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1. Introduction and main results

For any integer n > 1, the Pillai’s arithmetical function, which is also known as the gcd-sum function
is defined by

P(n) = > (m) = ) dg(n/d), (1.1)
k=1 din

where ¢ is the Euler’s totient function, and (k,n) denotes the greatest common divisor of k and n.
Over the years, a great deal of mathematical effort in number theory has been devoted to the study of
classical gcd-sum function. Its distribution properties, numerous important arithmetical and algebraic
information have been investigated by many mathematicians; see, for example [1-3]. In addition, some
natural generalizations of the usual gcd-sum function also have been considered; see [4]. Let r > 1 be
a fixed integer, the greatest " power common divisor of positive integers a and b is defined to be the
largest positive integers d” such that d"|a and d"|b, which is denoted by (a, b), and called the r-gcd of
a and b. Note that (a, b); = (a, b). With this definition, Prasad, Reddy and Rao defined the r-gcd-sum
function as

Py = (), (1.2)
k=1
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and for every € > 0, they derived an asymptotic formula of its summatory function as follow:

P ()

X! log x 1 o+
P, = +2 - + O, 1+5= ,
;;(”)<H4Mv+n( ) ()
where {(n) is the Riemann zeta function and 6 is the positive real number appearing in the Dirichlet
divisor problem, for which one seeks the smallest positive real number 6. That is, for all real x > 1 and
any & > 0, the asymptotic formula given below holds:

Z 7(n) = x(logx +2y — 1) + O, (x9+8) ,

n<x

where 7(n) is the number of positive divisors of n and vy is Euler’s constant.

Let r be a fixed positive integer. A positive integer k is said to be r-regular (mod n") if there exists
an integer x such that K""'x = k" (mod n"). Also, it was observed in [5] that k is r-regular (mod n") if
and only if (k,n"), is a unitary divisor of n". We recall that d is said to be a unitary divisor of » if d|n and
(d,n/d) = 1, written as d || n. When r = 1, it gives usual regular integers (mod #n), and a detailed study
was initiated by L. T6th [6]. Let Reg,(n) denotes the set of all r-regular integers modulo n and Reg(n)
denote the set of all regular integers modulo n. That is, Reg,(n")={k : 1 < k < n’, k is r-regular mod
n"}, Reg(n)={k : 1 < k < n, k is regular mod n}. L. Téth [7] introduced another generalized gcd-sum
function over regular integers modulo n as

B(n) = Z (k, n). (1.3)

keReg(n)

He also proved that P(n) is multiplicative and gave the following asymptotic formula

2
> B = 2;( 55 (Kilogx + K) +0 (¥P5(x)), (1.4)

n<x

where 6(x) = exp (—C(log x)*/(log log x)‘”5), and K,,K, are given by

1
m2[1@‘p@+ny

p

b

120 @)\ < pn)(logn — a(n) + 2B(n)
_;; ny(n)

where ¢/(n) is Dedekind function defined by y(n) = n [] ), (1 + é) and
lo lo
ot = [ [ =5 sow =[]-325

pln p -1 pln 1

Recently, under the Riemann hypothesis, the error term R(x) in (1.4) has been improved by Zhang and
Zhai [8] to
R(x) = O(x15/11+8),
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where € > 0 is any sufficiently small positive number.

Afterwards, Prasad, Reddy and Rao [9] introduced the r-gcd-sum function over r-regular integers
(mod n"), which is defined as

Pny:= ) (k).
keReg,(n")

Based on the properties of a generalization of Euler’s ¢-function [10], they obtain some arithmetic
properties of P,(n") and an asymptotic formula for its summatory function. Motivated and inspired by
the work of L.T6th, Prasad, Reddy and Rao [7,9], in this paper we offer a different proof for Prasad,
Reddy and Rao’s result [9] firstly, then we perform a further investigation for r-gcd-sum function
over r-regular integers (mod n") and derive two kinds of asymptotic formulas. Furthermore, we also
establish estimates for the generalized r-lcm-sum function over r-regular integers (mod n).

Firstly, we state the following results.

Theorem 1. For any real number x > e sufficiently large, we have the following estimate

5o X0 (logx  20(2) LG el
ZP’(")‘<r+1>§<2>( T Y r+1+cl)+0( 50).

n"<x

where

1
C, = [
: l_[{ p’(p+1)}

p

_\ M) _ _
Z i@ @D = 2B ~logd).

Note. Taking r = 1, L. Téth’s result ( [7], Theorem 2) can be deduced from Theorem 1.

Theorem 2. For a positive integer s > 1, define the generalized r-gcd-sum function over r-regular
integers (mod n") as

Poy= > (kn"))’.

keReg,(n")

Then for any real number x > e sufficiently large and r > 1, we have

—D(p —
S By = ( %) L0,

n"<x

On the other hand, let [k, n] denotes the least common multiple of k and n. Ikeda and Matsuoka [11]
studied the functions

Lym) = ) (Tk,n])",
k=1

T, =) Ly,

n<x
and obtained

_fa+2) ot
ZL() PRI 242+ 0 (x** (log x)(log log x)*?)
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for a € N. So naturally, we’re thinking about generalized r-lcm-sum function here. Define the least "

power common multiple as
kn

(k,n),”
and for a positive integer a > 1, and generalized r-lcm-sum function over r-regular integers ( mod n) as

Lam= ). ([knl).

keReg,(n)

lk,n], =

Then we can deduce,

Theorem 3. For any real number x > e sufficiently large, define the r-lem-sum function as L, ,(n) =
Y1 (k,nl,)*, then

B xX>*2 (ar + 2r) 2+l
2 L) = S g O

n<x

Theorem 4. For any real number x > e sufficiently large, we obtain

x%+2 P '(p-1 2a+1
ZLra(n) ml—[(l + (er_ 1)(pa+2_1))+0(x )

n<x

Taking r = 1 in Theorem 3, we can get,
Corollary 1. For any real number x > e sufficiently large,

3x2a+2 p -
D L= ) (kn) e ]—[ (1 T 1)) +0(x).

n<x keReg(n)

2. Several lemmas

In this section, we give several lemmas which are necessary in the proof of our theorems. First of
all, in the proofs of these lemmas, we need some knowledge of elementary and analytic number theory.
And we know that an integer is rth-power-free if it is not divisible by the r#h power of any integer > 1.
Then let ¢,(n) denotes the number of integers k in the set 1,--- ,n, for which the greatest common
divisor (k, n) is rth-power-free, and u’"(n) is defined as follows:

w1 =1
ifn > 1andn = p{' py>--- p;" is the canonical factorization of n, then
win) = { (-1, far=a=--=a=r,

0, if for some i, a; # r;

and let 7*(n; m) denotes the number of unitary divisors of n which are relatively prime to m, where
m > 1 be an integer. In symbols,
™ (n;m) = Z 1.

d|ln
(d,m)=1

By the notations above, we have the following:
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Lemma 1. For every € > 0, we get

Z n't*(n;m)

n<x

o me 20 ) |
T+ DE@u(m) (log X+ alm) = 3m) = o +2y - m)

+0 (0‘j1+8(m)0-j6(m)x’+ : 6(x)) ’

where o (n) is the sum of the a-th power of square free divisors of n and a(m), f(m), Y(m), 6(m) are
the same as given in the introduction.

Proof. For any integer m > 1 and every &€ > 0, one knows that ( [12], Theorem 4.3),

oo mx VN N
Z T (nym) = 220 (logx + a(m) — 2B(m) —{(2) +2y -1

+0 (0{ 1 +8(m)0'*_9(m)x%6(x)) .

n<x

Then by using partial summation formula, we immediately have

Z n't*(n;m) x Z ™ (n;m) — xrj; ! Z 7 (n; m)dt

_ | _ 2% ) i
(r+ DEQum) (l"g X+ atm) = 2B0m) -~ =+ 2y = ey

+0 (0}, ()0 y(m)x*26(x)) .

Lemma 2. ( [13], Corollary 2.1) For any integer k > 1 and s > 0

. XSHQD(IC) ;
Z O T + 0(x*t(k)),

n<x
(n,k)=1

where 1(k) denotes the number of divisors of k.

Lemma 3. For every n,a,r € N, we have the identity

a a a la/2] 1-2m
N n‘¢,(n) n a+1 . N
Z k= 380(”) + + ( o )Bzmz,u (d)dl—Zm’

a+1 a+1

k<n m=1 din
(k,n)=1

where go(n) = 1, if n is rth-power-free; 0, otherwise. And B, are the Bernoulli numbers defined by
exponential generating function w = >, Bn;—"!.

Proof. Firstly, we know the function " has following property [10]:

Z ") = 1, 1if nis rth-power-free,
K ~ | 0, ifnisnot rth-power-free.
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In addition, it is well known that for every n,a € N,

;ka _ a+1Z( 1)( ) atiom

So we can deduce

2,

k<n
(k,l’l)rzl
= DK M@= AW Yy m
k<n d|(k,n), din m<n/d

- ;d“u’<d> % (3) +1mz/l2j(a+l) (n)lzm]
nt & a+1 1-2m
Y 2)(2 )Bszu(d)( )

din din

Y IZu( )=+

din

a

La/2] pl-2m

B n_“ n“gb,(n) n®
a 2g0(n)+ a+1 a+1Z( )Bzm;m: (d)dl om

This completes the proof of Lemma 3.

Lemma 4. For any integer k > 1 and a € N, we have

2r-1 2a+2
S gy = = O (et g xe(h)

2. (2a+ 2L2nes®)
(n,k)=1
2a _ a2 0 (2411
Z n ¢r(n) = m + ()C og X) .

n<x

where ¢, is Jordan totient function, defined by

ey =n"| Ja-p.

pln

Proof. It follows from Lemma 2 that

Z/:( +1)BZmZﬂ(d)( )1 ~2m

(@)

(b)
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2, b

(n,ks)il
— Z n2a Z#r(d)e — Z 'ur(d)dZa Z 62a+1
n<x de=n d<x e<x/d
(nk)=1 (dk)=1 (e,k)=1
(,0(]() X 2a+2 X 2a+1
A
;“() ((2a+2)k a2 *og) W
(db)=1
_ go(k)x2“+2 Z /.lr(d) +0 xz‘”l‘r(k)zl
Qa+2k L& Zig
(=1 -

(x> & W(d) - 1 ” 1
= Z +0 .X,'Z 22@]4‘0(]@ 1T(k)22

Qa+2k & P
(dk)=1

o)X O (d) 2a+1
= e+ D dZ_; 7 +0(x long(k)),

(dk)=1

d>x

d<x

|

where we use the familiar estimate Y., + = O(logx) and Y., -+ = O(x“s), when s > 1.

Furthermore, it can be deduced

Z M;(zd) _ Z ﬂ;(2d) _ Z ﬂ;(zd)

d<x d=1 d>x
(d,k)=1 (dk)=1 (d.k)=1
1 "(d
:IT@‘7J+0[ wgﬂ
ptk p d>x d
1
CIL(1-5) ()|
= ﬁ + 0 Z 7
lek( - ﬁ) d>x
1/£2r) .
—— +0(x ).
@2, (k) /K2 ()

So we have

2r—1 2a+2
D ¥, (n) = Kot + 0 (¥ log xr(k)).

(2a + 2){(2r)ga,(k)

n<x
(n,k)=1

By using similar methods and elementary asymptotic formula

a+1

a_'x a
Zn =+ 00,

n<x

(b) can be easily derived.

O
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3. The proof of Theorem 1

LetR,,=lk : 1 <k <n, (k,n"), = 1} and ¢, (n") denote the number of elements in R, ,. Since
¢, (n") = n" 34, u(d)/d" (see, [14]), we have

Py = ) (k)= Zd’@( dr) IR
keReg,(n") drln fur=n" dv=u

(" un)=1

PIRATCEDNITCIDIS
tdv=n ld=n tv=I
(t,dv)=1 (t,v)=1

(t.d)=1

Z I'u(dye (1 d).

ld=n

Taking y = x!/7, it follows from Lemma 1 and the above identity that

= Dy td) = Y pd) Y Itz d)

n'<x ld=n d<y I<y/d

u(d)

r+1 é (2) 1
(r+ 1)((2) Z d"y(d)

(logy log d+ a(d) 2ﬁ(d) - E 2'}/ - m

+0 [Z |u<d>|ai1+g<d>ai9(d><y/d>’+%6<y/d>]

d<y

y! o) 2 2) 1
<r+1>§<2>zdrw<d>(°gy w@ T r+1)

u(d)
NEERVEe) dzy: 'y (d)

(a(d) - 28(d) - log d)

+0 [Z aim(d)aig(d)(y/d)“%5<y/d>] .

d<y
Notice that for any integern > 1,

a(n) = 1—[ log < l_llogp < logn,

pln p pln

B log p log p
s =] |55 <[ 55
pln pln
which implies that a(n) = O(log(n)), B(n) = O(1).
Then by the definition of ¥, it is clear that for any integer r > 0, the series
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and

o u(d)
d) —2B(d) —logd
;d,w(d)(a() 5(d) — log d)

are both absolutely convergent. Applying Euler product,we can obtain

N _M(d) 1 )
= [l1-——].
dZ‘ dry(d) U ( Pr(p+1)

Moreover, since 0" (n) < 7(n), o~
can be simplified as

" 14e(m) < 7(n) for € < 1, and y"6(y) is increasing. so the error term

0 (Z 0i1+8(d)o-i9(d>(y/d)*+56@/d>)

d<y

; 2(d
0 (y”zei(y) Z ;é_)g]

d<y
0(y*26(»).

Now, by a simple calculation, we get

S x™er (logx 20(2) 1 G el
ZP,(n) (r+1)§(2)( ) +2y—m+c—l)+0(x 8(x)).

This completes the proof of Theorem 1.

4. The proof of Theorem 2

For any integer r > 1, s > 1, by taking y = x!/"

2 Py = Y () =R Y (k)Y

and using lemma 2, we have

n'<x n'<x keReg,(n") n"<x (k,n")|ln"
r/a
- IS S S e
n"<xa’|ln" ab<y
(k, n’/a*) =1 (a,b)=1
= 600 > a
b<y asy/b
(a,b)=1
rv+1 r
) ¢b)e(b) 667
- rs+1 Z brs+2 ;y

rs+1

660e®) | e
- rs+lz b2 [ 1bz>;b“ )
[ Zmb >r<b))

b<y
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Since r > 1,s > 1, the series

3 00

nrs+2 = prser

is absolutely convergent and the general term is a multiplicative function, thus the series can be
expended into an infinite product of Euler type

O r(n)g(n)

nrs—r+l

n=1
_ L @=De =1 (p=Dp(' = Dp"  (p-Dp’(p" = Dp”
- l—[ prs r+1 + p2(rs—r+]) + p3(rs—r+l) T

P

-1 -1

= l—[( + (prs r+)1(p r+1))'

, prtt=p

For the error term, we can deduce that

[ rs+1 Z = r} _ r+2) ,

b>y

b
O(y” ) Zfsl] - 00").

b<y

To sum up, we can obtain

(p-D@ -1 s
ZPrs( )_rs+1l—[( T_pm) 0(x).

n"<x

5. The proof of Theorems 3 and 4

Firstly, we prove Theorem 4. By using Lemma 3, it is easily seen that

Lum= > (nl)

keReg,(n)

a
Y (o) =2 X
ra
keReg,(n) (k, n), drln d k<n
ged(k,n)y=d"

=Y Y der=wy Y F

d"||n j<n/d" d"||n j<n/d"
ged(jn/d")r=1 ged(jin/d)=1
- (@) o lE) ()
- \a) P T e
la/2]
a+1
+ dm( ) B . r bl—2m .
% dr [a + 1 ( ) 2 ; M (Cl)
av=yr
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Then

D L)

= Dde e ( >80(e) + </>r<e>)
dr<x e<x/d"
ged(e,d")=1
) 1 G la+1 "
ey e 3 o Y e
dr<x e<x/d" m=1 ab=e
ged(e,d")=1
1 &la+1
_ ra 2a r 1-2m
- a+1z_;(2m) ZmZd Z e Z/J(a)b
m= dr<x e<x/d" ab=e
(dre)=1
ra 2a 2a
a+1Zd Z e ¢,(e)+0(x )
d'<x e<x/d"
(d"e)=1
= Ap+ A +O(x2“).
By using Lemma 4(a), we get
— ra 2a
A= Y 2, o)
dr<x e<x/d’
(dr,e)=1
B ‘p(dr)er-r ( X )2u+2
T oa+ 14T Qa+ 2@y (d)d \dr

o7 ()

2a+2 N J2rr r
w(d"d 2a+1 7(d)
= +O0x“1
2(a + 124(2r) ; @ (dr)dra+3 [x °g’“; der
x2a+2 ad cp(d’)dZ’"

20(2r)(a + 1) £ o, (dn)dre

2a+2 QD(dr)dzrr 2a+] T(dr)
+O[ ' Z (,Dzr(dr)dra+3r ' IOg Z dar+r

d>xr d<x!Ir

And it can be calculated by Euler product that

(,O(dr d2rr ( p2r—l(p _ 1) )
= 1 .
Z ©ar (dr)dra+3r D + (p2r — 1)(pa+2 _ 1)

So

2a+2

— X er—l(p B 1) a+2 2
A = I ICESE 1:[ (1 + O~ D = 1)) + O(x log x),
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where we have used

SD(dr) < Z 1 _ O(XI—ar—Zr)’

ra+3r ra+2r
d>x d d>x d

> M) _ oai-e log x).
n(l

n<x

And for m,a € IN with a > m,

Z nZa Z'ur(a)bl—Zm — Z 'ur(d)dZa Z e2a—2m+1 < x2a+l,

n<x/d" ab=n d<x e<x/d
(n,k)=1 (dk)=1 (e.k)=1
SO
x 2a+1 et
_ ra | > _ a+
a=o|yar (5] |=o().
dr<x

To sum up, we can obtain that

Z L) = Ag+A;+0(x*)

n<x
2a+2

X P '(p-1) 2a+1
2@ra+ 17 U (1 R 1)) +O().

This completes the proof of Theorem 4.
Theorem 3 can be deduced by Lemma 3 and Lemma 4(b), and the proof method is similar to
Theorem 4.

6. Conclusions

In this article, we firstly introduced the basic concepts and properties of r-regular integers ( mod n"),
and the r-ged-sum function and r-lcm-sum function over those integers. Let P.(n") denote the r-gcd-
sum function over r-regular integers (mod n"), Theorem 1 offered a different proof of Prasad, Reddy
and Rao’s result, and L. Téth’s result ( [7], Theorem 2) can be deduced from our result. Theorem 2
gave an asymptotic formula for generalized r-gcd-sum function over r-regular integers (mod n"). In
addition, we defined least rth power common multiple [k, n], based on the relationship between the
common lecm and gcd, we also defined r-lcm-sum function L, ,(n) and generalized r-lcm-sum function
L,.(n) over r-regular integers (mod n). By making use of Euler product and some knowledge of
elementary and analytic number theory, we obtained asymptotic formulas for their summatory function.
As a supplement, we can also got an asymptotic formula for lcm-sum function over regular integers
(mod n) easily.
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