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1. Introduction and main results

Recently, El-Nouty and Journé [3] introduced the process S H,K = {S H,K
t , t ≥ 0} on the probability

space (Ω, F, P) with indices H ∈ (0, 1) and K ∈ (0, 1], named the sub-bifractional Brownian motion
(sbBm) and defined as follows:

S H,K
t =

1
2(2−K)/2 (BH,K

t + BH,K
−t ), (1.1)

where {BH,K
t , t ∈ R} is a bifractional Brownian motion (bBm) with indices H ∈ (0, 1) and K ∈ (0, 1],

namely,

BH,K
t =

{
BH,K

t (1), if t ≥ 0;
BH,K
−t (2), if t < 0.

(1.2)

and BH,K
t (1) and BH,K

−t (2) are independent bifractional Brownian motions in [0,+∞) with indices
H∈ (0, 1) and K∈ (0, 1], where bifractional Brownian motion {BH,K

t (1), t ≥ 0} is a centered Gaussian
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process, starting from zero, with covariance

E[BH,K
t (1)BH,K

s (1)] =
1

2K

[
(t2H + s2H)K − |t − s|2HK

]
,

with H ∈ (0, 1) and K ∈ (0, 1].
Clearly, the sbBm is a centered Gaussian process such that S H,K

0 = 0, with probability 1, and
Var(S H,K

t ) = (2K − 22HK−1)t2HK . Since (2H − 1)K − 1 < K − 1 ≤ 0, it follows that 2HK − 1 < K. We can
easily verify that S H,K is self-similar with index HK. When K = 1, S H,1 is the sub-fractional Brownian
motion (sfBm). For more on sub-fractional Brownian motion, we can see Kuang and Xie [15, 16],
Kuang and Liu [13,14], Xie and Kuang [21] and so on. Straightforward computations show that for all
s, t ≥ 0,

E(S H,K
t S H,K

s ) = (t2H + s2H)K −
1
2

(t + s)2HK −
1
2
|t − s|2HK (1.3)

and
C1|t − s|2HK ≤ E[(S H,K

t − S H,K
s )2] ≤ C2|t − s|2HK , (1.4)

where
C1 = min{2K − 1, 2K − 22HK−1}, C2 = max{1, 2 − 22HK−1}. (1.5)

(See El-Nouty and Journé [3]). Kuang [11] investigated the collision local time of two independent
sub-bifractional Brownian motions. Kuang and Li [12] obtained Berry-Esséen bounds and proved the
almost sure central limit theorem for the quadratic variation of the sub-bifractional Brownian motion.

The self-intersection local time of fractional Brownian motion (fBm) BH = {BH
t , t ≥ 0} was first

studied in Rosen [17], and formally defined by

αt(y) :=
∫

D
δ(BH

s − BH
r − y)drds,

where D = {(r, s) : 0 < r < s < t} and δ is the Dirac delta function. It was further investigated in Hu [4]
and Hu and Nualart [5]. Jiang and Wang [8] considered self-intersection local time and collision local
time of bifractional Brownian motion. Chen et al. [2] studied renormalized self-intersection local time
of bifractional Brownian motion.

The context of derivative for the self-intersection local time is organized as follows. Rosen [18] first
studied the Brownian motion case, and Yan et al. [22] extended this to fractional Brownian motion.
On this basis, Jung and Markowsky [9, 10] considered some in-depth results for derivative of the self-
intersection local time of fractional Brownian motion. Jaramillo and Nualart [6, 7] studied asymptotic
properties of the derivative of self-intersection local time of fractional Brownian motion and functional
limit theorem for the self-intersection local time of the fractional Brownian motion, respectively. Yan
and Yu [23] considered the multidimensional fractional Brownian motion case. Yu [24] investigated
higher order derivative of self-intersection local time for fBm. Shi [19] investigated fractional
smoothness of derivative of self-intersection local time for bi-fractional Brownian motion.

Moreover, many authors have proposed to use more general self-similar Gaussian processes and
random fields as stochastic models, and such applications have raised many interesting theoretical
questions about self-similar Gaussian processes and fields in general. Therefore, some generalizations
of the fBm has been introduced. However, contrast to the extensive studies on fractional Brownian
motion, there has been little systematic investigation on other self-similar Gaussian processes. The
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main reason for this is the complexity of dependence structures for self-similar Gaussian processes
which do not have stationary increments. Thus, it seems interesting to study some extensions of
fractional Brownian motion such as sbfBm.

In this paper, we will study the existence of the self-intersection local time and its derivative for the
sub-bifractional Brownian motion S H,K = {S H,K

t , t ≥ 0}. They are defined by, respectively,

αt(y) :=
∫

D
δ(S H,K

s − S H,K
r − y)drds (1.6)

and
α
′

t(y) := −
∫

D
δ
′

(S H,K
s − S H,K

r − y)drds, (1.7)

where D = {(r, s) : 0 < r < s < t}.
Set

pε(x) :=
1
√

2πε
e−

x2
2ε =

1
2π

∫
R

eipxe−
εp2

2 dp (1.8)

and
p
′

ε(x) :=
dpε(x)

dx
=
−x
√

2πε3
e−

x2
2ε =

i
2π

∫
R

peipxe−
εp2

2 dp. (1.9)

Now we state our main results as follows.

Theorem 1.1. Existence of self-intersection local time.
Define:

αt,ε(y) :=
∫ t

0

∫ s

0
pε(S H,K

s − S H,K
r − y)drds, ∀y ∈ R, (1.10)

for H ∈ (0, 1) and K ∈ (0, 1]. Then αt,ε(y) converges in L2(Ω, P) as ε → 0, we denote the limit by αt(y).

Theorem 1.2. Existence of the derivative of self-intersection local time.
Define:

α
′

t,ε(y) := −
∫ t

0

∫ s

0
p
′

ε(S
H,K
s − S H,K

r − y)drds, ∀y ∈ R. (1.11)

If H ∈ (0, 1),K ∈ (0, 1], and 0 < 2HK < 1, then α
′

t,ε(y) converges in L2(Ω, P) as ε → 0, we denote the
limit by α

′

t(y).

Theorem 1.3. Let n ≥ 1 be an arbitrary but fixed integer, t, t̃ ∈ [0,T ] and as 0 < 2HK < 1.
(1) For any τ ∈

(
0,min

{
1, 1

HK − 2
})

, there exists a positive constant C, such that

E
[∣∣∣α′t(y1) − α

′

t(y2)
∣∣∣n] ≤ C|y1 − y2|

nτ, (1.12)

where y1, y2 ∈ R.
(2) For any γ < 1 − 2HK, there exists a positive constant C, such that

E
[∣∣∣α′t(y) − α

′

t̃(y)
∣∣∣n] ≤ C|t − t̃|nγ, (1.13)

where y ∈ R.

In what follows, we will use m to denote unspecified positive and finite constants whose value may
be different in each occurrence.
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2. Some useful lemmas

In this section, we give some useful lemmas in order to prove the Theorems 1.1–1.3.

Lemma 2.1. For all constants 0 < a < b, S H,K is strongly locally ϕ-nondeterministic on I = [a, b]
with ϕ(r) = r2HK . That is, there exist positive constants c1 and r0 such that for all t ∈ I and all 0 < r ≤
min{t, r0},

Var{S H,K
t |S

H,K
s : s ∈ I, r ≤ |s − t| ≤ r0} ≥ c1ϕ(r). (2.1)

Proof. See Kuang [11]. �

From the local nondeterminism (see Berman [1], Xiao [20]), we have the following property: if
0 ≤ t1 < t2 < · · · < tn < T , then there is a constant m > 0 such that

Var

 n∑
i=2

ui(S H,K
ti − S H,K

ti−1
)

 ≥ m
n∑

i=2

u2
i |ti − ti−1|

2HK , (2.2)

for any ui ∈ R, i = 2, 3, . . . , n.

Lemma 2.2. Let
λ := Var

(
S H,K

s − S H,K
r

)
, ρ := Var

(
S H,K

s′
− S H,K

r′

)
,

and
µ := Cov

(
S H,K

s − S H,K
r , S H,K

s′
− S H,K

r′

)
.

Case 2.1. If (r, s, r
′

, s
′

) ∈ D1 := {(r, s, r
′

, s
′

)|0 < r < r
′

< s < s
′

< t}, denoting a = r
′

− r, b = s − r
′

, c =

s
′

− s, then we have
(1)

C1(a + b)2HK ≤ λ = λ1 ≤ C2(a + b)2HK ,C1(b + c)2HK ≤ ρ = ρ1 ≤ C2(b + c)2HK , (2.3)

where C1 and C2 are given by (1.5).
(2) There exists a positive constant m, such that

λ1ρ1 − µ
2
1 ≥ m

[
(a + b)2HKc2HK + (b + c)2HKa2HK

]
, (2.4)

where µ = µ1.

(3) When 0 < 2HK < 1, there exists a positive constant m, such that

µ = µ1 ≤ m
(
a2HK + b2HK + c2HK

)
. (2.5)

Case 2.2. If (r, s, r
′

, s
′

) ∈ D2 := {(r, s, r
′

, s
′

)|0 < r < r
′

< s
′

< s < t}, denoting a = r
′

− r, b = s
′

− r
′

, c =

s − s
′

, then we have
(1)

C1(a + b + c)2HK ≤ λ = λ2 ≤ C2(a + b + c)2HK , C1b2HK ≤ ρ = ρ2 ≤ C2b2HK , (2.6)

where C1 and C2 are given by (1.5).
(2) There exists a positive constant m, such that

λ2ρ2 − µ
2
2 ≥ mb2HK

(
a2HK + c2HK

)
, (2.7)
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where µ = µ2.

(3) When 0 < 2HK < 1, there exists a positive constant m, such that

µ = µ2 ≤ mb2HK . (2.8)

Case 2.3. If (r, s, r
′

, s
′

) ∈ D3 := {(r, s, r
′

, s
′

)|0 < r < s < r
′

< s
′

< t}, denoting a = s − r, b = r
′

− s, c =

s
′

− r
′

, then we have
(1)

C1a2HK ≤ λ = λ3 ≤ C2a2HK , C1c2HK ≤ ρ = ρ3 ≤ C2c2HK , (2.9)

where C1 and C2 are given by (1.5).
(2) There exists a positive constant m, such that

λ3ρ3 − µ
2
3 ≥ ma2HKc2HK , (2.10)

where µ = µ3.

(3) When 0 < 2HK < 1, for α, β > 0 with α + β = 1, there exists a positive constant m, such that

µ = µ3 ≤ mb2α(HK−1)(ac)β(HK−1)+1. (2.11)

Proof. The proof of this lemma is given in the Appendix since its proof is long. �

Lemma 2.3. Let H ∈ (0, 1),K ∈ (0, 1], as 0 < 2HK < 1, we have∫
D2

µ

(λρ − µ2)3/2 drdsdr
′

ds
′

< +∞, (2.12)

where D2 := {(r, s, r
′

, s
′

)|0 < r < s < t, 0 < r
′

< s
′

< t}, and λ, ρ and µ are given in Lemma 2.2.

Proof. Since D2 ∩ {r < r
′

} = D1 ∪ D2 ∪ D3, where D1,D2 and D3 are given in Lemma 2.2, it is suffice
to show that ∫

Di

µi

(λiρi − µ
2
i )3/2

drdsdr
′

ds
′

< +∞, i = 1, 2, 3.

For i = 1, by (2.4) and (2.5), we obtain∫
D1

µ1

(λ1ρ1 − µ
2
1)3/2

drdsdr
′

ds
′

≤ m
∫

[0,t]3

a2HK + b2HK + c2HK[
(a + b)2HKc2HK + (b + c)2HKa2HK]3/2 dadbdc

≤ m
∫

[0,t]3

a2HK + b2HK + c2HK

(a + b)
3HK

2 (b + c)
3HK

2 (ac)
3HK

2

dadbdc

≤ m
∫

[0,t]3

a2HK

a
3HK

2 b
3HK

2 (ac)
3HK

2

dadbdc + m
∫

[0,t]3

b2HK

b
3HK

2 b
3HK

2 (ac)
3HK

2

dadbdc

+m
∫

[0,t]3

c2HK

b
3HK

2 c
3HK

2 (ac)
3HK

2

dadbdc
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= m
∫

[0,t]3

1

aHKb
3HK

2 c
3HK

2

dadbdc + m
∫

[0,t]3

1

bHKa
3HK

2 c
3HK

2

dadbdc

+m
∫

[0,t]3

1

cHKa
3HK

2 b
3HK

2

dadbdc

< +∞,

since 0 < 2HK < 1.
For i = 2, by (2.7) and (2.8), we obtain∫

D2

µ2

(λ2ρ2 − µ
2
2)3/2

drdsdr
′

ds
′

≤ m
∫

[0,t]3

b2HK[
b2HK(a2HK + c2HK)

]3/2 dadbdc

≤ m
∫

[0,t]3

1

bHKa
3HK

2 c
3HK

2

dadbdc

< +∞,

since 0 < 2HK < 1.
For i = 3, by (2.10) and (2.11), we obtain∫

D3

µ3

(λ3ρ3 − µ
2
3)3/2

drdsdr
′

ds
′

≤ m
∫

[0,t]3

b2α(HK−1)(ac)β(HK−1)+1[
(a2HKc2HK)

]3/2 dadbdc

= m
∫

[0,t]3

1
b2α(1−HK)(ac)β(1−HK)+3HK−1 dadbdc.

Since 0 < 2HK < 1, then 2(1−HK) = 2−2HK > 1. We first choose α > 0, such that 2α(1−HK) < 1,
and we have

β(1 − HK) + 3HK − 1 = (1 − α)(1 − HK) + 3HK − 1

= 2HK − α(1 − HK)

< 1,

which imply ∫
D3

µ3

(λ3ρ3 − µ
2
3)3/2

drdsdr
′

ds
′

< +∞.

The proof of Lemma 2.3 is now complete. �

3. Proofs of theorems

In this section, we will prove Theorems 1.1–1.3.

AIMS Mathematics Volume 7, Issue 6, 10286–10302.



10292

3.1. Proof of Theorem 1.1.

Proof. We prove the theorem in two steps.
Step 1. Show that for each ε > 0, αt,ε(y) ∈ L2(Ω, P). In fact, by (1.8) and (1.10), we have

αt,ε(y) =

∫ t

0

∫ s

0
pε(S H,K

s − S H,K
r − y)drds

=
1

2π

∫ t

0

∫ s

0

∫
R

eiξ(S H,K
s −S H,K

r −y)e−
εξ2
2 dξdrds.

Let D2 := {(r, s, r
′

, s
′

)|0 < r < s < t, 0 < r
′

< s
′

< t}. Then,

E
(∣∣∣αt,ε(y)

∣∣∣2) = E
[

1
4π2

∫
D2

∫
R2

exp
(
iξ(S H,K

s − S H,K
r − y) + iη(S H,K

s′
− S H,K

r′
− y)

)
· exp

(
−
ε(ξ2 + η2)

2

)
dξdηdrdsdr

′

ds
′

]
≤

1
4π2

∫
D2

∫
R2

E
[
exp

(
iξ(S H,K

s − S H,K
r − y) + iη(S H,K

s′
− S H,K

r′
− y)

)]
dξdηdrdsdr

′

ds
′

=
1

4π2

∫
D2

∫
R2

exp
[
−

1
2

Var
(
ξ(S H,K

s − S H,K
r − y) + η(S H,K

s′
− S H,K

r′
− y)

)]
dξdηdrdsdr

′

ds
′

=
1

4π2

∫
D2

∫
R2

exp
[
−

1
2

Var
(
ξ(S H,K

s − S H,K
r ) + η(S H,K

s′
− S H,K

r′
)
)]

dξdηdrdsdr
′

ds
′

=
1

2π2

(∫
D1

+

∫
D2

+

∫
D3

) ∫
R2

exp
[
−

1
2

Var
(
ξ(S H,K

s − S H,K
r ) + η(S H,K

s′
− S H,K

r′
)
)]

dξdηdrdsdr
′

ds
′

:=
1

2π2
(A1 + A2 + A3) ,

where
D1 = {(r, s, r

′

, s
′

)|0 < r < r
′

< s < s
′

< t},

D2 = {(r, s, r
′

, s
′

)|0 < r < r
′

< s
′

< s < t},

D3 = {(r, s, r
′

, s
′

)|0 < r < s < r
′

< s
′

< t}.

Denote M = Var
(
ξ(S H,K

s − S H,K
r ) + η(S H,K

s′
− S H,K

r′
)
)
, by (2.2), we obtain

(1) if (r, s, r
′

, s
′

) ∈ D1, then

M = Var
(
ξ(S H,K

r′
− S H,K

r ) + (ξ + η)(S H,K
s − S H,K

r′
) + η(S H,K

s′
− S H,K

s )
)

≥ m
[
ξ2(r

′

− r)2HK + (ξ + η)2(s − r
′

)2HK + η2(s
′

− s)2HK
]

≥ m
[
ξ2(r

′

− r)2HK + (ξ + η)2(s − r
′

)2HK
]
.

Thus,

A1 =

∫
D1

∫
R2

exp
(
−

M
2

)
dξdηdrdsdr

′

ds
′
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≤

∫
D1

∫
R2

exp

−m
[
ξ2(r

′

− r)2HK + (ξ + η)2(s − r
′

)2HK
]

2

 dξdηdrdsdr
′

ds
′

=
2π
m

∫
D1

(r
′

− r)−HK(s − r
′

)−HKdrdsdr
′

ds
′

< +∞,

since 0 < HK < 1.
(2) if (r, s, r

′

, s
′

) ∈ D2, then

M = Var
(
ξ(S H,K

r′
− S H,K

r ) + (ξ + η)(S H,K
s′
− S H,K

r′
) + ξ(S H,K

s − S H,K
s′

)
)

≥ m
[
ξ2(r

′

− r)2HK + (ξ + η)2(s
′

− r
′

)2HK + ξ2(s − s
′

)2HK
]

≥ m
[
ξ2(r

′

− r)2HK + (ξ + η)2(s
′

− r
′

)2HK
]
.

Thus,

A2 =

∫
D2

∫
R2

exp
(
−

M
2

)
dξdηdrdsdr

′

ds
′

≤

∫
D2

∫
R2

exp

−m
[
ξ2(r

′

− r)2HK + (ξ + η)2(s
′

− r
′

)2HK
]

2

 dξdηdrdsdr
′

ds
′

=
2π
m

∫
D2

(r
′

− r)−HK(s
′

− r
′

)−HKdrdsdr
′

ds
′

< +∞,

since 0 < HK < 1.
(3) if (r, s, r

′

, s
′

) ∈ D3, then

M = Var
(
ξ(S H,K

s − S H,K
r ) + η(S H,K

s′
− S H,K

r′
)
)
≥ m

[
ξ2(s − r)2HK + η2(s

′

− r
′

)2HK
]
.

Thus,

A3 =

∫
D3

∫
R2

exp
(
−

M
2

)
dξdηdrdsdr

′

ds
′

≤

∫
D3

∫
R2

exp

−m
[
ξ2(s − r)2HK + η2(s

′

− r
′

)2HK
]

2

 dξdηdrdsdr
′

ds
′

=
2π
m

∫
D3

(s − r)−HK(s
′

− r
′

)−HKdrdsdr
′

ds
′

< +∞,

since 0 < HK < 1. Hence, for any H ∈ (0, 1) and K ∈ (0, 1], we have

E
(∣∣∣αt,ε(y)

∣∣∣2) < +∞.

Step 2. Show that {αt,ε(y), ε > 0} is a Cauchy sequence in L2(Ω, P). Since the proof of Step 2 is similar
to that of Theorem 3.1 in Jiang and Wang [8], we omitted the details.

Therefore we obtain limε→0 αt,ε(y) exists in L2 and the theorem follows. �
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3.2. Proof of Theorem 1.2.

Proof. By (1.9) and (1.11), we get

E
[
α
′

t,ε(y)
]2

= E
[
−

i
2π

∫ t

0

∫ s

0

∫
R
ξeiξ(S H,K

s −S H,K
r −y)e−

εξ2
2 dξdrds

]2

= −
1

4π2

∫
D2

∫
R2
ξηe−

1
2 Var

(
ξ(S H,K

s −S H,K
r −y)+η(S H,K

s′
−S H,K

r′
−y)

)
e−

ε(ξ2+η2)
2 dξdηdrdsdr

′

ds
′

= −
1

4π2

∫
D2

∫
R2
ξηe−

1
2 Var

(
ξ(S H,K

s −S H,K
r )+η(S H,K

s′
−S H,K

r′
)
)
e−

ε(ξ2+η2)
2 dξdηdrdsdr

′

ds
′

= −
1

4π2

∫
D2

∫
R2
ξηe−

λ+ε
2 ξ2−

ρ+ε
2 η2−ξηµdξdηdrdsdr

′

ds
′

=
1

2π

∫
D2

µ

[(λ + ε)(ρ + ε) − µ2]3/2 drdsdr
′

ds
′

,

where λ, ρ and µ are given in Lemma 2.2,
By Lemma 2.3, as 0 < 2HK < 1, we have

lim
ε→0

E
[
α
′

t,ε(y)
]2
< +∞,

which implies α
′

t,ε(y) ∈ L2(Ω, P) for each ε > 0.
Similar to Step 2 of the proof of Theorem 1.1, we can prove that {α

′

t,ε(y), ε > 0} is a Cauchy sequence
in L2(Ω, P). Here we omitted the details. Therefore the proof of Theorem 1.2 is completed. �

3.3. Proof of Theorem 1.3.

Proof. (1) It is enough to prove that

E
[∣∣∣α′t,ε(y1) − α

′

t,ε(y2)
∣∣∣n] ≤ m|y1 − y2|

nτ,

holds for every t ∈ [0,T ] and n ≥ 1.
Since ∣∣∣α′t,ε(y1) − α

′

t,ε(y2)
∣∣∣ =

∣∣∣∣∣∣− i
2π

∫ t

0

∫ s

0

∫
R
ξeiξ(S H,K

s −S H,K
r )e−

εξ2
2

(
e−iξy1 − e−iξy2

)
dξdrds

∣∣∣∣∣∣ , (3.1)

and ∣∣∣e−iξb − e−iξa
∣∣∣ ≤ m|ξ|τ|b − a|τ, for any τ ∈ (0, 1). (3.2)

Hence
E

[∣∣∣α′t,ε(y1) − α
′

t,ε(y2)
∣∣∣n]

=
1

(2π)n

∣∣∣∣∣∣∣
∫

Dn

∫
Rn

E
n∏

j=1

ξ je
iξ j

(
S H,K

s j −S H,K
r j

) (
e−iξ jy1 − e−iξ jy2

)
e−

εξ2j
2

n∏
j=1

dξ jdr jds j

∣∣∣∣∣∣∣
≤ m|y1 − y2|

nτ
∫

Dn

∫
Rn

∣∣∣∣∣∣∣E
n∏

j=1

eiξ j

(
S H,K

s j −S H,K
r j

)∣∣∣∣∣∣∣
n∏

j=1

|ξ j|
1+τdξ jdr jds j, (3.3)
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for any τ ∈ (0, 1).
Let us first deal with the product insider the expectation. Using the method of sample configuration

as in Jung and Markowsky [10]. Fix such an ordering and let l1 ≤ l2 ≤ · · · ≤ l2n be a relabeling of the
set {r1, s1, r2, s2, · · · , rn, sn}. We obtain

n∏
j=1

eiξ j

(
S H,K

s j −S H,K
r j

)
=

2n−1∏
j=1

e
iu j

(
S H,K

l j+1
−S H,K

l j

)
, (3.4)

where the u j
,s are properly chosen linearly combinations of the ξ j

,s to make (3.4) an equality. By local
non-deterministic property for S H,K

t , we have∣∣∣∣∣∣∣E
n∏

j=1

eiξ j

(
S H,K

s j −S H,K
r j

)∣∣∣∣∣∣∣ ≤ e−m
∑2n−1

j=1 u2
j (l j+1−l j)2HK

. (3.5)

Fixing ξ j, we choose j1 to be the smallest value such that u j1 contains ξ j as a term and then choose j2

to be the smallest value strictly larger than j1 such that u j2 does not contain ξ j as a term. Thus,

|ξ j|
1+τ =

∣∣∣u j1 − u j1−1

∣∣∣ 1+τ
2

∣∣∣u j2−1 − u j2

∣∣∣ 1+τ
2

≤ m
(∣∣∣u j1

∣∣∣ 1+τ
2 +

∣∣∣u j1−1

∣∣∣ 1+τ
2

) (∣∣∣u j2

∣∣∣ 1+τ
2 +

∣∣∣u j2−1

∣∣∣ 1+τ
2

)
. (3.6)

Let a j = l j+1 − l j (with l0 = 0),by (3.3), (3.5) and (3.6), we deduce

E
[∣∣∣α′t,ε(y1) − α

′

t,ε(y2)
∣∣∣n] ≤ m

∫
[0,t]2n

∫
Rn

e−m
∑2n−1

j=1 u2
j a

2HK
j

2n∏
j=1

(∣∣∣u j

∣∣∣ 1+τ
2 +

∣∣∣u j−1

∣∣∣ 1+τ
2

)
dξdl

≤ m
∫

Rn

∏2n
j=1

(∣∣∣u j

∣∣∣ 1+τ
2 +

∣∣∣u j−1

∣∣∣ 1+τ
2

)
∏2n−1

j=1

(
1 + |u j|

1
HK

) dξ, (3.7)

where dξ = dξ1dξ2 · · · dξn, dl = dl1dl2 · · · dl2n, u0 = u2n = 0, and we use the inequality∫ t

0
e−m|u|2a2HK

da ≤
m

1 + |u|
1

HK

. (3.8)

Expanding the product in the numerator of (3.7) gives us the sum of a number of terms of the form

2n−1∏
j=1

∣∣∣u j

∣∣∣ (1+τ)m j
2 ,

where m j = 0, 1 or 2 (terms containing |u0| or |u2n| are equal to 0). Thus, it is suffice to show that∫
Rn

1∏2n−1
j=1

(
1 + |u j|

1
HK −

(1+τ)m j
2

)dξ1dξ2 · · · dξn (3.9)
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is finite. We make a linear transformation changing this into an integral with respect to variables
uk1 , uk2 , · · · , ukn ∈ {u1, · · · , u2n−1} which span {ξ1, ξ2, · · · , ξn} in order to bound (3.9) by

m
∫

Rn

1∏2n−1
j=1

(
1 + |uk j |

1
HK −

(1+τ)m j
2

)duk1duk2 · · · dukn

≤ m
∫

Rn

1∏2n−1
j=1

(
1 + |uk j |

1
HK −(1+τ)

)duk1duk2 · · · dukn .

This is finite if we choose τ such that 1
HK − (1 + τ) > 1, namely τ < 1

HK − 2.
(2) It is enough to prove that

E
[∣∣∣α′t,ε(y) − α

′

t̃,ε(y)
∣∣∣n] ≤ m|t − t̃|nγ,

holds for t, t̃ ∈ [0,T ], every y ∈ R and n ≥ 1.
Since ∣∣∣α′t,ε(y) − α

′

t̃,ε(y)
∣∣∣ =

1
2π

∣∣∣∣∣∣
∫ t̃

t

∫ s

0

∫
R
ξeiξ(S H,K

s −S H,K
r −y)e−

εξ2
2 dξdrds

∣∣∣∣∣∣ .
Hence,

E
[∣∣∣α′t,ε(y) − α

′

t̃,ε(y)
∣∣∣n]

≤ m
∫

[t,t̃]n

∫
[0,s1]×···×[0,sn]

∫
Rn

n∏
j=1

|ξ j|E

 n∏
j=1

eiξ j(S
H,K
s j −S H,K

r j )

 n∏
j=1

dξ jdr jds j

≤ m
∫

D̃n

n∏
j=1

I[t,t̃](s j)
∫

Rn

n∏
j=1

|ξ j|E

 n∏
j=1

eiξ j(S
H,K
s j −S H,K

r j )

 n∏
j=1

dξ jdr jds j

≤ m|t − t̃|nγ

∫

D̃n

∫
Rn

n∏
j=1

|ξ j|E

 n∏
j=1

eiξ j(S
H,K
s j −S H,K

r j )

 n∏
j=1

dξ j


1

1−γ n∏
j=1

dr jds j


1−γ

=: m|t − t̃|nγΛ,

where D̃ = {(r, s) : 0 < r < s < t̃} and we use the Hölder’s inequality in the last inequality with
γ < 1 − 2HK.

Using the similar method as in the proof of (1) in Theorem 1.3, Λ is bounded by∫
En

n∏
j=1

(l j+1 − l j)−
HK
1−γ

2n−1∏
j=1

(l j+1 − l j)−
HKm j
2(1−γ) dl1dl2 · · · dl2n


1−γ

,

where En = {0 < l1 < · · · < l2n < t}.
Since 1 − γ > 2HK, there exists a constant m > 0, such that

E
[∣∣∣α′t,ε(y) − α

′

t̃,ε(y)
∣∣∣n] ≤ m|t − t̃|nγ.

Thus, we finished the proof of Theorem 1.3. �
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4. Conclusions

We mainly study the existence of the self-intersection local time and its derivative for the sub-
bifractional Brownian motion. Moreover, we prove its derivative is Hölder continuous in space variable
and time variable, respectively. In the future, we will consider its higher order derivative.
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http://dx.doi.org/10.1214/18-AIHP889

8. Y. Jiang, Y. Wang, Self-intersection local times and collision local times of bifractional Brownian
motions, Sci. China Ser. A-Math., 52 (2009), 1905–1919. http://dx.doi.org/10.1007/s11425-009-
0081-z

9. P. Jung, G. Markowsky, On the Tanaka formula for the derivative of self-intersection
local time of fractional Brownian motion, Stoch. Proc. Appl., 124 (2014), 3846–3868.
http://dx.doi.org/10.1016/j.spa.2014.07.001

AIMS Mathematics Volume 7, Issue 6, 10286–10302.

http://dx.doi.org/http://dx.doi.org/10.1186/s13660-018-1916-3
http://dx.doi.org/http://dx.doi.org/10.1556/SScMath.50.2013.1.1231
http://dx.doi.org/http://dx.doi.org/10.1215/kjm/1250517630
http://dx.doi.org/http://dx.doi.org/10.2307/3481716
http://dx.doi.org/http://dx.doi.org/10.1016/j.spa.2016.06.023
http://dx.doi.org/http://dx.doi.org/10.1214/18-AIHP889
http://dx.doi.org/http://dx.doi.org/10.1007/s11425-009-0081-z
http://dx.doi.org/http://dx.doi.org/10.1007/s11425-009-0081-z
http://dx.doi.org/http://dx.doi.org/10.1016/j.spa.2014.07.001


10298
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Appendix

In this section we prove Lemma 2.2.

Proof. By (1.4), we obtain (2.3), (2.6) and (2.9) easily. Since the proofs of (2.4), (2.7) and (2.10)
are similar to those of Hu [4]and Hu and Nualart [5], we omitted the details. Thus we only need to
prove (2.5), (2.8) and (2.11).

In order to prove (2.5), let e = r, by (1.3), we have

µ =
[
(s2H + (s

′

)2H)K − (s2H + (r
′

)2H)K − (r2H + (s
′

)2H)K + (r2H + (r
′

)2H)K
]

+
1
2

[
(s + r

′

)2HK − (s + s
′

)2HK + (r + s
′

)2HK − (r + r
′

)2HK
]

+
1
2

[
|s − r

′

|2HK − |s − s
′

|2HK + |r − s
′

|2HK − |r − r
′

|2HK
]
. (A.1)

Hence,

µ1 =

{[
(e + a + b)2H + (e + a + b + c)2H

]K
−

[
(e + a + b)2H + (e + a)2H

]K

−
[
e2H + (e + a + b + c)2H

]K
+

[
e2H + (e + a)2H

]K
}

+
1
2

[
(2e + 2a + b)2HK − (2e + 2a + 2b + c)2HK + (2e + a + b + c)2HK − (2e + a)2HK

]
+

1
2

[
b2HK − c2HK + (a + b + c)2HK − a2HK

]
:= ∆1,1 + ∆1,2 + ∆1,3.

For ∆1,1, we obtain

∆1,1 =

∫ e+a+b

e
d
{[

x2H + (e + a + b + c)2H
]K
−

[
x2H + (e + a)2H

]K
}

= 2HK
∫ e+a+b

e
x2H−1

{[
x2H + (e + a + b + c)2H

]K−1
−

[
x2H + (e + a)2H

]K−1
}

dx

≤ 0, (A.2)

since 0 < K ≤ 1.
For ∆1,2, we get

∆1,2 =
1
2

[
(2e + 2a + b)2HK − (2e + 2a + 2b + c)2HK + (2e + a + b + c)2HK − (2e + a)2HK

]
≤

1
2

[
(2e + a + b + c)2HK − (2e + a)2HK

]
≤

1
2

(b + c)2HK
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=
1
2

(b2 + 2bc + c2)HK

≤
1
2

[2(b2 + c2)]HK

≤ 2HK−1(b2HK + c2HK), (A.3)

since 0 < 2HK < 1, where we use the inequality xα − yα ≤ |x − y|α for any x > 0, y > 0, 0 < α < 1.
For ∆1,3, we deduce,

∆1,3 =
1
2

[
(a + b + c)2HK + b2HK − a2HK − c2HK

]
=

1
2

[
(a2 + b2 + c2 + 2ab + 2ac + 2bc)HK + b2HK − a2HK − c2HK

]
≤

1
2

[
(3a2 + 3b2 + 3c2)HK + b2HK − a2HK − c2HK

]
≤

3HK − 1
2

(
a2HK + c2HK

)
+

3HK + 1
2

b2HK

≤
3HK + 1

2

(
a2HK + b2HK + c2HK

)
. (A.4)

Therefore (2.5) holds from (A.2)–(A.4).
In order to prove (2.8), let e = r, by (1.3) and (A.1), we have

µ2 =

{[
(e + a + b + c)2H + (e + a + b)2H

]K
−

[
(e + a + b + c)2H + (e + a)2H

]K

−
[
e2H + (e + a + b)2H

]K
+

[
e2H + (e + a)2H

]K
}

+
1
2

[
(2e + 2a + b + c)2HK − (2e + 2a + 2b + c)2HK + (2e + a + b)2HK − (2e + a)2HK

]
+

1
2

[
(b + c)2HK − c2HK + (a + b)2HK − a2HK

]
:= ∆2,1 + ∆2,2 + ∆2,3.

For ∆2,1, we obtain

∆2,1 =

∫ e+a+b+c

e
d
{[

x2H + (e + a + b)2H
]K
−

[
x2H + (e + a)2H

]K
}

= 2HK
∫ e+a+b+c

e
x2H−1

{[
x2H + (e + a + b)2H

]K−1
−

[
x2H + (e + a)2H

]K−1
}

dx

≤ 0, (A.5)

since 0 < K ≤ 1.
For ∆2,2, we get

∆2,2 =
1
2

[
(2e + 2a + b + c)2HK − (2e + 2a + 2b + c)2HK + (2e + a + b)2HK − (2e + a)2HK

]
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≤
1
2

[
(2e + a + b)2HK − (2e + a)2HK

]
≤

1
2

b2HK , (A.6)

since 0 < 2HK < 1.
For ∆2,3, we deduce,

∆2,3 =
1
2

[
(a + b)2HK − a2HK + (b + c)2HK − c2HK

]
≤

1
2

(
b2HK + b2HK

)
= b2HK , (A.7)

since 0 < 2HK < 1. Therefore (2.8) holds from (A.5)–(A.7).
In order to prove (2.11), let e = r, by (1.3) and (A.1), we have

µ3 =

{[
(e + a)2H + (e + a + b + c)2H

]K
−

[
(e + a)2H + (e + a + b)2H

]K

−
[
e2H + (e + a + b + c)2H

]K
+

[
e2H + (e + a + b)2H

]K
}

+
1
2

[
(2e + 2a + b)2HK − (2e + 2a + b + c)2HK + (2e + a + b + c)2HK − (2e + a + b)2HK

]
+

1
2

[
b2HK − (b + c)2HK + (a + b + c)2HK − (a + b)2HK

]
:= ∆3,1 + ∆3,2 + ∆3,3.

For ∆3,1, we obtain

∆3,1 =

∫ e+a

e
d
{[

x2H + (e + a + b + c)2H
]K
−

[
x2H + (e + a + b)2H

]K
}

= 2HK
∫ e+a

e
x2H−1

{[
x2H + (e + a + b + c)2H

]K−1
−

[
x2H + (e + a + b)2H

]K−1
}

dx

≤ 0, (A.8)

since 0 < K ≤ 1.
For ∆3,2, and for α, β > 0 with α + β = 1, we get

∆3,2 = −
1
2

∫ 2

1
d
[
(2e + b + c + ua)2HK − (2e + b + ua)2HK

]
= −HKa

∫ 2

1

[
(2e + b + c + ua)2HK−1 − (2e + b + ua)2HK−1

]
du

= −HKa
∫ 2

1

[∫ 1

0
d(2e + b + ua + vc)2HK−1

]
du
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= −HK(2HK − 1)ac
∫ 2

1

∫ 1

0
(2e + b + ua + vc)2HK−2dvdu

= HK(1 − 2HK)ac
∫ 2

1

∫ 1

0
(2e + b + ua + vc)2HK−2dvdu

≤ HK(1 − 2HK)ac
∫ 2

1

∫ 1

0
(b + ua + vc)2HK−2dvdu

≤ HK(1 − 2HK)ac
∫ 2

1

∫ 1

0

[
bα(ua + vc)β

]2HK−2
dvdu

≤ mac
∫ 2

1

∫ 1

0

[
bα(ua)

β
2 (vc)

β
2

]2HK−2
dvdu

≤ mb2α(HK−1)(ac)β(HK−1)+1, (A.9)

since 0 < 2HK < 1.
For ∆3,3, we deduce,

∆3,3 =
1
2

[
(a + b + c)2HK − (b + c)2HK − (a + b)2HK + b2HK

]
=

1
2

∫ 1

0
d
[
(b + a + vc)2HK − (b + vc)2HK

]
= HKc

∫ 1

0

[
(b + a + vc)2HK−1 − (b + vc)2HK−1

]
dv

= HKc
∫ 1

0

[∫ 1

0
d(b + ua + vc)2HK−1

]
dv

= HK(2HK − 1)ac
∫ 1

0

∫ 1

0
(b + ua + vc)2HK−2dudv

≤ 0, (A.10)

since 0 < 2HK < 1. Therefore (2.11) holds from (A.8)–(A.10). Thus we have finished the proof of
Lemma 2.2. �
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