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Abstract: Let S7K = {S7X ¢ > 0} be the sub-bifractional Brownian motion (sbfBm) of dimension 1,
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1. Introduction and main results

Recently, EI-Nouty and Journé [3] introduced the process SX = (SX ¢ > 0} on the probability
space (Q, F, P) with indices H € (0,1) and K € (0, 1], named the sub-bifractional Brownian motion
(sbBm) and defined as follows:

1
SHK — =T (BI* + B™F), (1.1)
where {BfI’K ,t € R} is a bifractional Brownian motion (bBm) with indices H € (0,1) and K € (0, 1],
namely,
ni _ [ BN, if 12 0;
B =

B"X2), if t<0. (1.2)

and B,H’K(l) and BfI;K(Z) are independent bifractional Brownian motions in [0, +00) with indices
He (0,1) and Ke (0, 1], where bifractional Brownian motion {BfI’K (1),t > 0} is a centered Gaussian
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process, starting from zero, with covariance

ELB (DB (D] = 5 [+ 9% — 10— s8],
with H € (0,1) and K € (0, 1].

Clearly, the sbBm is a centered Gaussian process such that § g’K = 0, with probability 1, and
Var(§ %) = (2K — 22HK-1)2HK Since 2H — 1)K —1 < K — 1 < 0, it follows that 2HK — 1 < K. We can
easily verify that S X is self-similar with index HK. When K = 1, S! is the sub-fractional Brownian
motion (sfBm). For more on sub-fractional Brownian motion, we can see Kuang and Xie [15, 16],
Kuang and Liu [13, 14], Xie and Kuang [21] and so on. Straightforward computations show that for all
s,t >0,

1 1
E(SM8) = @+ £ = S+ 5 = Sl - 5P (1.3)
and
Cilt — s*® < E[(STX — STEY] < Cylt — s]HK, (1.4)
where
C, = min{2X — 1,2K - 22HK=1y ', = max{l1,2 — 2*1K-1), (1.5)

(See El-Nouty and Journé [3]). Kuang [11] investigated the collision local time of two independent
sub-bifractional Brownian motions. Kuang and Li [12] obtained Berry-Esséen bounds and proved the
almost sure central limit theorem for the quadratic variation of the sub-bifractional Brownian motion.

The self-intersection local time of fractional Brownian motion (fBm) B = {Bf ¢ > 0} was first
studied in Rosen [17], and formally defined by

a,(y) == f S(BY — BY — y)drds,
D

where D = {(r,s) : 0 < r < s < t} and ¢ is the Dirac delta function. It was further investigated in Hu [4]
and Hu and Nualart [5]. Jiang and Wang [8] considered self-intersection local time and collision local
time of bifractional Brownian motion. Chen et al. [2] studied renormalized self-intersection local time
of bifractional Brownian motion.

The context of derivative for the self-intersection local time is organized as follows. Rosen [18] first
studied the Brownian motion case, and Yan et al. [22] extended this to fractional Brownian motion.
On this basis, Jung and Markowsky [9, 10] considered some in-depth results for derivative of the self-
intersection local time of fractional Brownian motion. Jaramillo and Nualart [6, 7] studied asymptotic
properties of the derivative of self-intersection local time of fractional Brownian motion and functional
limit theorem for the self-intersection local time of the fractional Brownian motion, respectively. Yan
and Yu [23] considered the multidimensional fractional Brownian motion case. Yu [24] investigated
higher order derivative of self-intersection local time for fBm. Shi [19] investigated fractional
smoothness of derivative of self-intersection local time for bi-fractional Brownian motion.

Moreover, many authors have proposed to use more general self-similar Gaussian processes and
random fields as stochastic models, and such applications have raised many interesting theoretical
questions about self-similar Gaussian processes and fields in general. Therefore, some generalizations
of the fBm has been introduced. However, contrast to the extensive studies on fractional Brownian
motion, there has been little systematic investigation on other self-similar Gaussian processes. The
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main reason for this is the complexity of dependence structures for self-similar Gaussian processes
which do not have stationary increments. Thus, it seems interesting to study some extensions of
fractional Brownian motion such as sbfBm.

In this paper, we will study the existence of the self-intersection local time and its derivative for the
sub-bifractional Brownian motion S = {SX ¢ > 0}. They are defined by, respectively,

a,(y) = f S(SHK — SHK _y)drds (1.6)
D
and
a,(y) = — f 5 (SHK _ SHK _\ydrds, (1.7)
D
where D = {(r,s5) : 0 <r<s <t}
Set
1 -2 1 ipx 7i
Pe(x) := > e % = I e e T dp (1.8)
VZime R
and

, d € — 22 ] . ep?
p(x) = P = al e % = L fpe"”‘e_zdp. (1.9)
dx el 2 Jr

Now we state our main results as follows.

Theorem 1.1. Existence of self-intersection local time.
Define:

t S
. (y) = f f p(STK — STK _yydrds, Vy €R, (1.10)
0 0

for H € (0,1) and K € (0, 1]. Then a;,(y) converges in L*(Q, P) as € — 0, we denote the limit by a,(y).

Theorem 1.2. Existence of the derivative of self-intersection local time.
Define:

! S
a, () = - f f p(STK — SHK _\)drds, VyeR. (1.11)
0 Jo
IfHe (0,1),K € (0,1],and 0 < 2HK < 1, then a;,e(y) converges in L*(Q, P) as € — 0, we denote the
limit by a(y).

Theorem 1.3. Let n > 1 be an arbitrary but fixed integer, t,7 € [0,T] and as 0 < 2HK < 1.

(1) For any T € (O, min {1 , %( — 2}) there exists a positive constant C, such that

E||eion) — a,0)|'| < Clyi = yal™, (1.12)

where y1,y, € R.
(2) For any y < 1 — 2HK, there exists a positive constant C, such that

Ela,() -~ ;|| < cle =, (1.13)
where y € R.

In what follows, we will use m to denote unspecified positive and finite constants whose value may
be different in each occurrence.
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2. Some useful lemmas

In this section, we give some useful lemmas in order to prove the Theorems 1.1-1.3.

Lemma 2.1. For all constants 0 < a < b, STX is strongly locally p-nondeterministic on I = [a, b]
with o(r) = r*K_ That is, there exist positive constants ¢, and ro such that for all t € I and all 0 < r <
min{z, ry},

Var{SfI’KIS'Sq’K sel,r <|s—tl < ro} = cro(r). 2.1

Proof. See Kuang [11]. m|

From the local nondeterminism (see Berman [1], Xiao [20]), we have the following property: if
0t <tb<---<t,<T,then there is a constant m > 0 such that

Var [Z u(SHK — S{j{f)) >m Yl -ty PK 2.2)
i=2

i=2
forany u; e R,i =2,3,...,n.

Lemma 2.2. Let
A= Var(S?’K - S‘,q’K),p = Var(Sf,”K - Sf’K),
and

p 1= Cov (SHK — gHK gHK _ 1K),

Case 2.1. If (r, s, r.s)eDy:={rsr,s)0<r<r <s<s <t denoting a = F—rb=s—r,c=
s — s, then we have

(1)
Ci(a+ by < 1=2 < Cola+by*X,Ci(b + )X < p =p; < Co(b + c)*K, (2.3)

where C and C, are given by (1.5).
(2) There exists a positive constant m, such that

Aipy = i1 = m(a+ bYEE 4 (b + oK MK (2.4)

where u = ;.
(3) When 0 < 2HK < 1, there exists a positive constant m, such that

U= < m(azHK + p*HE 4 CZHK). (2.5)

Case 2.2. If (1, s, r.s)eDy:={rsr,s)0<r<r <s <s<t}, denoting a = F—-rb=s —r,c=
s — s, then we have

(1)
Cila+b+ )X <1=2 < Cola+b+ )X, Cv*"E < p =p, < C0HEK, (2.6)

where C| and C, are given by (1.5).
(2) There exists a positive constant m, such that

Ao — ,u% > mb*K (aZHK + CZHK) , 22.7)
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where u = .
(3) When 0 < 2HK < 1, there exists a positive constant m, such that

U=y < mb*HK, (2.8)

Case 2.3. If (r, s, r.s)YeDs:={rsr,s)N0<r<s<r <s <t},denotinga=s—-rb=r —s,c=
s —r, then we have
(1)

C1a*"™® < 1= 15 < C,d* X, €K < p = p3 < CPMK, (2.9)

where Cy and C, are given by (1.5).
(2) There exists a positive constant m, such that

303 — (3 > ma*K 2P, (2.10)
where u = us.
(3) When 0 < 2HK < 1, for a, > O with a + 8 = 1, there exists a positive constant m, such that
/l — ll3 S me(y(HK—l)(aC)ﬁ(HK—l)+1‘ (211)
Proof. The proof of this lemma is given in the Appendix since its proof is long. m|

Lemma 2.3. Let He (0,1),K € (0,1],as 0 < 2HK < 1, we have

u

mdrdsdr’azs’ < +oo, (2.12)
p2 AP —H

where D> :={(r,s,r,s)0<r<s<t,0<r <s <t}, and A, p and u are given in Lemma 2.2.

Proof. Since D> N {r < r'} = D, U D, U D3, where D, D, and D5 are given in Lemma 2.2, it is suffice
to show that

f Lzmdrdsdr’ds’ < +oo, 1=1,2,3.
p; (Aip; —,U,-)

Fori =1, by (2.4) and (2.5), we obtain

/,ll ’ ’
———drdsdr ds
j;l (Aip1 — )32

2HK 2HK 2HK
at + b + ¢
<m f dadbdc
0. [(a + bYHEHE + (b + ¢)2HK g2HK]
aZHK + bZHK + C2HK
m [ 3HK

01 (a+ b)ﬁ(b + c)#(ac)'T

< dadbdc

a2HK bZHK
< mf T dadbdce + mf e —x dadbdc
04 a2z b2 (ac)™> 003 b2 b2 (ac)™:

C2HK
+m f TR s dadbdc
00 b2 ¢2 (ac

)2
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1 1
=m ———dadbdc + mf ———dadbdc
j[:),zp allKp*5* 7 (0,13 bHK g 5 35

1
+mf ———rdadbdc
[ b

o cHka™ s b7
< +00,

since 0 < 2HK < 1.
For i = 2, by (2.7) and (2.8), we obtain

/lz ’ ’
————drdsdr ds
jl;z (Apr — 1332

bZHK
<m f dadbdc
0. [

H2HK (q2HK 4 czHK)]3/2

1
<m —————dadbdc
»f[;),t]3 bHEK g5 o5

< +00,

since 0 < 2HK < 1.
Fori = 3, by (2.10) and (2.11), we obtain

H3 N
———— drdsdrds
ng (A3p3 — p3)3/?

pRaHK=1 (4 \BHK=1)+1
<m f (acy dadbdc
[0,113

[(GZHKCZHK)]3/2

1
=m L " b2a(1—HK)(ac)B(l—HK)+3HK—1dadbdc'

Since 0 < 2HK < 1,then 2(1 - HK) = 2-2HK > 1. We first choose a > 0, such that 2a(1 - HK) < 1,
and we have

B(1 —HK)+3HK -1 =(1 - a)(1 - HK) + 3HK — 1

= 2HK — a(1 — HK)

<1,
which imply
f B rdsdrds < +co.
s (A3p3 — p3)*?
The proof of Lemma 2.3 is now complete. O

3. Proofs of theorems
In this section, we will prove Theorems 1.1-1.3.
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3.1. Proof of Theorem 1.1.

Proof. We prove the theorem in two steps.
Step 1. Show that for each € > 0, a, () € L*(Q, P). In fact, by (1.8) and (1.10), we have

! S
@, (y) = f f pe(STK — SBK _ y)drds
0 0

! N
—iff fe"f(sf'K_Sf’K_y)e_Egzdfdrds.

Let D> :={(r,s,r,s)0<r<s<t,0<r <s <t}. Then,
1
E(|ate(y)|2) = E N exp (if(S{_]’K _ SfI,K _y) + in(s[‘{,K _ S['/I,K _y))
| 4-7'1'2 D2 JR? ‘ s ¥

2, .2
- exp (—@) dfdndrdsdr'ds']

1 ’ ’
— f f E |exp (i6(S 7K = SHK - y) + in(s 1% = $55 - y))| dédndrdsdr ds
471-2 02 JR? s r

1 ’ ’
— f f exp ——Var f(SHK SHK — vy + n(StK _ gk _ y)) dédndrdsdr ds
47T2 D2 JR? s r

1

- | ||

.p

——Var (£ HK = SHK) 4 (ST -8 f’K))] dédndrdsdr ds'

‘ -

[\
[§)

JT

1
= R(A1+A2 +A3),

where
D ={(r,s,r,s0<r<r <s<s <t},
Dy ={(r,s,r,H0<r<r <s <s<t),
Ds={(r,s,r,s)0<r<s<r <s <t

Denote M = Var (&8 &% = §75) + (s "% = $75)), by (2.2), we obtain
() if (r,s,7,s) € Dy, then

M = Var (£S5 = SIK) + (£ + (S K = ST5) + (K - 1K)

>m[E0 ="+ @+ (s =) (s - 9K

> m &6 — P+ @+ (s - r)E].

M ’ ’
Alszexp(——)dfdndrdsdrds
D; JR? 2

AIMS Mathematics

Thus,

1 ’ ’
(f +f +f )f exp [——Var (f(Sf’K - Sf’K) + n(Sf{’K - SE,I’K))] dédndrdsdr ds
D, D, D3/ JR? 2 * '

Volume 7, Issue 6, 10286—-10302.
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m[£0" = K 4 (& + (s — ¥ K] )
Sf f exp|— > dédndrdsdr ds
D

R2
27T ’ —HK '\—HK ’ ’
= — (r =r)""(s—-r)""drdsdr ds
m Jp,

< 400,

since 0 < HK < 1.
(2)if (r,s,7,5) € D,, then

M = Var(g(S 5 = S + €+ Sy = S + 68T -5 7)
> m 80 =+ @+ - P (s = )]

> m|&G - K+ (€ + (s - K]

M ’ ’
A, = f f exp (——)dgdndrdsdr ds
Dy JR? 2

[ m| £ = K+ (& + (s — 1 K| .
<f f exp| - dédndrdsdr ds
D, JR?

Thus,

2

2 ' b 'y
i} (r =) %(s — r)Yy "X drdsdr ds

D,
< 400,

since 0 < HK < 1.
Q) if (r,s,r,s) € D3, then

M = Var (&S5 — 1) 4 p(S55 = ST5)) 2 m[£2(s = K 42 (s = 1 K]

M ’ ’
A3:ffexp(——)d§dndrdsdrds
D3 JR? 2

R

m [(‘::Z(S _ ’,)ZHK + 7]2(5, _ r’)ZHK] o

< f f exp|— dédndrdsdr ds
D3 JR?

Thus,

2

2 ’ ’ ’ ’
== f (s — )oK — ¥y TR drdsdr ds
m D

< +0o0,

since 0 < HK < 1. Hence, for any H € (0, 1) and K € (0, 1], we have
2
E(|a,,e(y)| ) < +o00.

Step 2. Show that {@, (y), € > 0} is a Cauchy sequence in L*(Q, P). Since the proof of Step 2 is similar
to that of Theorem 3.1 in Jiang and Wang [8], we omitted the details.
Therefore we obtain lim._,o @, (y) exists in L* and the theorem follows. O
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3.2. Proof of Theorem 1.2.
Proof. By (1.9) and (1.11), we get

E[QZ,E(y) —E[—— f f f eSS e-zdgdrds

1 1 HK _HK_ HK_oHK__ (4
- f £ne Var(e(s s s s 1K) el S edndrdsdr ds
JT R2

_ 42ff§ —fVar(g(s —S K (s K- )) E(“ﬂ)dgdndrdsdrds
T D2

= 47r2f fne_* e M dedndrdsdr ds
RZ

l/t 7 7
drdsdr ds ,
2nsz [(A+ e +e —p2prt e

where A, p and u are given in Lemma 2.2,
By Lemma 2.3, as 0 < 2HK < 1, we have

, , 2
lg%E[ozt’e(y)] < 400,

which implies «, ((y) € L*(, P) for each € > 0.
Similar to Step 2 of the proof of Theorem 1.1, we can prove that {a;,e(y), € > 0} is a Cauchy sequence
in L2(Q, P). Here we omitted the details. Therefore the proof of Theorem 1.2 is completed. O

3.3. Proof of Theorem 1.3.
Proof. (1) It is enough to prove that
E [o; 01) - a; 02| < mlys = yal™,

holds for every t € [0,T] and n > 1.

Since
, , i s L (CHK _GHKY _ e iy i
Ia,,e(yl)—at,e(yz)|=‘—§ f f f g (ST (70 — o 70%) didrds|, (3.1)
0o Jo Jr
and
|e"fb — e % < m|é'|b — al*, forany T € (0,1). (3.2)
Hence
E““r,e(h) - a, (»)| ]
2 n
lf’ SHK TEDT — g e_aij dédrids;
(zﬂ) ff Uf (e ) ];[-fju
nr 5 SHK T
<on =t [ [ BT [ Tierwagaras, (33)
YA R)l :1 J 1
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for any 7 € (0, 1).

Let us first deal with the product insider the expectation. Using the method of sample configuration
as in Jung and Markowsky [10]. Fix such an ordering and let /; < [, < --- < [, be a relabeling of the
set {ry, S1,72, $2,-* , 'y, S,}. We obtain

ﬁ (st sn") ﬁei“~f(sgl’(1‘51’;’x), (3.4)
j=1 =1

where the u s are properly chosen linearly combinations of the £;s to make (3.4) an equality. By local
non-deterministic property for S 51,1( , we have

n
B[]l )
J=1

Fixing &;, we choose j; to be the smallest value such that u; contains &; as a term and then choose j,
to be the smallest value strictly larger than j; such that u;, does not contain &; as a term. Thus,

S e_m22nll uz(l]+1 l)ZHK. (3.5)

1+t 1+7

1 Lt
T = g, —wja| ? fuger — u

1+'r 1+7
< m(|”j. |uj, | )(|u]2 R |u]2 2 ) (3.6)
Leta; =l — I; (with [, = 0),by (3.3), (3.5) and (3.6), we deduce

2n

f —mzznll uzazHK (Iqulzﬁ + |u1_1llzﬁ)d§dl

E [a; 1) - ), )] < m f

[0,1] 2n

I, (|“j|l§r + Jun 12)
< dé, 3.7
mfR 1—[2" 1(1 + |uj|HK) ¢ GD

where d¢ = dé\d&, ---d€,, dl =dldl,---dlb,, uy=uy, =0,and we use the inequality

t
f L L (3.8)
0 I + |ul7®

Expanding the product in the numerator of (3.7) gives us the sum of a number of terms of the form
2n-1 (l+‘r)m
1—[ |”J| ’

J=1

where m; = 0, 1 or 2 (terms containing |uo| or |u,| are equal to 0). Thus, it is suffice to show that

1
f (1+'r)m é:l dé:z e dé:n (3.9)
R" I—IZn 1 (1 + |u]|HK )

AIMS Mathematics Volume 7, Issue 6, 10286—-10302.
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is finite. We make a linear transformation changing this into an integral with respect to variables
Uk, , Uy ** 5 Uk, € {1, -+, Up,—1} Which span {£, &, -+, &,} in order to bound (3.9) by

1
mf 2n—1 (1+7)m ; dukldukz e dl/lkn
n I—I n— ( 7/)

P+ g 7w

1
Smf duy, duy, - - - duy .
" 2n—1 1 1 2 n
O ) (1 + |y, | 7R (1+T>)

1

This is finite if we choose 7 such that # — (1 +7)> 1, namely 7 < %{ -2.
(2) It is enough to prove that

E||a, ) - ar 0)|'] < mlt =7,

holds for t,7 € [0,T], every y € Rand n > 1.

Since }
! $ oroHK  oHK e£?
ff ffel"c(s“ S Ve T dédrds
t 0 R

/ , 1
o, 0 = 7, 0] = 5

Hence,

E||o,.0) - ;0[]

n
<[ [ T
[£,7]" J[0,51]%--x[0,s,] JR" j=1

[ n

1 U ig (S HK_ H,K— 1
Smf Hlm(sj)f ﬂ|§,-|E ]—[eff“w §i7) ndfjdrjdsj
D" =1 R" =1 | j=1 1 j=1
<mlt — 7" f f &/|E
AINIE

= mlt — f"A,

n

n
o oHK_oHK
| |el§_1(5.vj Srj ):|| |d§jdrjdsj
j=1

j=1

n

o oHK _GHK
elf/(Ssj Srj ):# \ldé:j

J=1

where D = {(r,s) : 0 < r < s < } and we use the Holder’s inequality in the last inequality with
v <1-2HK.
Using the similar method as in the proof of (1) in Theorem 1.3, A is bounded by

n 2n—1 1y
_HK _HKmj
[f l_l(le =) l_[(lj+l =) ™=dhdl - --db, |,
E" i1 =1
where E" = {0 <} <--- <, < t}.
Since 1 —y > 2HK, there exists a constant m > 0, such that
E ||, .0) - a7 0| < mle -
Thus, we finished the proof of Theorem 1.3. O
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4. Conclusions

We mainly study the existence of the self-intersection local time and its derivative for the sub-
bifractional Brownian motion. Moreover, we prove its derivative is Holder continuous in space variable
and time variable, respectively. In the future, we will consider its higher order derivative.
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Appendix

In this section we prove Lemma 2.2.

Proof. By (1.4), we obtain (2.3), (2.6) and (2.9) easily. Since the proofs of (2.4), (2.7) and (2.10)
are similar to those of Hu [4]and Hu and Nualart [5], we omitted the details. Thus we only need to
prove (2.5), (2.8) and (2.11).

In order to prove (2.5), let e = r, by (1.3), we have

— [(SZH + (S’)ZH)K _ (SZH + (r’)ZH)K _ (rZH + (S’)ZH)K + (rZH + (r’)ZH)K]

2HK _ (s+ S’)ZHK +(r+ S’)ZHK —(r+ r’)ZHK]

+% [(s +7)

[Is = 7 PHE = |s = 5 PHE 4 | = 5 PHE — | =/ PHE]. (A.1)

| =

+

Hence,

= {[(e ra+b +era+rb+ o] —[e+a+tb +e+a]

- [ezH +(e+a+b+ C)ZH]K + [€2H + (e + a)ZH]K}

1
+5 [(2e +2a+b)K — Qe +2a+2b+ ) + Qe +a+ b+ c)HK — (2e + a)ZHK]

1
+§ [szK _ PHK 4 (a+b+ C)ZHK _ a2HK]

= Al,l + Al,Z + A1,3.

For A; 1, we obtain

e+a+b < B
Ay = f d{[x2H+(e+a+b+c)2H] —[x2H+(e+a)2H] }

i ([ an 2n K1 2H AL
=2HK X {[x +(e+a+b+c) ] —[x +(e+a) ] }dx

(A2)

since 0 < K < 1.
For A, », we get

1
Aip =3 [(2e +2a+ b)Y — Qe +2a+2b+ ) + Qe +a+ b+ ) — (e + a)ZHK]

1l
— [(2e +a+b+c)K — Qe+ a)ZHK]

[\S}

1
5 (b + C)2HK

AIMS Mathematics Volume 7, Issue 6, 10286—10302.
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1
= 5(b2 + 2bc + A)K

1
< E[2(192 + K
< 2HK—1(b2HK + CZHK)’ (AS)

since 0 < 2HK < 1, where we use the inequality x* — y* < [x — y|* forany x > 0,y > 0,0 < a < 1.
For A, 3, we deduce,

1
As = 5 [(a + b+ ¢)2HK | pPHK _ PHK CZHK]
1
=5 [(a + b+ 2+ 2ab + 2ac + 2bc)K + p2HK _ 2HK _ CZHK]

% [(3a +3b2 + 3¢ )HK pRHK _ 2HK _ CZHK]

< 3K 1 (aZHK 2HK) + 3K 4 1b2HK

+
S 2 C
3HK 41
< (aZHK + pHK | CZHK) . (A.4)

Therefore (2.5) holds from (A.2)—(A.4).
In order to prove (2.8), let e = r, by (1.3) and (A.1), we have

m={[(e+a+b+c)2H+(e+a+b)2”]K—[(e+a+b+c)2”+(e+a)2”]K

- [eZH +(e+a+ b)ZH]K + [€2H + (e + a)ZH]K}

1
+3 [(2e +2a+b+0) K — (2e +2a+2b+ ) + (2e + a + b*HK — (2e + a)ZHK]

1
+§ [(b + C)ZHK _ 2HK (a+ b)ZHK _ aZHK]
= AZ,I + Az’g + A2,3.

For A, ;, we obtain

e+a+b+c © B
Ao = f d {[XZH +e+a+b)| - [+ (e+a)| }

e+a+b+c P ol
= ZHKf x2H_l{[x2H+(e+a+b)2H] - [x2H+(e+a)2H] }dx

<0, (A.S)

since0 < K < 1.
For A, ,, we get

1
Aoy = |e +2a+ b+ 0 = (2e +2a + 2b + ) + (2e + a + b - (2¢ + a)"'*|
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1
<3 [@e + a+ b — 2 + a)"'¥|
1
< 5bZHK, (A.6)
since 0 < 2HK < 1.
For A, 3, we deduce,
1
Ayy = 5 [( a+ b)ZHK — 2HK (b + C)ZHK _ CZHK]
L onk | onk
< E (b +b )
= pPHK (A7)
since 0 < 2HK < 1. Therefore (2.8) holds from (A.5)—(A.7).
In order to prove (2.11), let e = r, by (1.3) and (A.1), we have
_ 2H AL 2H 2H
Uz = [(e+a) +(e+a+b+c) ] [(e+a) +(e+a+b) ]
2H 211K 2H 21K
—[e +(e+a+b+c) ] +[e +(e+a+b) ] }
1
+ e+ 2a+ byK — (2 + 2a+ b+ )" + Qe+ a+ b+ ) — (2e +a+ by
1
5 [P = 0+ Pk @k b+ P = (a+ )]
= A3’1 + A3’2 + A3,3.
For Az ;, we obtain
e+a K K
A3,1:f d{[x2H+(e+a+b+c)2H] —[x2H+(e+a+b)2H] }
T bt [[om 2n K1 2H 2n K1
=2HK X {[x +(e+a+b+c) ] —[x +(e+a+b) ] }dx
(A.8)

<0,

since 0 < K < 1.
For Az, and for @, 8 > 0 with @ + 8 = 1, we get

1 2
A3y = _Ef d[(2e+b+c+ ua)*'® — (2e + b + ua)ZHK]
1

2 1
= —HKaf [f dQ2e + b + ua + ve)*1k-!
1 [Jo

2
= —HKaf [(26 +b+c+ua)® ' —Qe+b+ ua)ZHK‘l] du
1

du
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2 1
= —HK(QHK - ac f f (2e + b + ua + ve)*2dvdu
1 0
2 1
= HK(1 - 2HK)ac f f (2e + b + ua + ve)*"82dvdu
1 0
2 1
< HK(1 - 2HK)ac f f (b + ua + ve)*2dvdu
1 0

2 ! 2HK-2
< HK(1 - 2HK)acf f [b“(ua + vc)ﬁ] dvdu
1 Jo

2l g 5 2HK-2
< mac f f [b"(ua)z(vc)z] dvdu
1 Jo

< mbXHK=D) (a C)B(HK—1)+1 ,

since 0 < 2HK < 1.
For Az 3, we deduce,

1
Ass =5 |(@+ b+ K = (b + )™ — (@ + b + p?MK]

1 !
= Ef d[(b+a+vc)2HK—(b+vc)2HK]
0

1
= Hch [(b +a+ve)tE b+ vc)ZHK_l] dv
0

1 1
= Hch [f db + ua + vc)ZHK_l] dv
0o LJo

1l
= HKQHK - l)acf f (b + ua + ve)*K2dudy
0 Jo

<0,

since 0 < 2HK < 1. Therefore (2.11) holds from (A.8)—(A.10). Thus we have finished the proof of

Lemma 2.2.

(A.9)

(A.10)

]
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