The main objective of this work is to explore and characterize the idea of $ s $-type preinvex function and related inequalities. Some interesting algebraic properties and logical examples are given to support the newly introduced idea. In addition, we attain the novel version of Hermite-Hadamard type inequality utilizing the introduced preinvexity. Furthermore, we establish two new identities, and employing these, we present some refinements of Hermite-Hadamard-type inequality. Some special cases of the presented results for different preinvex functions are deduced as well. Finally, as applications, some new inequalities for the arithmetic, geometric and harmonic means are established. Results obtained in this paper can be viewed as a significant improvement of previously known results. The awe-inspiring concepts and formidable tools of this paper may invigorate and revitalize for additional research in this worthy and absorbing field.
Citation: Muhammad Tariq, Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh. Some integral inequalities for generalized preinvex functions with applications[J]. AIMS Mathematics, 2021, 6(12): 13907-13930. doi: 10.3934/math.2021805
The main objective of this work is to explore and characterize the idea of $ s $-type preinvex function and related inequalities. Some interesting algebraic properties and logical examples are given to support the newly introduced idea. In addition, we attain the novel version of Hermite-Hadamard type inequality utilizing the introduced preinvexity. Furthermore, we establish two new identities, and employing these, we present some refinements of Hermite-Hadamard-type inequality. Some special cases of the presented results for different preinvex functions are deduced as well. Finally, as applications, some new inequalities for the arithmetic, geometric and harmonic means are established. Results obtained in this paper can be viewed as a significant improvement of previously known results. The awe-inspiring concepts and formidable tools of this paper may invigorate and revitalize for additional research in this worthy and absorbing field.
[1] | B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space. Appl., 2012 (2012), 1–14. |
[2] | C. P. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006. |
[3] | S. Özcan, İ. İşcan, Some new Hermite-Hadamard type integral inequalities for $s$-convex functions and theirs applications, J. Inequal. Appl., 1 (2019), 1–11. |
[4] | S. K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite-Hadamard type inequalities involving $k$-fractional operator for $(\overline{h}, m)$-convex functions, Symmetry, 13 (2021), 1686. doi: 10.3390/sym13091686 |
[5] | M. Tariq, S. K. Sahoo, J. Nasir, H. Aydi, H. Alsamir, Some Ostrowski type inequalities via $n$-polynomial exponentially $s$-convex functions and their applications, AIMS Mathematics, 6 (2021), 13272–13290. doi: 10.3934/math.2021768 |
[6] | W. Sun, R. Xu, Some new Hermite-Hadamard type inequalities for generalized harmonically convex functions involving local fractional integrals, AIMS Mathematics, 6 (2021), 10679–10695. doi: 10.3934/math.2021620 |
[7] | W. Sun, Hermite-Hadamard type local fractional integral inequalities for generalized s-preinvex functions and their generalization, Fractals, 29 (2021), 2150098. |
[8] | M. A. Khan, Y. M. Chu, T. U. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for $s$-convex functions with applications, Open Math., 15 (2017), 1414–1430. doi: 10.1515/math-2017-0121 |
[9] | T. Du, M. U. Awan, A. Kashuri, S. Zhao, Some k-fractional extensions of the trapezium inequalities through generalized relative semi-$(m, h)$-preinvexity, Appl. Anal., 100 (2021), 642–662. doi: 10.1080/00036811.2019.1616083 |
[10] | S. I. Butt, M. Tariq, A. Aslam, H. Ahmad, T. A. Nofel, Hermite-Hadamard type inequalities via generalized harmonic exponential convexity and applications, J. Funct. Space., 2021 (2021), 1–12. |
[11] | S. K. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi, A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13 (2021), 1429. doi: 10.3390/sym13081429 |
[12] | M. Tariq, J. Nasir, S. K. Sahoo, A. A. Mallah, A note on some Ostrowski type inequalities via generalized exponentially convexity, J. Math. Anal. Model., 2 (2021), 1–15. doi: 10.48185/jmam.v2i1.127 |
[13] | M. Tariq, S. K. Sahoo, J. Nasir, S. K. Awan, Some Ostrowski type integral inequalities using hypergeometric functions, J. Fract. Calc. Nonlinear Syst., 2 (2021), 24–41. doi: 10.48185/jfcns.v2i1.240 |
[14] | M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80 (1981), 545–550. doi: 10.1016/0022-247X(81)90123-2 |
[15] | A. Ben-Isreal, B. Mond, What is invexity? Anziam. J., 28 (1986), 1–9. |
[16] | S. R. Mohan, S. K. Neogy, S. K, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. |
[17] | T. Antczak, Mean value in invexity analysis, Nonl. Anal., 60 (2005), 1473–1484. doi: 10.1016/j.na.2004.11.005 |
[18] | S. Rashid, İ. İşcan, D. Baleanu, Y. M. Chu, Generation of new fractional inequalities via $n$-polynomials $s$-type convexity with applications, Adv. Differ. Equ., 2020 (2020), 1–20. doi: 10.1186/s13662-019-2438-0 |
[19] | Y. C. Kwun, A. A. Shahid, W. Nazeer, M. Abbas, S. M. Kang, Fractal generation via CR iteration scheme with $s$-convexity, IEEE Access, 7 (2019), 69986–69997. doi: 10.1109/ACCESS.2019.2919520 |
[20] | S. Kumari, M. Kumari, R. Chugh, Generation of new fractals via SP orbit with $s$-convexity, Int. J. Eng. Technol., 9 (2017), 2491–2504. doi: 10.21817/ijet/2017/v9i3/1709030282 |
[21] | S. Mititelu, Invex sets and preinvex functions, J. Adv. Math. Stud., 2 (2009), 41–53. |
[22] | T. Weir, B. Mond, Pre-inven functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8 |
[23] | M. A. Noor, K. I. Noor, M. U. Awan, J. Y. Li, On Hermite-Hadamard inequalities for $h$-preinvex functions, Filomat, 28 (2014), 1463–1474. doi: 10.2298/FIL1407463N |
[24] | M. A. Noor, Hermite-Hadamard integral inequalities for $\log$-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131. |
[25] | G. Barani, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 1 (2012), 1–9. |
[26] | M. A. Noor, Hadamard integral inequalities for product of two preinvex function, Nonl. Anal. Forum., 14 (2009), 167–173. |
[27] | M. A. Noor, Some new classes of nonconvex functions, Nonl. Funct. Anal. Appl., 11 (2006), 165–171. |
[28] | M. A. Noor, On Hadamard integral inequalities invoving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8 (2007), 1–6. |
[29] | M. U. Awan, S. Talib, M. A. Noor, Y. M. Chu, K. I. Noor, Some trapezium-like inequalities involving functions having strongly $n$-polynomial preinvexity property of higher order, J. Funct. Space., 2020 (2020), 1–9. |
[30] | S. Rashid, İ. İşcan, D. Baleanu, Y. M. Chu, Generation of new fractional inequalities via $n$-polynomials $s$-type convexity with applications, Adv. Differ. Equ., 2020 (2020), 9154139. |
[31] | C. P. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006. |
[32] | S. K. Mishra, G. Giorgi, Invexity and Optimization, Berlin: Springer-Verlag, 2008. |
[33] | J. Hadamard, Étude sur les propriétés des fonctions entiéres en particulier d'une fonction considéréé par Riemann, J. Math. Pure. Appl., 58 (1893), 171–215. |
[34] | X. M. Yang, X. Q. Yang, K. L. Teo, Generalized invexity and generalized invariant monotonicity, J. Optimiz. Theory App., 117 (2003), 607–625. doi: 10.1023/A:1023953823177 |