAsp-L-Z), where X and Z represent variable

https://www.aimspress.com/journal/Math
https://dx.doi.org/10.3934/math.2024899


18441

amino acids [10,11]. MCs can form many different isomers due to the variation of amino acid species in
the peptide composition. The most common variants detected in China are MC-LR, MC-RR, and MC-
YR [12]. MCs can inhibit the activity of phosphoproteases, causing disruption of physiological and
biochemical reactions in the human body and seriously endangering health. Long-term and frequent
exposure to low-concentration MCs can lead to chronic apoptosis or uncontrolled cell proliferation of
hepatocytes, which in turn promotes the occurrence and development of tumors, leading to primary
hepatocellular carcinoma [13,14]. The International Agency for Research on Cancer (IARC) classified
MC-LR as a class 2B carcinogen. The World Health Organization (WHO) recommends that the
concentration of MC-LR in drinking water should not exceed 1 µg/L [15]. Therefore, effective removal
of MCs is the key to drinking water treatment.

Since MCs have harmful effects on humans and the environment, research on their degradation
has important practical significance. The degradation pathways of MCs mainly comprise physical,
chemical, and biological methods. Physical degradation methods mainly include coagulation and
precipitation, filtration, activated carbon adsorption, and membrane treatment. However, physical
degradation methods are generally inefficient, costly, and difficult to recycle [16]. Chemical
degradation methods, such as chemical reagents, ozone oxidation, and photodegradation, can
effectively reduce MCs in water bodies. However, these methods can introduce toxic byproducts,
causing secondary pollution. Furthermore, the photocatalytic degradation process has complex
operational requirements [17]. Therefore, the limitations of physical and chemical degradation
methods have restricted their further application in degrading MCs. However, biodegradation has
proven to be highly efficient, cost-effective, and free from secondary pollution, making it the safest and
most effective method for degrading MCs [18].

Microorganisms are capable of reducing or losing the toxicity of MCs by modifying the structure
of the Adda active group in the side chain of MCs or by breaking down the ring structure. In
1994, Jones et al. first isolated a strain of Sphingomonas sp. ACM-3962 from natural water bodies,
which could degrade MC-LR [19]. Subsequently, Bourne et al. showed for the first time that the
microcystinases MlrA, MlrB, MlrC, and transport protein (MlrD) encoded by four genes, mlrA, mlrB,
mlrC, and mlrD, respectively, were involved in the degradation of MC-LR in Sphingomonas sp.
ACM-3962. The cyclic MC-LR was sequentially degraded to linear MC-LR (Adda-Glu-M-dha-Ala-
Leu-MaspArg-OH), tetra-compound (Adda-Glu-M-dha-Ala-OH), poly-compound, and amino acid by
the catalytic action of MlrA, MlrB, and MlrC. MlrA peptidase activity has been shown to be the
most efficient enzymatic process and the most specific catalyst in all known detoxification pathways
of MCs [20]. Since then, various strains capable of degrading MCs have been isolated, such as
Pseudomonas aeruginosa [21], Paucibacter toxinivorans [22], and Brevibacterium sp. [23]. However,
the degrading bacteria are still mainly concentrated in the genus Sphingomonas [24–26]. Yan et al. [27]
successfully extracted the Sphingopyxis sp. USTB-05, which can effectively degrade MCs. They
studied the biodegradation of MCs by USTB-05 at both cellular and enzymatic levels.

On the other hand, the studies of the dynamics of the chemostat models and their variants have
achieved rich results [28, 29]. Tai et al. [30] proposed a time-delayed microorganism flocculation
model. They studied the existence and local stability of the equilibria of the presented model and found
that the model can display forward or backward bifurcation. Guo et al. [31] further studied the uniform
persistence of the model and global stability of the equilibria. Building upon the research in [31],
Guo et al. [32] considered a time-delayed microorganism flocculation model with saturated functional
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responses. Using the generalized Lyapunov-LaSalle theorem, they established some conditions for the
global stability of the equilibria. Song et al. [33] proposed a dynamic model for microbial flocculant
with nutrient competition and metabolic products, and analyzed the global dynamic properties of the
model.

For the flocculation and microbial degradation of MCs, Yang et al. [34] proposed the following
model: 

ẋ1(t) = Da10 − a12x1(t)x2(t) − a13x1(t)x3(t) − (D + d1)x1(t),
ẋ2(t) = a21x1(t)x2(t) − a20x2(t) − (D + d2)x2(t),
ẋ3(t) = a30x2(t) − a31x1(t)x3(t) − (D + d3)x3(t).

(1.1)

Here, x1(t), x2(t), and x3(t) represent the concentrations of MCs, Sphingomonas sp., and the degrading
enzymes produced by Sphingomonas sp. at time t. The constant a10 > 0 is the input concentration of
MCs. The constant D > 0 is the continuous input rate of MCs, Sphingomonas sp. and the degrading
enzymes into the chemostat. The constant a12 ≥ 0 is the consumption rate of MCs. The constant
a21 ≥ 0 is the maximum growth rate of Sphingomonas sp. The constant a20 ≥ 0 is the consumption
rate of Sphingomonas sp. The constant a30 ≥ 0 is the rate at which Sphingomonas sp. produce
the degrading enzymes that can be used for the degradation of MCs. The constant a13 ≥ 0 is the
degradation rate of MCs. The constant a31 ≥ 0 is the consumption rate of the degrading enzymes.
The constants d1, d2, and d3 represent the death rates of MCs, Sphingomonas sp., and the degrading
enzymes, respectively. Yang et al. [34] studied the local stability of the equilibria and the global
stability of the boundary equilibrium of model (1.1), as well as the uniform persistence of model (1.1).
Furthermore, Song et al. [35] studied the global stability of the positive equilibrium of model (1.1)
by constructing suitable Lyapunov functions. They also found that, under certain conditions, the
parameter a13/D can cause Hopf bifurcation.

Model (1.1) is a set of ordinary differential equations that is valid under the assumption that
the process of nutrient (MCs) storage by the organism (Sphingomonas sp.) is instantaneous.
However, during the continuous cultivation of microorganisms, the growth of microorganisms and
the consumption of nutrients often show a time delay. Time delay is caused by factors such as the
storage of nutrients by microorganisms and their metabolic processes. Therefore, time delay becomes
an important factor in accurately characterizing microbial culture processes [36–39]. In reference [40],
Song et al. rewrote the second equation of model (1.1) into the following form:

ẋ2(t) = a21e−δ1τ1 x1(t − τ1)x2(t − τ1) − a20x2(t) − (D + d2)x2(t),

where the constant τ1 ≥ 0 represents the time that the organism (Sphingomonas sp.) stores the
nutrient (MCs). The term e−δ1τ1 represents the approximate proportion of individuals remaining in the
chemostat during the conversion process. Considering that there may be time delay in the production of
degrading enzymes by microorganisms [41,42], and under the experimental conditions of model (1.1),
in order to obtain the degrading enzymes produced by Sphingomonas sp., it is necessary to separate the
degrading enzymes from the chemostat by centrifugation and sonicate the Sphingomonas sp. to release
the degrading enzymes. This process is not instantaneous. Therefore, we construct the following time-
delayed model: 

ẋ1(t) = Da10 − a12x1(t)x2(t) − a13x1(t)x3(t) − (D + d1)x1(t),
ẋ2(t) = a21e−δ1τ1 x1(t − τ1)x2(t − τ1) − a20x2(t) − (D + d2)x2(t),
ẋ3(t) = a30e−δ2τ2 x2(t − τ2) − a31x1(t)x3(t) − (D + d3)x3(t).

(1.2)

AIMS Mathematics Volume 9, Issue 7, 18440–18474.



18443

Here, the constant τ2 ≥ 0 represents the time required for Sphingomonas sp. to produce degrading
enzymes that can be used for the degradation of MCs. The term e−δ2τ2 represents the approximate
proportion of the degrading enzymes produced by Sphingomonas sp. that remains in the chemostat
during the conversion process. For clarity, the biological meanings of the parameters of model (1.2)
are summarized in Table 1.

Table 1. Descriptions of parameters in model (1.2).

Parameters Descriptions
x1(t) the concentration of MCs at time t
x2(t) the concentration of Sphingomonas sp. at time t
x3(t) the concentration of the degrading enzymes produced by Sphingomonas sp. at time t
D the continuous input rate of MCs, Sphingomonas sp., and the degrading enzymes

into the chemostat
a10 the input concentration of MCs
a12 the consumption rate of MCs
a13 the degradation rate of MCs
d1 the death rate of MCs
a21 the maximum growth rate of Sphingomonas sp.
a20 the consumption rate of Sphingomonas sp.
d2 the death rate of Sphingomonas sp.
a30 the rate at which Sphingomonas sp. produces the degrading enzymes that can be

used for the degradation of MCs.
a31 the consumption rate of the degrading enzymes
d3 the death rate of the degrading enzymes
τ1 the time that the organism (Sphingomonas sp.) stores the nutrient (MCs)
e−δ1τ1 the approximate proportion of individuals remaining in the chemostat during

the conversion process
τ2 the time required for Sphingomonas sp. to produce degrading enzymes

that can be used for the degradation of MCs
e−δ2τ2 the approximate proportion of the degrading enzymes produced by Sphingomonas sp.

that remains in the chemostat during the conversion process.

In model (1.2), for τ1 > 0 and τ2 = 0, Song et al. [40] studied the local and global stability of the
boundary equilibrium, local stability of the positive equilibrium, and the existence of Hopf bifurcations
caused by the time delay τ1. However, they did not obtain global stability results for the positive
equilibrium of model (1.2) for τ1 > 0 and τ2 = 0. The global stability or attractivity of the positive
equilibrium of model (1.2) deserves further study. The main purpose of this paper is to study the effect
of the time delay τ2 on the dynamical properties of model (1.2) and to obtain sufficient conditions for
the global attractivity of the positive equilibrium of model (1.2).

The rest of this paper is organized as follows. In Section 2, the dimensionless model for model (1.2)
is first obtained. Further, the classification of equilibria and the global stability of the boundary
equilibrium are obtained for model (2.1). In Section 3, if τ1 = 0, τ2 > 0, or τ1 = τ2 > 0,
we study the local stability of the positive equilibrium and the existence of Hopf bifurcations of
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model (2.1). In Section 4, by constructing suitable Lyapunov functionals and applying some inequality
analysis techniques, we establish some sufficient conditions for the global attractivity of the positive
equilibrium. In Section 5, we provide several specific examples and perform numerical simulations to
validate our conclusions. Finally, using experimental data from reference [43], we estimate the specific
values of model parameters through the least squares method and perform numerical simulations.

2. Preliminaties

First, we make the following dimensionless transformations of model (1.2):

x =
x1

a10
, y = x2, z = x3, t̄ =

t
D
, D1 =

D + d1

D
, D2 =

a20 + D + d2

D
,

D3 =
D + d3

D
, τ̄1 = Dτ1, δ̄1 =

δ1

D
, τ̄2 = Dτ2, δ̄2 =

δ2

D
,

a1 =
a12

D
, a2 =

a13

D
, b1 =

a21a10

D
, c1 =

a30

D
, c2 =

a31a10

D
.

For convenience, we remove the superscript and obtain the following time-delayed model:
ẋ(t) = 1 − a1x(t)y(t) − a2x(t)z(t) − D1x(t),
ẏ(t) = b1e−δ1τ1 x(t − τ1)y(t − τ1) − D2y(t),
ż(t) = c1e−δ2τ2y(t − τ2) − c2x(t)z(t) − D3z(t).

(2.1)

Let C = C([−τ̂, 0],R3) be the Banach space of continuous functions mapping [−τ̂, 0] to R3, equipped
with the sup-norm, where τ̂ = max {τ1, τ2}. We assume that model (2.1) always satisfies the initial
condition

x(θ) = φ1(θ), y(θ) = φ2(θ), z(θ) = φ3(θ), θ ∈ [−τ̂, 0], (2.2)

where
φ = (φ1, φ2, φ3)T ∈ C+ := {φ ∈ C | φi ≥ 0, i = 1, 2, 3} .

Then, we have the following lemma.

Lemma 2.1. The solution (x(t), y(t), z(t))T of model (2.1) with initial condition (2.2) is existent, unique,
and nonnegative on [0,+∞), which satisfies

lim sup
t→∞

x(t) ≤
1

D1
≡ x0, lim sup

t→∞
y(t) ≤

b1e−δ1τ1

la1
≡ M2, lim sup

t→∞
z(t) ≤

b1c1e−(δ1τ1+δ2τ2)

la1D3
≡ M3,

where l = min {D1,D2}.

Clearly, model (2.1) always has a boundary equilibrium E0 = (x0, 0, 0). For convenience, let us
define

R0 =
b1e−δ1τ1

D1D2
, τ1max =

1
δ1

ln
b1

D1D2
.

When R0 > 1 (0 ≤ τ1 < τ1max), model (2.1) has a unique positive equilibrium E∗ = (x∗, y∗, z∗), where

x∗ =
D2

b1e−δ1τ1
, y∗ =

(1 − D1x∗)(c2x∗ + D3)
a1c2x∗2 + a1D3x∗ + a2c1e−δ2τ2 x∗

, z∗ =
c1e−δ2τ2(1 − D1x∗)

a1c2x∗2 + a1D3x∗ + a2c1e−δ2τ2 x∗
.

By a similar argument as in the proof of Theorem 2.1 in [40], we obtain the following result.
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Theorem 2.1. (i) If R0 < 1, then the boundary equilibrium E0 is globally asymptotically stable.

(ii) If R0 = 1, then the boundary equilibrium E0 is linearly stable.

(iii) If R0 > 1, then the boundary equilibrium E0 is unstable.

3. Local stability of the positive equilibrium and Hopf bifurcation analysis

In this section, we assume that R0 > 1. The method provided in references [44, 45] for studying
the stability of the models with coefficient-dependent time delays is employed here. We utilize the
stability criteria discussed in Section 2.4 of reference [45] to analyze the local stability of the positive
equilibrium.

The characteristic equation of model (2.1) at the positive equilibrium E∗ can be written as

P(λ, τ1, τ2) + Q(λ, τ1, τ2)e−λτ1 + T (λ, τ1, τ2)e−λ(τ1+τ2) = 0, (3.1)

where

P(λ, τ1, τ2) =λ3 + A2(τ1, τ2)λ2 + A1(τ1, τ2)λ + A0(τ1, τ2),
Q(λ, τ1, τ2) =B2λ

2 + B1(τ1, τ2)λ + B0(τ1, τ2),
T (λ, τ1, τ2) =C0(τ1, τ2),

A2(τ1, τ2) =c2x∗ + a1y∗ + a2z∗ + D1 + D3 + D2,

A1(τ1, τ2) =a1c2x∗y∗ + c2(D1 + D2)x∗ + a1(D2 + D3)y∗ + a2(D2 + D3)z∗ + D1D2

+ D1D3 + D2D3,

A0(τ1, τ2) =a1c2D2x∗y∗ + a1D2D3y∗ + a2D2D3z∗ + c2D1D2x∗ + D1D2D3,

B2 = − D2,

B1(τ1, τ2) = − c2D2x∗ − a2D2z∗ − D1D2 − D2D3,

B0(τ1, τ2) = − a2D2D3z∗ − c2D1D2x∗ − D1D2D3,

C0(τ1, τ2) =a2c2D2x∗z∗ + a2D2D3z∗.

When τ1 = τ2 = 0, it is easy to obtain that A2(0, 0) + B2 > 0, A1(0, 0) + B1(0, 0) > 0, and A0(0, 0) +

B0(0, 0) + C0(0, 0) > 0. Define the following condition:

(H1) (A1(0, 0) + B1(0, 0))(A2(0, 0) + B2) > A0(0, 0) + B0(0, 0) + C0(0, 0).

According to the Routh-Hurwitz criterion, if condition (H1) holds, then all the roots of Eq (3.1) have
negative real parts and the positive equilibrium E∗ is locally asymptotically stable if τ1 = τ2 = 0.

Define

Π = c2D1 +
D3

(x∗)2 + c2D1D3x∗ +
D2

3

x∗
+ c2

2D1(x∗)2 + c2D3 −
(b1D3 + c2D2)(b1 − D1D2)

b1
.

Remark 3.1. From reference [35], we state the following two facts.
(i) If Π ≥ 0, then condition (H1) holds.
(ii) If Π < 0, then there exists a positive constant a∗2 such that if a2 < a∗2, then condition (H1) holds, and
if a2 ≥ a∗2, then condition (H1) does not hold.
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Case I. τ1 = 0, τ2 ≥ 0.
For the convenience of analysis, we first assume τ1 = 0 and choose τ2 as the bifucation parameter.
In this case, the characteristic equation of model (2.1) at the positive equilibrium E∗ can be written

as

P(λ, τ2) + Q(λ, τ2)e−λτ2 = 0, (3.2)

where

P(λ, τ2) = λ3 + Â2(τ2)λ2 + Â1(τ2)λ + Â0(τ2),
Q(λ, τ2) = B̂0(τ2),

Â2(τ2) = c2x∗ + a1y∗ + a2z∗ + D1 + D3,

Â1(τ2) = a1b1x∗y∗ + a1c2x∗y∗ + c2D1x∗ + a1D3y∗ + a2D3z∗ + D1D3,

Â0(τ2) = a1b1c2x∗2y∗ + a1b1D3x∗y∗,

B̂0(τ2) = a2c2D2x∗z∗ + a2D2D3z∗.

If τ2 = 0 and condition (H1) holds, then all the roots of Eq (3.2) have negative real parts, and the
positive equilibrium E∗ is locally asymptotically stable.

When τ2 > 0, stability switching may occur when the existence of a pair of pure imaginary roots
λ = ±iω exist in Eq (3.2) that crosses the imaginary axis as the value of τ2 increases. It can be easily
proven that P(λ, τ2) and Q(λ, τ2) in Eq (3.2) satisfy the following properties:

(i) P(0, τ2) + Q(0, τ2) , 0;

(ii) P(iω, τ2) + Q(iω, τ2) , 0;

(iii) lim
|λ|→∞

∣∣∣∣Q(λ,τ2)
P(λ,τ2)

∣∣∣∣ = 0;

(iv) F(ω, τ2) = |P(ω, τ2)|2 − |Q(ω, τ2|
2 has a finite number of zero roots;

(v) The equation F(ω, τ2) = 0 has positive roots ω(τ2), and each positive root is continuously
differentiable.

Let λ = iω be a purely imaginary root of Eq (3.2). Then we haveB̂0(τ2) cosωτ2 = Â2(τ2)ω2 − Â0(τ2),
B̂0(τ2) sinωτ2 = −ω3 + Â1(τ2)ω.

Further, we have 
cosωτ2 =

Â2(τ2)ω2 − Â0(τ2)
B̂0(τ2)

,

sinωτ2 =
−ω3 + Â1(τ2)ω

B̂0(τ2)
.

By squaring both sides of the above two equations and adding them together, we have

F(ω, τ2) = ω6 + P2(τ2)ω4 + P1(τ2)ω2 + P0(τ2), (3.3)
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where

P0(τ2) = Â2
0(τ2) − B̂2

0(τ2), P1(τ2) = Â2
1(τ2) − 2Â0(τ2)Â2(τ2), P2(τ2) = Â2

2(τ2) − 2Â1(τ2).

Letting v = ω2, we have

h(v) = v3 + P2(τ2)v2 + P1(τ2)v + P0(τ2). (3.4)

Letting ∆(τ2) = P2
2(τ2) − 3P1(τ2). If ∆(τ2) ≥ 0, we define v+ =

−P2(τ2)+
√

∆(τ2)
3 . According to

reference [46], the following conclusion holds.

Lemma 3.1. (i) When P0(τ2) < 0, Eq (3.4) has at least one positive real root;

(ii) When P0(τ2) ≥ 0, Eq (3.4) has positive roots if and only if v+ =
−P2(τ2)+

√
∆(τ2)

3 > 0 and h(v+) ≤ 0;

(iii) When conditions (i) or (ii) are not satisfied, Eq (3.4) has no positive real roots.

For convenience, in our subsequent discussions, we assume that Eq (3.4) has only one positive root.
There exists a set I such that, when τ2 ∈ I, the equation

F(ω(τ2), τ2) = 0

has a positive real root ω = ω(τ2) > 0. Furthermore, for τ2 ∈ I, we can define an angle θ(τ2) ∈ [0, 2π)
as the solution of (3.3): 

cos θ =
Â2(τ2)ω2 − Â0(τ2)

B̂0(τ2)
,

sin θ =
−ω3 + Â1(τ2)ω

B̂0(τ2)
.

For τ2 ∈ I, the angle θ in the above equation must satisfy the following relationship with ωτ2 in
Eq (3.3):

ωτ2 = θ(τ2) + 2nπ, n ∈ N0.

Define

S n(τ2) = τ2 −
θ(τ2) + 2nπ
ω(τ2)

, n ∈ N0, τ2 ∈ I, (3.5)

where S n(τ2) is continuously differentiable with respect to τ2.

Theorem 3.1. Suppose that τ1 = 0, R0 > 1, and condition (H1) hold. When τ2 = τ∗2 ∈ I such that
S n(τ∗2) = 0 for some n ∈ N0 hold, the characteristic equation (3.2) has a pair of purely imaginary roots
±iω(τ∗2). If δ(τ∗2) > 0 (< 0), then the roots ±iω(τ∗2) cross the imaginary axis from left to right (from
right to left), where

δ(τ∗2) = sign
{

dRe(λ)
dτ2

∣∣∣∣∣
λ=iω(τ∗2)

}
= sign

{
dS n(τ2)

dτ2

∣∣∣∣∣
τ2=τ∗2

}
.
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Theorem 3.2. Suppose that τ1 = 0 and R0 > 1. If condition (H1) holds, the following conclusions
hold.

(i) When the function S 0(τ2) has no positive roots for τ2 ∈ I, the positive equilibrium E∗ is locally
asymptotically stable for any τ2 ≥ 0;

(ii) When the function S n(τ2) has roots such that τ0
2 < τ1

2 < · · · < τm
2 ∈ I and S

′

n(τ j
2) , 0( j =

0, 1, 2, · · · ,m), then the positive equilibrium E∗ is locally asymptotically stable on
[
0, τ0

2

)
∪
(
τm

2 ,+∞
)
∩I.

Case II. τ1 = τ2 = τ.
We assume τ1 = τ2 = τ, and we increase the value of τ from 0 to observe possible bifurcations. In

this situation, the characteristic equation becomes

P(λ, τ)eλτ + Q(λ, τ) + T (λ, τ)e−λτ = 0, (3.6)

where
P(λ, τ) = λ3 + Ā2λ

2 + Ā1λ + Ā0, Q(λ, τ) = B̄2λ
2 + B̄1λ + B̄0, T (λ, τ) = C̄0,

Āi = Āi(τ), (i = 0, 1, 2), B̄i = B̄i(τ), (i = 0, 1, 2), C̄0 = C̄0(τ),

Ā2 = a1y∗ + a2z∗ + c2x∗ + D1 + D2 + D3,

Ā1 = a1c2x∗y∗ + a1(D2 + D3)y∗ + a2(D2 + D3)z∗ + c2(D1 + D2)x∗ + D1D2 + D1D3 + D2D3,

Ā0 = a1c2D2x∗y∗ + a1D2D3y∗ + c2D1D2x∗ + a2D2D3z∗ + D1D2D3,

B̄2 = −D2,

B̄1 = −a2D2z∗ − c2D2x∗ − D1D2 − D2D3,

B̄0 = −c2D1D2x∗ − a2D2D3z∗ − D1D2D3,

C̄0 = a2c2D2x∗z∗ + a2D2D3z∗.

Let λ = iω be a purely imaginary root of Eq (3.6). Then we have
cosωτ =

(Ā0 − Ā2ω
2 − C̄0)(B̄2ω

2 − B̄0) + (ω3 − Ā1ω)B̄1ω

(Ā0 − Ā2ω2)2 − C̄2
0 + (ω3 − Ā1ω)2

,

sinωτ =
−(Ā0 − Ā2ω

2 + C̄0)B̄1ω + (ω3 − Ā1ω)(B̄2ω
2 − B̄0)

(Ā0 − Ā2ω2)2 − C̄2
0 + (ω3 − Ā1ω)2

.

(3.7)

From the two equations above, we have

h̄(v, τ) = v6 + P̄5v5 + P̄4v4 + P̄3v3 + P̄2v2 + P̄1v + P̄0 = 0, (3.8)

where v = ω2, P̄i = P̄i(τ)(i = 0, 1, 2, 3, 4, 5),

P̄5 =2Ā2
2 − 4Ā1 − B̄2

2,

P̄4 =2B̄0B̄2 + 2Ā1B̄2
2 + Ā4

2 + 6Ā2
1 − 4Ā0Ā2 − 4Ā1Ā2

2 − Ā2
2B̄2

2 − B̄2
1,

P̄3 = − Ā2
2B̄2

1 − B̄2
0 − Ā2

1B̄2
2 − 4Ā1B̄0B̄2 + 4B̄1B̄2C̄0 − 4Ā0Ā3

2 − 4Ā3
1 + 2Ā2

0 + 2Ā2
1Ā2

2

+ 8Ā0Ā1Ā2 − 2C̄2
0 + 2Ā2

2B̄0B̄2 + 2Ā0Ā2B̄2
2 − 2Ā2B̄2

2C̄0 + 2Ā1B̄2
1,

P̄2 =2Ā0Ā2B̄2
1 + 2Ā2B̄2

1C̄0 + 2Ā2
1B̄0B̄2 + 2Ā1B̄2

0 − 4B̄0B̄1C̄0 − 4Ā1B̄1B̄2C̄0 + 6Ā2
0Ā2

2
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− 2Ā2
2C̄

2
0 + Ā4

1 − 4Ā0Ā2
1Ā2 − 4Ā2

0Ā1 + 4Ā1C̄2
0 − Ā2

0B̄2
2 − Ā2

2B̄2
0 − 4Ā0Ā2B̄0B̄2

− B̄2
2C̄

2
0 + 2Ā0B̄2

2C̄0 + 4Ā2B̄0B̄2C̄0 − Ā2
1B̄2

1,

P̄1 = − Ā2
0B̄2

1 − B̄2
1C̄

2
0 − 2Ā0B̄2

1C̄0 − Ā2
1B̄2

0 + 4Ā1B̄0B̄1C̄0 − 4Ā3
0Ā2 + 4Ā0Ā2C̄2

0

+ 2Ā2
0Ā2

1 − 2C̄2
0Ā2

1 + 2Ā2
0B̄0B̄2 + 2Ā0Ā2B̄2

0 + 2B̄0B̄2C̄2
0 − 4Ā0B̄0B̄2C̄0 − 2Ā2B̄2

0C̄0,

P̄0 =Ā4
0 + C̄4

0 − 2Ā2
0C̄

2
0 − Ā2

0B̄2
0 − B̄2

0C̄
2
0 + 2Ā0B̄2

0C̄0.

We choose θ(τ) ∈ [0, 2π), and sin θ(τ) and cos θ(τ) are given by Eq (3.7). Similar to Case I, there
exists a set Ī ⊂ (0, τ1max) such that, when τ ∈ Ī, Eq (3.8) has a positive real root. Then we have
S n(τ) = τ − θ(τ)+2nπ

ω(τ) , where n ∈ N0 and τ ∈ Ī.

Theorem 3.3. Suppose that τ1 = τ2 = τ, R0 > 1, and condition (H1) hold. When τ = τ∗ ∈ Ī such
that S n(τ∗) = 0 for some n ∈ N0 hold, the characteristic Eq (3.6) has a pair of purely imaginary roots
±iω(τ∗). If ∆(τ∗) > 0 (< 0), then the roots ±iω(τ∗) cross the imaginary axis from left to right (from
right to left), where

∆(τ∗) = sign
{

dRe(λ)
dτ

∣∣∣∣∣
λ=iω(τ∗)

}
= sign

{
dS n(τ)

dτ

∣∣∣∣∣
τ=τ∗

}
.

Theorem 3.4. Suppose that τ1 = τ2 = τ and R0 > 1. If condition (H1) holds, the following conclusions
hold.

(i) When the function S 0(τ) has no positive roots for τ ∈ Ī, the positive equilibrium E∗ is locally
asymptotically stable for τ ∈ Ī;

(ii) When the function S n(τ) has roots such that τ0 < τ1 < · · · < τm ∈ Ī and S
′

n(τ j) , 0( j =

0, 1, 2, · · · ,m), then the positive equilibrium E∗ is locally asymptotically stable on
[
0, τ0

)
∪(τm, τ1max)∩

Ī.

4. Global attractivity of the positive equilibrium

Similar to the method used to prove the uniform persistence in reference [40], we have the following
result.

Theorem 4.1. If R0 > 1, then model (2.1) is uniformly persistent, and the solution (x(t), y(t), z(t))T of
model (2.1) with initial condition (2.2) satisfies

lim
t→∞

inf x(t) ≥
1

b1e−δ1τ1

l + a2c1b1e−δ1τ1 e−δ2τ2

la1D3
+ D1

≡ ν1,

lim
t→∞

inf y(t) ≥ ρy∗e−D2(d+τ̂) ≡ ν2,

lim
t→∞

inf z(t) ≥
c1e−δ2τ2ν2D1

c2 + D1D3
≡ ν3,

where ρ > 0 and d > 0 satisfy q ≡ 1

a1ρy∗+ a2c1e−δ2τ2 ρy∗

D3
+D1

> x∗ and x∆ ≡ q(1 − e−
d
q ) > x∗.

Next, similar to the method used to prove the global stability of equilibria using Barbalat’s lemma
in references [47, 48], we consider the global stability of the positive equilibrium E∗ when R0 > 1.
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For convenience of description, let ε be any sufficiently small positive number such that 0 < ε <

min{ν1, ν2, ν3}. We define

ν1(ε) =ν1 − ε, ν2(ε) = ν2 − ε, ν3(ε) = ν3 − ε, x0(ε) = x0 + ε, M2(ε) = M2 + ε,

Ψ1(ε) =
a1

2
[M2(ε)(a1y∗ + a2z∗ + D1 + a1x0(ε) + a2x0(ε))

+ x0(ε)(b1e−δ1τ1 x0(ε) + b1e−δ1τ1y∗ + D2)],

Ψ2(ε) =
a1

2
[
a1eδ1τ1

b1
M2(ε)(a1y∗ + a2z∗ + D1 + a1x0(ε) + a2x0(ε))

+
a1eδ1τ1

b1
x0(ε)(b1e−δ1τ1 x0(ε) + b1e−δ1τ1y∗ + D2)],

Ψ3(ε) =
a1M2(ε)

2
(a1y∗ + a2z∗ + D1)(1 +

a1eδ1τ1

b1
),

Ψ4(ε) =
a1x0(ε)

2
(a1M2(ε) + D2)(1 +

a1eδ1τ1

b1
),

Ψ5(ε) =
a1x0(ε)

2
a2M2(ε)(1 +

a1eδ1τ1

b1
), Ψ6(ε) =

a1x0(ε)
2

b1e−δ1τ1y∗(1 +
a1eδ1τ1

b1
),

Ψ7(ε) =
a1x0(ε)

2
b1e−δ1τ1 x0(ε)(1 +

a1eδ1τ1

b1
),

Ψ8(ε) =
b1

2
[
x0(ε)
ν2(ε)

(b1e−δ1τ1 x0(ε) + b1e−δ1τ1y∗ + D2) + a1y∗ + a2z∗ + D1 + a1x0(ε) + a2x0(ε)],

Ψ9(ε) =
b1

2
(a1y∗ + a2z∗ + D1), Ψ10(ε) =

b1x0(ε)
2

(
D2

ν2(ε)
+ a1),

Ψ11(ε) =
a2x0(ε)b1

2
, Ψ12(ε) =

b2
1e−δ1τ1y∗x0(ε)

2ν2(ε)
, Ψ13(ε) =

b2
1e−δ1τ1 x2

0(ε)
2ν2(ε)

,

Ψ14(ε) =
c1

2
(b1e−δ1τ1 x0(ε) + b1e−δ1τ1y∗ + D2),

Ψ15(ε) =
c1b1e−δ1τ1 x0(ε)

2
, Ψ16(ε) =

c1b1e−δ1τ1y∗

2
, Ψ17(ε) =

c1D1

2
.

We define a real symmetric matrix

J (ε) =


A11 (ε) −A12 −A13 (ε)
−A12 (ε) A22 (ε) −A23 (ε)
−A13 (ε) −A23 (ε) A33 (ε)

 ,
where

A11 (ε) =[(a2ν3(ε) + D1) − (Ψ1(ε) + Ψ3(ε) + Ψ6(ε))τ1] − θ1(Ψ9(ε) + Ψ12(ε))τ1 − θ2Ψ16(ε)τ2,

A22 (ε) =[
a2

1x∗eδ1τ1

b1
− (Ψ2(ε) + Ψ4(ε) + Ψ7(ε))τ1] − θ1(Ψ8(ε) + Ψ10(ε) + Ψ13(ε))τ1

− θ2(Ψ15(ε) + Ψ17(ε))τ2,

A33 (ε) = − Ψ5(ε)τ1 − θ1Ψ11(ε)τ1 + θ2[eδ2τ2(D3 + c2ν1 (ε)) − Ψ14(ε)τ2],
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A12 (ε) =
1
2
{θ1b1 − [

a1

b1
eδ1τ1(a2z∗ + D1) + a1x∗]}, A13 (ε) = −

1
2

(a2x∗ + θ2eδ2τ2c2z∗),

A23 (ε) =
1
2

(θ2c1 −
a1

b1
eδ1τ1a2x∗).

Then we have the following result.

Theorem 4.2. If R0 > 1 and the symmetric matrix J(0) is positive definite, then the positive equilibrium
E∗ is globally attractive in C1 := {φ ∈ C+ : φ(0) > 0}.

Proof. If R0 > 1, then there exists a sufficiently small ε such that 0 < ε < min{ν1, ν2, ν3} and J(ε) is
a positive definite matrix. For this chosen ε, there exists a sufficiently large T (ε) > τ̂ such that when
t ≥ T (ε),

0 < ν1 − ε < x (t) < x0 + ε, 0 < ν2 − ε < y (t) < M2 + ε, 0 < ν3 − ε < z (t) .

We define

U1(t) =
1
2

[(x(t) − x∗) +
a1

b1
eδ1τ1(y(t) − y∗)]2.

When t ≥ T (ε), we have

ẋ(t) +
a1

b1
eδ1τ1 ẏ(t)

=1 − a1x(t)y(t) − a2x(t)z(t) − D1x(t) + a1x(t − τ1)y(t − τ1) −
a1D2

b1
eδ1τ1y(t)

=(a2z(t) + D1)(x∗ − x(t)) + a1x∗(y∗ − y(t)) + a2x∗(z∗ − z(t))
+ a1x(t − τ1)(y(t − τ1) − y(t)) + a1y(t)(x(t − τ1) − x(t)),

U̇1(t) =[(x(t) − x∗) +
a1

b1
eδ1τ1(y(t) − y∗)](ẋ(t) +

a1

b1
eδ1τ1 ẏ(t))

= − (a2z(t) + D1)(x(t) − x∗)2 −
a2

1x∗

b1
eδ1τ1(y(t) − y∗)2

− [
a1

b1
eδ1τ1(a2z∗ + D1) + a1x∗](x(t) − x∗)(y(t) − y∗)

− a2x∗(x(t) − x∗)(z(t) − z∗) −
a1

b1
eδ1τ1a2x∗(y(t) − y∗)(z(t) − z∗) + Γ1(t) + Γ2(t),

where

Γ1(t) = − a1x(t − τ1)[(x(t) − x∗) +
a1

b1
eδ1τ1(y(t) − y∗)]

∫ t

t−τ1

ẏ(s)ds,

Γ2(t) = − a1y(t)[(x(t) − x∗) +
a1

b1
eδ1τ1(y(t) − y∗)]

∫ t

t−τ1

ẋ(s)ds.

Since E∗ is an equilibrium of model (2.1), ẋ(t) and ẏ(t) can be rewritten as

ẋ(t) =(a1y∗ + a2z∗ + D1)(x∗ − x(t)) + a1x(t)(y∗ − y(t)) + a2x(t)(z∗ − z(t)),
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ẏ(t) =b1e−δ1τ1 x(t − τ1)(y(t − τ1) − y∗) + b1e−δ1τ1y∗(x(t − τ1) − x∗) + D2(y∗ − y(t)).

When t ≥ T (ε) + τ̂, we have

|Γ1(t)| =a1x(t − τ1)
∣∣∣∣∣[(x(t) − x∗) +

a1

b1
eδ1τ1(y(t) − y∗)]

∣∣∣∣∣
×

∣∣∣∣∣∣
∫ t

t−τ1

[b1e−δ1τ1 x(t − τ1)(y(s − τ1) − y∗) + b1e−δ1τ1y∗(x(s − τ1) − x∗) + D2(y∗ − y(s))]ds

∣∣∣∣∣∣
≤a1x0(ε)

∫ t

t−τ1

{b1e−δ1τ1 x0(ε)
2

[(x(t) − x∗)2 + (y(s − τ1) − y∗)2]

+
a1x0(ε)

2
[(y(t) − y∗)2 + (y(s − τ1) − y∗)2]

+
b1e−δ1τ1y∗

2
[(x(t) − x∗)2 + (x(s − τ1) − x∗)2] +

a1y∗

2
[(y(t) − y∗)2 + (x(s − τ1) − x∗)2]

+
D2

2
[(x(t) − x∗)2 + (y(s) − y∗)2] +

a1D2eδ1τ1

2b1
[(y(t) − y∗)2 + (y(s) − y∗)2]

}
ds

=
a1x0(ε)

2
(b1e−δ1τ1 x0(ε) + b1e−δ1τ1y∗ + D2)τ1(x(t) − x∗)2

+
a1x0(ε)

2
(a1x0(ε) + a1y∗ +

a1D2eδ1τ1

b1
)τ1(y(t) − y∗)2

+
a1x0(ε)

2
b1e−δ1τ1 x0(ε)(1 +

a1eδ1τ1

b1
)
∫ t

t−τ1

(y(s − τ1) − y∗)2ds

+
a1x0(ε)

2
b1e−δ1τ1y∗(1 +

a1eδ1τ1

b1
)
∫ t

t−τ1

(x(s − τ1) − x∗)2ds

+
a1x0(ε)D2

2
(1 +

a1eδ1τ1

b1
)
∫ t

t−τ1

(y(s) − y∗)2ds,

and

|Γ2(t)| =a1y(t)
∣∣∣∣∣[(x(t) − x∗) +

a1

b1
eδ1τ1(y(t) − y∗)]

∣∣∣∣∣
×

∣∣∣∣∣∣
∫ t

t−τ1

[(a1y∗ + a2z∗ + D1)(x∗ − x(s)) + a1x(t)(y∗ − y(s)) + a2x(t)(z∗ − z(s))]ds

∣∣∣∣∣∣
≤a1M2(ε)

∫ t

t−τ1

{a1y∗ + a2z∗ + D1

2
[(x(t) − x∗)2 + (x(s) − x∗)2]

+
a1eδ1τ1

2b1
(a1y∗ + a2z∗ + D1)[(y(t) − y∗)2 + (x(s) − x∗)2]

+
a1x0(ε)

2
[(x(t) − x∗)2 + (y(s) − y∗)2] +

a2
1eδ1τ1 x0(ε)

2b1
[(y(t) − y∗)2 + (y(s) − y∗)2]

+
a2x0(ε)

2
[(x(t) − x∗)2 + (z(s) − z∗)2] +

a1a2eδ1τ1 x0(ε)
2b1

[(y(t) − y∗)2 + (z(s) − z∗)2]
}
ds

=
a1M2(ε)

2
(a1y∗ + a2z∗ + D1 + a1x0(ε) + a2x0(ε))τ1(x(t) − x∗)2
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+
a2

1eδ1τ1 M2(ε)
2b1

(a1y∗ + a2z∗ + D1 + a1x0(ε) + a2x0(ε))τ1(y(t) − y∗)2

+
a1M2(ε)

2
(a1y∗ + a2z∗ + D1)(1 +

a1eδ1τ1

b1
)
∫ t

t−τ1

(x(s) − x∗)2ds

+
a2

1x0(ε)M2(ε)
2

(1 +
a1eδ1τ1

b1
)
∫ t

t−τ1

(y(s) − y∗)2ds

+
a1a2x0(ε)M2(ε)

2
(1 +

a1eδ1τ1

b1
)
∫ t

t−τ1

(z(s) − z∗)2ds.

Thus, when t ≥ T (ε) + τ̂, we have

|Γ(t)| := |Γ1(t)| + |Γ2(t)|

≤
a1

2
[M2(ε)(a1y∗ + a2z∗ + D1 + a1x0(ε) + a2x0(ε))

+ x0(ε)(b1e−δ1τ1 x0(ε) + b1e−δ1τ1y∗ + D2)]τ1(x(t) − x∗)2

+
a1

2
[
a1eδ1τ1

b1
M2(ε)(a1y∗ + a2z∗ + D1 + a1x0(ε) + a2x0(ε))

+
a1eδ1τ1

b1
x0(ε)(b1e−δ1τ1 x0(ε) + b1e−δ1τ1y∗ + D2)]τ1(y(t) − y∗)2

+
a1M2(ε)

2
(a1y∗ + a2z∗ + D1)(1 +

a1eδ1τ1

b1
)
∫ t

t−τ1

(x(s) − x∗)2ds

+
a1x0(ε)

2
(a1M2(ε) + D2)(1 +

a1eδ1τ1

b1
)
∫ t

t−τ1

(y(s) − y∗)2ds

+
a1x0(ε)

2
a2M2(ε)(1 +

a1eδ1τ1

b1
)
∫ t

t−τ1

(z(s) − z∗)2ds

+
a1x0(ε)

2
b1e−δ1τ1y∗(1 +

a1eδ1τ1

b1
)
∫ t

t−τ1

(x(s − τ1) − x∗)2ds

+
a1x0(ε)

2
b1e−δ1τ1 x0(ε)(1 +

a1eδ1τ1

b1
)
∫ t

t−τ1

(y(s − τ1) − y∗)2ds

=Ψ1(ε)τ1(x(t) − x∗)2 + Ψ2(ε)τ1(y(t) − y∗)2

+ Ψ3(ε)
∫ t

t−τ1

(x(s) − x∗)2ds + Ψ4(ε)
∫ t

t−τ1

(y(s) − y∗)2ds + Ψ5(ε)
∫ t

t−τ1

(z(s) − z∗)2ds

+ Ψ6(ε)
∫ t

t−τ1

(x(s − τ1) − x∗)2ds + Ψ7(ε)
∫ t

t−τ1

(y(s − τ1) − y∗)2ds.

When t ≥ T (ε) + τ̂, we have

U2(t) =Ψ3(ε)
∫ t

t−τ1

∫ t

θ

(x(s) − x∗)2dsdθ + Ψ4(ε)
∫ t

t−τ1

∫ t

θ

(y(s) − y∗)2dsdθ

+ Ψ5(ε)
∫ t

t−τ1

∫ t

θ

(z(s) − z∗)2dsdθ
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+ Ψ6(ε)[
∫ t

t−τ1

∫ t

θ

(x(s − τ1) − x∗)2dsdθ + τ1

∫ t

t−τ1

(x(s) − x∗)2ds]

+ Ψ7(ε)[
∫ t

t−τ1

∫ t

θ

(y(s − τ1) − y∗)2dsdθ + τ1

∫ t

t−τ1

(y(s) − y∗)2ds],

and

U̇2(t) =Ψ3(ε)[−
∫ t

t−τ1

(x(s) − x∗)2ds + τ1(x(t) − x∗)2]

+ Ψ4(ε)[−
∫ t

t−τ1

(y(s) − y∗)2ds + τ1(y(t) − y∗)2]

+ Ψ5(ε)[−
∫ t

t−τ1

(z(s) − z∗)2ds + τ1(z(t) − z∗)2]

+ Ψ6(ε)[−
∫ t

t−τ1

(x(s − τ1) − x∗)2ds + τ1(x(t) − x∗)2]

+ Ψ7(ε)[−
∫ t

t−τ1

(y(s − τ1) − y∗)2ds + τ1(y(t) − y∗)2].

Thus, when t ≥ T (ε) + τ̂, we have

U̇2(t) + Γ(t) ≤(Ψ1(ε) + Ψ3(ε) + Ψ6(ε))τ1(x(t) − x∗)2

+ (Ψ2(ε) + Ψ4(ε) + Ψ7(ε))τ1(y(t) − y∗)2

+ Ψ5(ε)τ1(z(t) − z∗)2,

and

U̇1(t) + U̇2(t) ≤ − [(a2ν3 + D1) − (Ψ1(ε) + Ψ3(ε) + Ψ6(ε))τ1](x(t) − x∗)2

− [
a2

1x∗eδ1τ1

b1
− (Ψ2(ε) + Ψ4(ε) + Ψ7(ε))τ1](y(t) − y∗)2 + Ψ5(ε)τ1(z(t) − z∗)2

− [
a1

b1
eδ1τ1(a2z∗ + D1) + a1x∗](x(t) − x∗)(y(t) − y∗)

− a2x∗(x(t) − x∗)(z(t) − z∗) −
a1

b1
eδ1τ1a2x∗(y(t) − y∗)(z(t) − z∗).

Let g(x) = x − 1 − ln(x). It is evident that g(x) ≥ 0(x > 0), and g(x) = 0 if and only if x = 1. For
t ≥ T (ε) + τ̂, we define the function

U3(t) =eδ1τ1y∗g(
y(t)
y∗

).

When t ≥ T (ε), we have

U̇3(t) =b1(x(t) − x∗)(y(t) − y∗) + Γ3(t) + Γ4(t),

where

Γ3(t) = −
b1x(t − τ1)

y(t)
(y(t) − y∗)

∫ t

t−τ1

ẏ(s)ds,
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Γ4(t) = − b1(y(t) − y∗)
∫ t

t−τ1

ẋ(s)ds.

When t ≥ T (ε) + τ̂, we have

|Γ3(t)| =
b1x(t − τ1)

y(t)
|y(t) − y∗|

×

∣∣∣∣∣∣
∫ t

t−τ1

[b1e−δ1τ1 x(t − τ1)(y(s − τ1) − y∗) + b1e−δ1τ1y∗(x(s − τ1) − x∗) + D2(y∗ − y(s))]ds

∣∣∣∣∣∣
≤

b1x0(ε)
ν2(ε)

∫ t

t−τ1

{b1e−δ1τ1 x0(ε)
2

[(y(t) − y∗)2 + (y(s − τ1) − y∗)2]

+
b1e−δ1τ1y∗

2
[(y(t) − y∗)2 + (x(s − τ1) − x∗)2] +

D2

2
[(y(t) − y∗)2 + (y(s) − y∗)2]

}
ds

=
b1x0(ε)
2ν2(ε)

(b1e−δ1τ1 x0(ε) + b1e−δ1τ1y∗ + D2)τ1(y(t) − y∗)2 +
b1x0(ε)D2

2ν2(ε)

∫ t

t−τ1

(y(s) − y∗)2ds

+
b2

1e−δ1τ1y∗x0(ε)
2ν2(ε)

∫ t

t−τ1

(x(s − τ1) − x∗)2ds +
b2

1e−δ1τ1 x2
0(ε)

2ν2(ε)

∫ t

t−τ1

(y(s − τ1) − y∗)2ds,

and

|Γ4(t)| =b1 |y(t) − y∗|

×

∣∣∣∣∣∣
∫ t

t−τ1

[(a1y∗ + a2z∗ + D1)(x∗ − x(s)) + a1x(t)(y∗ − y(s)) + a2x(t)(z∗ − z(s))]ds

∣∣∣∣∣∣
≤b1

∫ t

t−τ1

{a1y∗ + a2z∗ + D1

2
[(y(t) − y∗)2 + (x(s) − x∗)2]

+
a1x0(ε)

2
[(y(t) − y∗)2 + (y(s) − y∗)2] +

a2x0(ε)
2

[(y(t) − y∗)2 + (z(s) − z∗)2]
}
ds

=
b1

2
(a1y∗ + a2z∗ + D1 + a1x0(ε) + a2x0(ε))τ1(y(t) − y∗)2

+
b1

2
(a1y∗ + a2z∗ + D1)

∫ t

t−τ1

(x(s) − x∗)2ds +
a1x0(ε)b1

2

∫ t

t−τ1

(y(s) − y∗)2ds

+
a2x0(ε)b1

2

∫ t

t−τ1

(z(s) − z∗)2ds.

Thus, when t ≥ T (ε) + τ̂, we have

|Γ̂(t)| :=|Γ3(t)| + |Γ4(t)|

≤
b1

2
[
x0(ε)
ν2(ε)

(b1e−δ1τ1 x0(ε) + b1e−δ1τ1y∗ + D2) + a1y∗ + a2z∗ + D1 + a1x0(ε) + a2x0(ε)]

τ1(y(t) − y∗)2 +
b1

2
(a1y∗ + a2z∗ + D1)

∫ t

t−τ1

(x(s) − x∗)2ds

+
b1x0(ε)

2
(

D2

ν2(ε)
+ a1)

∫ t

t−τ1

(y(s) − y∗)2ds +
a2x0(ε)b1

2

∫ t

t−τ1

(z(s) − z∗)2ds
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+
b2

1e−δ1τ1y∗x0(ε)
2ν2(ε)

∫ t

t−τ1

(x(s − τ1) − x∗)2ds +
b2

1e−δ1τ1 x2
0(ε)

2ν2(ε)

∫ t

t−τ1

(y(s − τ1) − y∗)2ds

=Ψ8(ε)τ1(y(t) − y∗)2 + Ψ9(ε)
∫ t

t−τ1

(x(s) − x∗)2ds + Ψ10(ε)
∫ t

t−τ1

(y(s) − y∗)2ds

+ Ψ11(ε)
∫ t

t−τ1

(z(s) − z∗)2ds + Ψ12(ε)
∫ t

t−τ1

(x(s − τ1) − x∗)2ds

+ Ψ13(ε)
∫ t

t−τ1

(y(s − τ1) − y∗)2ds.

When t ≥ T (ε) + τ̂, we have

U4(t) =Ψ9(ε)
∫ t

t−τ1

∫ t

θ

(x(s) − x∗)2dsdθ + Ψ10(ε)
∫ t

t−τ1

∫ t

θ

(y(s) − y∗)2dsdθ

+ Ψ11(ε)
∫ t

t−τ1

∫ t

θ

(z(s) − z∗)2dsdθ

+ Ψ12(ε)[
∫ t

t−τ1

∫ t

θ

(x(s − τ1) − x∗)2dsdθ + τ1

∫ t

t−τ1

(x(s) − x∗)2ds]

+ Ψ13(ε)[
∫ t

t−τ1

∫ t

θ

(y(s − τ1) − y∗)2dsdθ + τ1

∫ t

t−τ1

(y(s) − y∗)2ds],

and

U̇4(t) =Ψ9(ε)[−
∫ t

t−τ1

(x(s) − x∗)2ds + τ1(x(t) − x∗)2]

+ Ψ10(ε)[−
∫ t

t−τ1

(y(s) − y∗)2ds + τ1(y(t) − y∗)2]

+ Ψ11(ε)[−
∫ t

t−τ1

(z(s) − z∗)2ds + τ1(z(t) − z∗)2]

+ Ψ12(ε)[−
∫ t

t−τ1

(x(s − τ1) − x∗)2ds + τ1(x(t) − x∗)2]

+ Ψ13(ε)[−
∫ t

t−τ1

(y(s − τ1) − y∗)2ds + τ1(y(t) − y∗)2].

Thus, when t ≥ T (ε) + τ̂, we have

U̇4(t) + Γ̂(t) ≤(Ψ9(ε) + Ψ12(ε))τ1(x(t) − x∗)2 + (Ψ8(ε) + Ψ10(ε) + Ψ13(ε))τ1(y(t) − y∗)2

+ Ψ11(ε)τ1(z(t) − z∗)2,

and

U̇3(t) + U̇4(t) ≤(Ψ9(ε) + Ψ12(ε))τ1(x(t) − x∗)2 + (Ψ8(ε) + Ψ10(ε) + Ψ13(ε))τ1(y(t) − y∗)2

+ Ψ11(ε)τ1(z(t) − z∗)2 + b1(x(t) − x∗)(y(t) − y∗).
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We define

U5(t) =
1
2

eδ2τ2(z(t) − z∗)2.

When t ≥ T (ε) + τ̂, we have

U̇5(t) =eδ2τ2(z(t) − z∗)ż(t)
= − eδ2τ2(D3 + c2x(t))(z(t) − z∗)2 − eδ2τ2c2z∗(x(t) − x∗)(z(t) − z∗)

+ c1(y(t) − y∗)(z(t) − z∗) + Γ5(t),

where

Γ5(t) = −c1(z(t) − z∗)
∫ t

t−τ2

ẏ(s)ds,

and

|Γ5(t)| =c1|(z(t) − z∗)|

×

∣∣∣∣∣∣
∫ t

t−τ2

[b1e−δ1τ1 x(t − τ1)(y(s − τ1) − y∗) + b1e−δ1τ1y∗(x(s − τ1) − x∗) + D2(y∗ − y(s))]ds

∣∣∣∣∣∣
≤

c1b1e−δ1τ1 x0(ε)
2

∫ t

t−τ2

[(z(t) − z∗)2 + (y(s − τ1) − y∗)2]ds

+
c1b1e−δ1τ1y∗

2

∫ t

t−τ2

[(z(t) − z∗)2 + (x(s − τ1) − x∗)2]ds

+
c1D2

2

∫ t

t−τ2

[(z(t) − z∗)2 + (y(s) − y∗)2]ds

=
c1

2
(b1e−δ1τ1 x0(ε) + b1e−δ1τ1y∗ + D2)τ2(z(t) − z∗)2

+
c1b1e−δ1τ1 x0(ε)

2

∫ t

t−τ2

(y(s − τ1) − y∗)2ds

+
c1b1e−δ1τ1y∗

2

∫ t

t−τ2

(x(s − τ1) − x∗)2ds +
c1D1

2

∫ t

t−τ2

(y(s) − y∗)2ds

=Ψ14(ε)τ2(z(t) − z∗)2 + Ψ15(ε)
∫ t

t−τ2

(y(s) − y∗)2ds

+ Ψ16(ε)
∫ t

t−τ2

(x(s − τ1) − x∗)2ds + Ψ17(ε)
∫ t

t−τ2

(y(s − τ1) − y∗)2ds.

When t ≥ T (ε) + τ̂, we define

U6(t) =Ψ15(ε)
∫ t

t−τ2

∫ t

θ

(y(s) − y∗)2dsdθ

+ Ψ16(ε)[
∫ t

t−τ2

∫ t

θ

(x(s − τ1) − x∗)2dsdθ + τ2

∫ t

t−τ2

(x(s) − x∗)2ds]
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+ Ψ17(ε)[
∫ t

t−τ2

∫ t

θ

(y(s − τ1) − y∗)2dsdθ + τ2

∫ t

t−τ2

(y(s) − y∗)2ds],

U̇6(t) =Ψ15(ε)[−
∫ t

t−τ2

(y(s) − y∗)2ds + τ2(y(t) − y∗)2]

+ Ψ16(ε)[−
∫ t

t−τ2

(x(s − τ1) − x∗)2ds + τ2(x(t) − x∗)2]

+ Ψ17(ε)[−
∫ t

t−τ2

(y(s − τ1) − y∗)2ds + τ2(y(t) − y∗)2],

and

|Γ5(t)| + U̇6(t) ≤Ψ16(ε)τ2(x(t) − x∗)2 + (Ψ15(ε) + Ψ17(ε))τ2(y(t) − y∗)2

+ Ψ14(ε)τ2(z(t) − z∗)2.

Thus, when t ≥ T (ε) + τ̂, we have

U̇5(t) + U̇6(t) ≤Ψ16(ε)τ2(x(t) − x∗)2 + (Ψ15(ε) + Ψ17(ε))τ2(y(t) − y∗)2

− eδ2τ2(D3 + c2ν1(ε) − Ψ14(ε)τ2)(z(t) − z∗)2

− eδ2τ2c2z∗(x(t) − x∗)(z(t) − z∗) + c1(y(t) − y∗)(z(t) − z∗).

Finally, we define

U(t) = (U1(t) + U2(t)) + θ1(U3(t) + U4(t)) + θ2(U5(t) + U6(t)).

When t ≥ T (ε) + τ̂, we define

U̇(t) =(U̇1(t) + U̇2(t)) + θ1(U̇3(t) + U̇4(t)) + θ2(U̇5(t) + U̇6(t))
≤ − A11(ε)(x(t) − x∗)2 − A22(ε)(y(t) − y∗)2 − A33(ε)(z(t) − z∗)2

+ 2A12(ε)|(x(t) − x∗)||(y(t) − y∗)| + 2A13(ε)|(x(t) − x∗)||(z(t) − z∗)|
+ 2A23(ε)|(y(t) − y∗)||(z(t) − z∗)|

= − (|(x(t) − x∗)|, |(y(t) − y∗)|, |(z(t) − z∗)|)J(ε)(|(x(t) − x∗)|, |(y(t) − y∗)|, |(z(t) − z∗)|)T .

Since J(ε) is positive definite, by applying the Barbalat’s lemma [49], we have

lim
t→∞
|x(t) − x∗| = lim

t→∞
|y(t) − y∗| = lim

t→∞
|z(t) − z∗| = 0.

Therefore, the positive equilibrium E∗ is globally attractive. �

Remark 4.1. Suppose that τ1 = τ2 = 0 and R0 > 1. If we choose θ1 = a1D2+a1D1
b2

1
and θ2 = a1a2 x∗

b1c1
,

then matrix J(0) in our Theorem 4.2 becomes J, where J can be found in the proof of Theorem 3.1 in
reference [35]. Therefore, our Theorem 4.2 extends Theorem 3.1 in reference [35].
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5. Numerical simulations

In this section, we run simulations in two parts.
Part I. In this part, we give some numerical examples to summarize the applications of the main
results. These include the global stability of the boundary equilibrium E0, the local stability, and
global attractivity of the positive equilibrium E∗, and the existence of a Hopf bifurcation.

First, we determine the values of the parameters a1, a2, D1, and D3 to be a1 = 1, a2 = 2, D1 = 1.01,
and D3 = 1.02.

Then, we choose b1 = 5, c1 = 5, c2 = 15, D2 = 8.01, δ1 = 2, τ1 = 2, δ2 = 2, and τ2 = 2. These
values satisfy the condition R0 = 0.0113 < 1. According to Theorem 2.1 and Figure 1, the boundary
equilibrium E0(0.9901, 0, 0) is globally asymptotically stable.
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Figure 1. The solution curves and phase trajectory of model (2.1) for R0 < 1 with different
initial values. Here, the boundary equilibrium E0(0.9901, 0, 0) is globally asymptotically
stable.

Next, we choose b1 = 5, c1 = 15, c2 = 5, D2 = 4.01, and δ2 = 0.1. Under these parameters, it can
be checked that Eq (3.3) has only one positive real root. Based on Theorem 3.1, the picture of S 0(τ2)
can be drawn clearly. It follows from Figure 2 that there exists 2 roots denoted by τ0

2 = 1.5704 and
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τ1
2 = 17.6442. Then we have ω(τ0

2) = 0.6661 and ω(τ1
2) = 0.1547, and the transversality condition is

determined by the sign of S
′

0(τ2).
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2

-20

-15

-10
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0
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15

S
0

2

1

2

0

Figure 2. The plot of the function (τ2, S 0(τ2)).

Additionally, when τ2 ∈
[
0, τ0

2

)
, the positive equilibrium E∗ is locally asymptotically stable.

For example (see Figure 3), when τ2 = 1 ∈
[
0, τ0

2

)
, we have the positive equilibrium E∗ =

(0.8020, 0.0370, 0.0999). As the time delay increases, a Hopf bifurcation occurs at τ2 = τ0
2, and

the positive equilibrium E∗ loses stability for τ2 ∈ (τ0
2, τ

1
2). For example (see Figure 4), when

τ2 = 14 ∈ (τ0
2, τ

1
2). As τ2 continues to increase, when τ2 ∈ (τ1

2,+∞) ∩ I, the positive equilibrium
E∗ is locally asymptotically stable. For example (see Figure 5), when τ2 = 17.79 ∈ (τ1

2,+∞) ∩ I, we
have the positive equilibrium E∗ = (0.8020, 0.1179, 0.0595).
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Figure 3. The solution curves and phase trajectory of model (2.1) for R0 > 1 with
the initial value (0.5, 0.7, 0.5) and τ2 = 1 < τ0

2. Here, the positive equilibrium
E∗(0.8020, 0.0370, 0.0999) is locally asymptotically stable.
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Figure 4. The solution curves and phase trajectory of model (2.1) for R0 > 1 with the initial
value (0.5, 0.7, 0.5) and τ2 = 14 ∈ (τ0

2, τ
1
2). Here, the positive equilibrium E∗ is unstable and

periodic oscillations occur.
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Figure 5. The solution curves and phase trajectory of model (2.1) for R0 > 1 with the
initial value (0.5, 0.7, 0.5) and τ2 = 17.79 ∈ (τ1

2,+∞) ∩ I. Here, the positive equilibrium
E∗(0.8020, 0.1179, 0.0595) is locally asymptotically stable.
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Next, we choose b1 = 16.1, c1 = 3.1, c2 = 14.1, D2 = 7.1, and δ2 = 0.1. Under these parameters, it
can be checked that Eq (3.3) has two positive real roots. The picture of S 0(τ2) follows from Figure 6,
and there exist 2 roots denoted by τ0

22 = 0.6617 and τ0
21 = 1.2539. Then we have ω(τ0

22) = 2.0852 and
ω(τ0

21) = 1.6120.
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Figure 6. The plot of the function (τ2, S 0(τ2)).

Additionally, when τ2 ∈
[
0, τ0

22

)
, the positive equilibrium E∗ is locally asymptotically stable.

For example (see Figure 7), when τ2 = 0.5 ∈
[
0, τ0

22

)
, we have the positive equilibrium E∗ =

(0.4410, 0.6930, 0.2823). As the time delay increases, a Hopf bifurcation occurs at τ2 = τ0
22, and

the positive equilibrium E∗ loses stability for τ2 ∈ (τ0
22, τ

0
21). For example (see Figure 8), when

τ2 = 1.2 ∈ (τ0
22, τ

0
21). As τ2 continues to increase, when τ2 ∈ (τ0

21,+∞) ∩ I, the positive equilibrium E∗

is locally asymptotically stable. For example (see Figure 9), when τ2 = 1.35 ∈ (τ0
21,+∞) ∩ I, we have

the positive equilibrium E∗ = (0.4410, 0.7193, 0.2692).
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Figure 7. The solution curves and phase trajectory of model (2.1) for R0 > 1 with
the initial value (0.5, 0.7, 0.5) and τ2 = 0.5 < τ0

22. Here, the positive equilibrium
E∗(0.4410, 0.6930, 0.2823) is locally asymptotically stable.
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Figure 8. The solution curves and phase trajectory of model (2.1) for R0 > 1 with the initial
value (0.5, 0.7, 0.5) and τ2 = 1.2 ∈ (τ0

22, τ
0
21). Here, the positive equilibrium E∗ is unstable

and periodic oscillations occur.
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Figure 9. The solution curves and phase trajectory of model (2.1) for R0 > 1 with the
initial value (0.5, 0.7, 0.5) and τ2 = 1.35 ∈ (τ0

21,+∞) ∩ I. Here, the positive equilibrium
E∗(0.4410, 0.7193, 0.2692) is locally asymptotically stable.
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Lastly, based on reference [48], Theorem 4.2 gives some sufficient conditions for the global
attractivity of the positive equilibrium E∗ in model (2.1) with time delays. For example (see Figure 10),
let us choose the parameter values a1 = 0.8890, a2 = 0.0970, b1 = 37.2064, c1 = 6.1465,
c2 = 1.0287, D1 = 1.0300, D2 = 1.0100, D3 = 19.9259, δ1 = 1, τ1 = 3.3007 × 10−6, δ2 = 1, and
τ2 = 4.0184 × 10−6. Then we have R0 = 36.4839 > 1, and model (2.1) has a positive equilibrium
E∗ = (0.0271, 40.2768, 0.0011). By selecting θ1 = 0.9601 and θ2 = 0.0018, it can be easily verified
that J(0) is positive definite. Therefore, the conditions of Theorem 4.2 are satisfied, and the positive
equilibrium E∗ is globally attractive. Without changing any other parameters, when we increase τ1

to τ1 = 6.3000 × 10−6 and perform calculations, it does not satisfy the conditions of Theorem 4.2.
However, through numerical simulations, it is observed that under the set of parameters, the positive
equilibrium E∗ is globally attractive. Theorem 4.2 only provides a sufficient condition for the global
attractivity of the positive equilibrium E∗ and is somewhat conservative.
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Figure 10. The solution curves and phase trajectory of model (2.1) for R0 > 1 with different
initial values and τ1 = 3.3007 × 10−6, τ2 = 4.0184 × 10−6. Here, the positive equilibrium
E∗(0.0271, 40.2768, 0.0011) is globally attractive.

Furthermore, we choose the parameter values a1 = 1.8883, a2 = 0.6644, b1 = 40.0752, c1 =

6.1465 × 10−4, c2 = 98.1660, D1 = 1.0300, D2 = 1.0100, D3 = 14.1512, δ1 = 1, δ2 = 1, θ1 =
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0.2429, and θ2 = 7.4998 × 10−4. When τ1 = 0, for any τ2 > 0, the positive equilibrium E∗ is locally
asymptotically stable. Using a genetic algorithm and MATLAB simulation, we determine the global
attractivity region of model (2.1) with the specified parameter values, as shown by the blue dashed
region in Figure 11(a). Further, we can observe that under the parameter values, τ2 has a relatively
small impact on the global attractivity compared to τ1. To ensure that the equilibrium is globally
attractive, we can observe from Figure 11 that the range of variation in τ1 is much smaller compared
to the range of variation in τ2. Therefore, even small changes in τ1 can lead to instability of the
equilibrium, while changes in τ2 seem to have a minor impact. From a biological perspective, the
time delay (τ1) that the organism (Sphingomonas sp.) stores the nutrient (MCs) is more significant
than the time delay (τ2) it takes for Sphingomonas sp. to produce degrading enzymes for the sustained
degradation of MCs. When τ1 = τ2 = τ, within the range τ ∈ [0, 3.65), the positive equilibrium E∗ is
locally asymptotically stable, as represented by the red line in Figure 11(b). Therefore, the red dashed
line falling within the blue region indicates that the positive equilibrium E∗ is globally asymptotically
stable.
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Figure 11. The global attractivity region of the positive equilibrium E∗ with respect to τ1

and τ2.

Part II. In this part, based on the MCs degradation experiments by Sphingopyxis sp. USTB-05 and
enzymes of USTB-05, as described in reference [43], we modify model (1.2) into the following two
models: {

ẋ1(t) = −a12x1(t)x2(t) − d1x1(t),
ẋ2(t) = a21e−δ1τ1 x1(t − τ1)x2(t − τ1) − d2x2(t),

(5.1)

{
ẋ1(t) = −a13x1(t)x3(t) − d1x1(t),
ẋ3(t) = −a31x1(t)x3(t) − d3x3(t).

(5.2)

The biological meanings of the parameters in models (5.1) and (5.2) are provided in Tables 2–4. The
experimental data for Figures 2 and 4 in reference [43] are provided in Table 5. However, since
reference [43] has not provided the accurate experimental data for 48 hours in Table 5(a) and 10 hours
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in Table 5(b), and from a mathematical point of view, it is unlikely that the experimental values at these
two-time points are zero. Therefore, for simulations, we only use the first four experimental data sets
as the parameter values.

Table 2. Parameter estimation values for model (5.1) when τ1 > 0.
Parameters MC-RR MC-LR MC-YR Unit Descriptions Source
a12 1.44 × 10−4 3.53 × 10−4 1.58 × 10−3 L × mg−1 × h−1 the consumption rate of MCs LSM
d1 0.006 0.006 0.006 h−1 the death rate of MCs LSM
a21 4.82 × 10−3 7.98 × 10−3 3.00 × 10−3 L × mg−1 × h−1 the maximum growth rate of

USTB-05
LSM

d2 4.25 × 10−6 2.72 × 10−5 2.00 × 10−6 h−1 the death rate of USTB-05 LSM
τ1 13.60 18.44 14.61 h−1 the time that the organism

(USTB-05) stores the nutrient
(MCs)

LSM

Table 3. Parameter estimation values for model (5.1) when τ1 = 0.
Parameters MC-RR MC-LR MC-YR Unit Descriptions Source
a12 1.72 × 10−4 4.84 × 10−4 1.55 × 10−3 L × mg−1 × h−1 the consumption rate of MCs LSM
d1 0.006 0.006 0.006 h−1 the death rate of MCs LSM
a21 1.65 × 10−3 2.62 × 10−3 2.76 × 10−3 L × mg−1 × h−1 the maximum growth rate of

USTB-05
LSM

d2 2.00 × 10−7 2.68 × 10−5 4.87 × 10−6 h−1 the death rate of USTB-05 LSM

Table 4. Parameter estimation values for model (5.2).
Parameters MC-RR MC-LR MC-YR Unit Descriptions Source
a13 2.23 × 10−3 2.66 × 10−3 2.81 × 10−3 L × mg−1 × h−1 the degradation rate of MCs LSM
d1 5.75 × 10−3 5.77 × 10−3 5.72 × 10−3 h−1 the death rate of MCs LSM
a31 2.13 × 10−8 7.07 × 10−9 8.24 × 10−8 L × mg−1 × h−1 the consumption rate of

USTB-05 enzymes
LSM

d3 3.73 × 10−7 7.04 × 10−8 7.82 × 10−7 h−1 the death rate of USTB-05
enzymes

LSM

Table 5. Experimental data.

(a) USTB-05 degrade MCs.

time(h) 0 12 24 36 48
MC-RR(mg/L) 79.5 69.9 54.7 29.9 0
MC-LR(mg/L) 43.6 34.8 24.6 10.0 0
MC-YR(mg/L) 19.5 14.0 8.9 4.7 0

(b) Enzymes of USTB-05 degrade MCs.

time(h) 0 1.5 3 5 10
MC-RR(mg/L) 28.4 24.1 15.0 5.7 0
MC-LR(mg/L) 19.5 13.0 9.0 4.6 0
MC-YR(mg/L) 14.8 9.9 6.0 3.5 0

Firstly, according to the experimental procedure described in reference [43], we set the initial
concentration of USTB-05 to be 10ml/L and the initial concentration of enzymes of USTB-05 to be
100ml/L. Furthermore, using the experimental data of Table 5 and the least squares method (LSM),
the remaining parameter values in models (5.1) and (5.2) are determined as shown in Tables 2–4. Since
δ1 is related to d2, for simplicity let us assume δ1 = d2. Based on the parameter values provided in
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Tables 2–5, we have Figures 12 and 13. These figures demonstrate that under the condition where
MCs are the sole carbon and nitrogen source, models (5.1) and (5.2) fit well with the MCs degradation
experiments by USTB-05 and enzymes of USTB-05.
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Figure 12. Experimental data and fitting curve of USTB-05 degradation of MCs. The green
dots and pink dots in the figure represent the fitted data values at 48 hours in model (5.1)
when τ1 > 0 and τ1 = 0, respectively.
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Figure 13. Experimental data and fitting curve of enzymes of USTB-05 degradation of MCs.

Furthermore, Table 6 provides the fitted values of MCs in Figures 12 and 13. We use mean squared
error (MSE) and root mean squared error (RMSE) to evaluate the reliability of the data fitting for
models (5.1) and (5.2) (for example, see [50, 51]). For convenience, let us introduce the definitions of
MSE and RMSE as follows:

MS E =

n∑
i=1

(yi − y
′

i)
2

n
, RMS E =

√√
n∑

i=1

(yi − y′i)2

n
.

Here, yi and y′i represent the experimental data and fitted data, respectively. The positive integer n
represents the number of fitted data points. Using the data from Table 6, we obtain Table 7. Since the
initial values of the experimental data in Table 5 and fitted data are consistent, they are not included
in the evaluation. According to Table 7, we can observe that for model (5.1), the fitted results of
model (5.1) with time delay are always better than those of model (5.1) without time delay. From a
biological point of view, model (5.1) with time delay is more reasonable.
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Table 6. Fitted data.

(a) USTB-05 degrade MCs.

time(h) 12 24 36 48

τ1 > 0
MC-RR(mg/L) 69.89 54.71 29.89 6.93
MC-LR(mg/L) 35.61 24.09 10.14 1.74
MC-YR(mg/L) 14.05 8.83 4.74 2.18

τ1 = 0
MC-RR(mg/L) 70.48 54.37 30.01 10.99
MC-LR(mg/L) 36.02 23.52 10.62 3.57
MC-YR(mg/L) 14.09 8.78 4.78 2.37

(b) Enzymes of USTB-05 degrade MCs.

time(h) 1.5 3 5 10
MC-RR(mg/L) 20.14 14.28 9.03 2.87
MC-LR(mg/L) 12.97 8.63 5.01 1.29
MC-YR(mg/L) 9.63 6.26 3.53 0.84

Table 7. MSE and RMSE values.

(a) USTB-05 degrade MCs.

Data type MC-RR MC-LR MC-YR

τ1 > 0
MSE 0 0.311 0.003
RMSE 0.009 0.558 0.055

τ1 = 0
MSE 0.152 1.013 0.009
RMSE 0.390 1.007 0.097

(b) Enzymes of USTB-05 degrade MCs.

Data type MC-RR MC-LR MC-YR
MSE 9.053 0.101 0.067
RMSE 3.009 0.317 0.259

Based on the simulation results for the experiments described in reference [43], it can be observed
that when the degradation of MCs by USTB-05 is at 48 hours, the remaining amounts of MC-RR, MC-
LR, and MC-YR are approximately 6.93mg/L, 1.74mg/L, and 2.18mg/L, respectively. Furthermore,
USTB-05 degrades MC-RR, MC-LR, and MC-YR to 1% of their initial values at approximately 57.5
hours, 54.2 hours, and 78.6 hours, respectively.

6. Conclusions

This paper is mainly based on references [34, 40]. We proposed and analyzed the time-delayed
model (2.1). Model (2.1) describes the biodegradation process of MCs by Sphingomonas sp. and its
degrading enzyme. Theorem 2.1 provides the condition (R0 < 1) for global asymptotic stability of the
boundary equilibrium E0 in model (2.1). It implies that, in the chemostat, Sphingomonas sp. cannot
sustainably degrade MCs, when R0 < 1.

Theorems 3.1–3.4 provide some conditions for local asymptotic stability of the positive equilibrium
E∗ and the existence of Hopf bifurcation in model (2.1). According to Theorem 3.1 and the results of
simulations, when τ2 < τ0

2, the positive equilibrium E∗ is locally asymptotically stable. When τ2 ∈

(τ0
2, τ

m
2 ), the positive equilibrium E∗ may becomes unstable. When τ2 > τ

m
2 , the positive equilibrium E∗

becomes stable again. This indicates that time delay τ2 has a significant impact on the stability of the
positive equilibrium E∗. From a biological point of view, it means time delay (τ2) in the production of
degrading enzymes by Sphingomonas sp. makes it more difficult to stably degrade MCs.

Theorem 4.1 provides the condition (R0 < 1) for uniform persistence in model (2.1). From a
biological point of view, under some conditions, the biodegradation of MCs is sustainable. Time
delays τ1 and τ2 do not affect the sustained degradation of MCs. Theorem 4.2 provides some
sufficient conditions for global attractivity of the positive equilibrium E∗ in model (2.1) by constructing
appropriate Lyapunov functionals and analyzing inequalities. Considering numerical simulations, from
a biological perspective, the time delay (τ1) that the organism (Sphingomonas sp.) stores the nutrient
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(MCs) is more significant than the time delay (τ2) it takes for Sphingomonas sp. to produce degrading
enzymes for the sustained degradation of MCs.

Finally, based on experimental data from reference [43], a least squares fitting is performed, and
the fitting results demonstrate the rationality of models (5.1) and (5.2) to some extent. Furthermore, as
future work to make the model (2.1) more biologically plausible, the addition of some diffusion terms
may have significant theoretical and practical implications.
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Mathématiques Pures et Appliquées, 4 (1959), 267–270.

50. S. A. DeLurgio, Forecasting principles and applications, Boston: Iwin McGraw-Hill, 1998.

51. C. D. Lewis, Industrial and business forecasting methods: a practical guide to exponential
smoothing and curve fitting, Boston: Butterworth Scientific, 1982.

c© 2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 7, 18440–18474.

https://dx.doi.org/https://doi.org/10.3390/math10060975
https://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaties
	Local stability of the positive equilibrium and Hopf bifurcation analysis
	Global attractivity of the positive equilibrium
	Numerical simulations
	Conclusions

