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1. Introduction and main results

For any integer n ≥ 1, the Pillai’s arithmetical function, which is also known as the gcd-sum function
is defined by

P(n) =
n∑

k=1

(k, n) =
∑
d|n

dφ(n/d), (1.1)

where φ is the Euler’s totient function, and (k, n) denotes the greatest common divisor of k and n.
Over the years, a great deal of mathematical effort in number theory has been devoted to the study of
classical gcd-sum function. Its distribution properties, numerous important arithmetical and algebraic
information have been investigated by many mathematicians; see, for example [1–3]. In addition, some
natural generalizations of the usual gcd-sum function also have been considered; see [4]. Let r ≥ 1 be
a fixed integer, the greatest rth power common divisor of positive integers a and b is defined to be the
largest positive integers dr such that dr|a and dr|b, which is denoted by (a, b)r and called the r-gcd of
a and b. Note that (a, b)1 = (a, b). With this definition, Prasad, Reddy and Rao defined the r-gcd-sum
function as

Pr(nr) =
nr∑

k=1

(k, nr)r, (1.2)
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and for every ε > 0, they derived an asymptotic formula of its summatory function as follow:

∑
nr≤x

Pr(nr) =
x1+ 1

r

(r + 1)ζ(r + 1)

(
log x

r
+ 2γ −

1
r + 1

−
ζ
′

(r + 1)
ζ(r + 1)

)
+ Oε

(
x1+ θ+εr

)
,

where ζ(n) is the Riemann zeta function and θ is the positive real number appearing in the Dirichlet
divisor problem, for which one seeks the smallest positive real number θ. That is, for all real x ≥ 1 and
any ε > 0, the asymptotic formula given below holds:∑

n≤x

τ(n) = x(log x + 2γ − 1) + Oε

(
xθ+ε

)
,

where τ(n) is the number of positive divisors of n and γ is Euler’s constant.
Let r be a fixed positive integer. A positive integer k is said to be r-regular (mod nr) if there exists

an integer x such that kr+1x ≡ kr (mod nr). Also, it was observed in [5] that k is r-regular (mod nr) if
and only if (k, nr)r is a unitary divisor of nr. We recall that d is said to be a unitary divisor of n if d|n and
(d, n/d) = 1, written as d ∥ n. When r = 1, it gives usual regular integers ( mod n), and a detailed study
was initiated by L. Tóth [6]. Let Regr(n) denotes the set of all r-regular integers modulo n and Reg(n)
denote the set of all regular integers modulo n. That is, Regr(nr)={k : 1 ≤ k ≤ nr, k is r-regular mod
nr}, Reg(n)={k : 1 ≤ k ≤ n, k is regular mod n}. L. Tóth [7] introduced another generalized gcd-sum
function over regular integers modulo n as

P̃(n) =
∑

kϵReg(n)

(k, n). (1.3)

He also proved that P̃(n) is multiplicative and gave the following asymptotic formula∑
n≤x

P̃(n) =
x2

2ζ(2)
(
K1 log x + K2

)
+ O

(
x3/2δ(x)

)
, (1.4)

where δ(x) = exp
(
−C(log x)3/5(log log x)−1/5

)
, and K1,K2 are given by

K1 =
∏

p

(
1 −

1
p(p + 1)

)
,

K2 = K1

(
2γ −

1
2
−

2ζ
′

(2)
ζ(2)

)
−

∞∑
n=1

µ(n)(log n − α(n) + 2β(n))
nψ(n)

,

where ψ(n) is Dedekind function defined by ψ(n) = n
∏

p|n

(
1 + 1

p

)
and

α(n) =
∏
p|n

log p
p − 1

, β(n) =
∏
p|n

log p
p2 − 1

.

Recently, under the Riemann hypothesis, the error term R(x) in (1.4) has been improved by Zhang and
Zhai [8] to

R(x) = O
(
x15/11+ε

)
,

AIMS Mathematics Volume 6, Issue 12, 13157–13169.



13159

where ε > 0 is any sufficiently small positive number.
Afterwards, Prasad, Reddy and Rao [9] introduced the r-gcd-sum function over r-regular integers

(mod nr), which is defined as
P̃r(nr) :=

∑
kϵRegr(nr)

(k, nr)r.

Based on the properties of a generalization of Euler’s φ-function [10], they obtain some arithmetic
properties of P̃r(nr) and an asymptotic formula for its summatory function. Motivated and inspired by
the work of L.Tóth, Prasad, Reddy and Rao [7, 9], in this paper we offer a different proof for Prasad,
Reddy and Rao’s result [9] firstly, then we perform a further investigation for r-gcd-sum function
over r-regular integers (mod nr) and derive two kinds of asymptotic formulas. Furthermore, we also
establish estimates for the generalized r-lcm-sum function over r-regular integers (mod n).

Firstly, we state the following results.

Theorem 1. For any real number x > e sufficiently large, we have the following estimate

∑
nr≤x

P̃r(nr) =
x1+ 1

r C1

(r + 1)ζ(2)

(
log x

r
−

2ζ
′

(2)
ζ(2)

+ 2γ −
1

r + 1
+

C2

C1

)
+ O

(
x1+ 1

2r δ(x)
)
,

where

C1 =
∏

p

{
1 −

1
pr(p + 1)

}
,

C2 =

∞∑
d=1

µ(d)
drψ(d)

(
α(d) − 2β(d) − log d

)
.

Note. Taking r = 1, L. Tóth’s result ( [7], Theorem 2) can be deduced from Theorem 1.

Theorem 2. For a positive integer s > 1, define the generalized r-gcd-sum function over r-regular
integers (mod nr) as

P̃r,s(nr) =
∑

kϵRegr(nr)

((k, nr)r)s .

Then for any real number x > e sufficiently large and r > 1, we have

∑
nr≤x

P̃r,s(nr) =
xs+ 1

r

rs + 1

∏
p

(
1 +

(p − 1)(pr − 1)
prs−r+1 − pr+1

)
+ O (xs) .

On the other hand, let [k, n] denotes the least common multiple of k and n. Ikeda and Matsuoka [11]
studied the functions

La(n) =
n∑

k=1

([k, n])a ,

Ta(x) =
∑
n≤x

La(n),

and obtained ∑
n≤x

La(n) =
ζ(a + 2)

2(a + 1)2ζ(2)
x2a+2 + O

(
x2a+1(log x)2/3(log log x)4/3

)
AIMS Mathematics Volume 6, Issue 12, 13157–13169.
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for a ∈ N. So naturally, we’re thinking about generalized r-lcm-sum function here. Define the least rth

power common multiple as

[k, n]r =
kn

(k, n)r
,

and for a positive integer a > 1, and generalized r-lcm-sum function over r-regular integers ( mod n) as

L̃r,a(n) =
∑

kϵRegr(n)

([k, n]r)a .

Then we can deduce,

Theorem 3. For any real number x > e sufficiently large, define the r-lcm-sum function as Lr,a(n) =∑n
k=1 ([k, n]r)a, then ∑

n≤x

Lr,a(n) =
x2a+2ζ(ar + 2r)
2(a + 1)2ζ(2r)

+ O
(
x2a+1

)
.

Theorem 4. For any real number x > e sufficiently large, we obtain∑
n≤x

L̃r,a(n) =
x2a+2

2ζ(2r)(a + 1)2

∏
p

(
1 +

p2r−1(p − 1)
(p2r − 1)(pa+2 − 1)

)
+ O

(
x2a+1

)
.

Taking r = 1 in Theorem 3, we can get,

Corollary 1. For any real number x > e sufficiently large,∑
n≤x

L̃1,a(n) =
∑

kϵReg(n)

([k, n])a =
3x2a+2

(a + 1)2π2

∏
p

(
1 +

p
(p + 1)(pa+2 − 1)

)
+ O

(
x2a+1

)
.

2. Several lemmas

In this section, we give several lemmas which are necessary in the proof of our theorems. First of
all, in the proofs of these lemmas, we need some knowledge of elementary and analytic number theory.
And we know that an integer is rth-power-free if it is not divisible by the rth power of any integer > 1.
Then let ϕr(n) denotes the number of integers k in the set 1, · · · , n, for which the greatest common
divisor (k, n) is rth-power-free, and µr(n) is defined as follows:

µr(1) = 1;

if n > 1 and n = pa1
1 pa2

2 · · · p
at
t is the canonical factorization of n, then

µr(n) =
{

(−1)t, if a1 = a2 = · · · = at = r,
0, if for some i, ai , r;

and let τ∗(n; m) denotes the number of unitary divisors of n which are relatively prime to m, where
m ≥ 1 be an integer. In symbols,

τ∗(n; m) =
∑
d∥n

(d,m)=1

1.

By the notations above, we have the following:

AIMS Mathematics Volume 6, Issue 12, 13157–13169.
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Lemma 1. For every ε > 0, we get∑
n≤x

nrτ∗(n; m)

=
mxr+1

(r + 1)ζ(2)ψ(m)

(
log x + α(m) − 2β(m) −

2ζ
′

(2)
ζ(2)

+ 2γ −
1

r + 1

)
+O

(
σ∗−1+ε(m)σ∗−θ(m)xr+ 1

2 δ(x)
)
,

where σ∗a(n) is the sum of the a-th power of square free divisors of n and α(m), β(m), ψ(m), δ(m) are
the same as given in the introduction.

Proof. For any integer m ≥ 1 and every ε > 0, one knows that ( [12], Theorem 4.3),∑
n≤x

τ∗(n; m) =
mx

ζ(2)ψ(m)

(
log x + α(m) − 2β(m) −

2ζ
′

(2)
ζ(2)

+ 2γ − 1
)

+O
(
σ∗−1+ε(m)σ∗−θ(m)x

1
2 δ(x)

)
.

Then by using partial summation formula, we immediately have∑
n≤x

nrτ∗(n; m) = xr
∑
n≤x

τ∗(n; m) − xr
∫ x

1
tr−1

∑
n≤t

τ∗(n; m)dt

=
mxr+1

(r + 1)ζ(2)ψ(m)

(
log x + α(m) − 2β(m) −

2ζ
′

(2)
ζ(2)

+ 2γ −
1

r + 1

)
+O

(
σ∗−1+ε(m)σ∗−θ(m)xr+ 1

2 δ(x)
)
.

□

Lemma 2. ( [13], Corollary 2.1) For any integer k ≥ 1 and s ≥ 0∑
n≤x

(n,k)=1

ns =
xs+1φ(k)
(s + 1)k

+ O(xsτ(k)),

where τ(k) denotes the number of divisors of k.

Lemma 3. For every n, a, r ∈ N, we have the identity

∑
k≤n

(k,n)r=1

ka =
na

2
g0(n) +

naϕr(n)
a + 1

+
na

a + 1

⌊a/2⌋∑
m=1

(
a + 1
2m

)
B2m

∑
d|n

µr(d)
n1−2m

d1−2m ,

where g0(n) = 1, if n is rth-power-free; 0, otherwise. And Bn are the Bernoulli numbers defined by
exponential generating function t

et−1 =
∑∞

n=0 Bn
tn
n! .

Proof. Firstly, we know the function µr has following property [10]:∑
d|n

µr(d) =
{

1, if n is rth-power-free,
0, if n is not rth-power-free.
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In addition, it is well known that for every n, a ∈ N,

n∑
k=1

ka =
1

a + 1

a∑
m=0

(−1)m

(
a + 1

m

)
Bmna+1−m

=
na

2
+

1
a + 1

⌊a/2⌋∑
m=0

(
a + 1
2m

)
B2mna+1−2m.

So we can deduce ∑
k≤n

(k,n)r=1

ka

=
∑
k≤n

ka
∑

d|(k,n)r

µr(d) =
∑
d|n

daµr(d)
∑

m≤n/d

ma

=
∑
d|n

daµr(d)

1
2

(n
d

)a
+

1
a + 1

⌊a/2⌋∑
m=0

(
a + 1
2m

)
B2m

(n
d

)a+1−2m


=
na

2

∑
d|n

µr(d) +
na

a + 1

⌊a/2⌋∑
m=0

(
a + 1
2m

)
B2m

∑
d|n

µr(d)
(n
d

)1−2m

=
na

2

∑
d|n

µr(d) +
na

a + 1

∑
d|n

µr(d)
n
d
+

na

a + 1

⌊a/2⌋∑
m=1

(
a + 1
2m

)
B2m

∑
d|n

µr(d)
(n
d

)1−2m

=
na

2
g0(n) +

naϕr(n)
a + 1

+
na

a + 1

⌊a/2⌋∑
m=1

(
a + 1
2m

)
B2m

∑
d|n

µr(d)
n1−2m

d1−2m .

This completes the proof of Lemma 3. □

Lemma 4. For any integer k ≥ 1 and a ∈ N, we have∑
n≤x

(n,k)=1

n2aϕr(n) =
k2r−1φ(k)x2a+2

(2a + 2)ζ(2r)φ2r(k)
+ O

(
x2a+1 log xτ(k)

)
, (a)

∑
n≤x

n2aϕr(n) =
x2a+2

(2a + 2)ζ(2r)
+ O

(
x2a+1 log x

)
. (b)

where φr is Jordan totient function, defined by

φr(n) = nr
∏
p|n

(1 − p−r).

Proof. It follows from Lemma 2 that

AIMS Mathematics Volume 6, Issue 12, 13157–13169.
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∑
n≤x

(n,k)=1

n2aϕr(n)

=
∑
n≤x

(n,k)=1

n2a
∑
de=n

µr(d)e =
∑
d≤x

(d,k)=1

µr(d)d2a
∑

e≤x/d
(e,k)=1

e2a+1

=
∑
d≤x

(d,k)=1

µr(d)d2a

(
φ(k)

(2a + 2)k

( x
d

)2a+2
+ O

(( x
d

)2a+1
τ(k)

))

=
φ(k)x2a+2

(2a + 2)k

∑
d≤x

(d,k)=1

µr(d)
d2 + O

x2a+1τ(k)
∑
d≤x

1
d


=

φ(k)x2a+2

(2a + 2)k

∞∑
d=1

(d,k)=1

µr(d)
d2 + O

x2a+2
∑
d>x

1
d2

 + O

x2a+1τ(k)
∑
d≤x

1
d


=

φ(k)x2a+2

(2a + 2)k

∞∑
d=1

(d,k)=1

µr(d)
d2 + O

(
x2a+1 log xτ(k)

)
,

where we use the familiar estimate
∑

n≤x
1
n = O(log x) and

∑
n>x

1
ns = O

(
x1−s

)
, when s > 1.

Furthermore, it can be deduced∑
d≤x

(d,k)=1

µr(d)
d2 =

∞∑
d=1

(d,k)=1

µr(d)
d2 −

∑
d>x

(d,k)=1

µr(d)
d2

=
∏
p∤k

(
1 −

1
p2r

)
+ O

∑
d>x

|µr(d)|
d2


=

∏
p

(
1 − 1

p2r

)
∏

p|k

(
1 − 1

p2r

) + O

∑
d>x

|µr(d)|
d2


=

1/ζ(2r)
φ2r(k)/k2r + O

(
x−1

)
.

So we have ∑
n≤x

(n,k)=1

n2aϕr(n) =
k2r−1φ(k)x2a+2

(2a + 2)ζ(2r)φ2r(k)
+ O

(
x2a+1 log xτ(k)

)
.

By using similar methods and elementary asymptotic formula∑
n≤x

na =
xa+1

a + 1
+ O(xa),

(b) can be easily derived. □

AIMS Mathematics Volume 6, Issue 12, 13157–13169.
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3. The proof of Theorem 1

Let Rn,r={k : 1 ≤ k ≤ nr, (k, nr)r = 1} and ϕr (nr) denote the number of elements in Rn,r. Since
ϕr (nr) = nr ∑

d|n µ(d)/dr (see, [14]), we have

P̃r(nr) =
∑

kϵRegr(nr)

(k, nr)r =
∑
dr∥nr

drϕr

(
nr

dr

)
=

∑
trur=nr

(tr ,ur)=1

tr
∑
dv=u

µ(d)vr

=
∑
tdv=n

(t,dv)=1

trvrµ(d) =
∑
ld=n

lrµ(d)
∑
tv=l

(t,v)=1
(t,d)=1

1

=
∑
ld=n

lrµ(d)τ∗(l; d).

Taking y = x1/r, it follows from Lemma 1 and the above identity that∑
nr≤x

P̃r(nr)

=
∑
nr≤x

∑
ld=n

lrµ(d)τ∗(l; d) =
∑
d≤y

µ(d)
∑
l≤y/d

lrτ∗(l; d)

=
yr+1

(r + 1)ζ(2)

∑
d≤y

µ(d)
drψ(d)

(
log y − log d + α(d) − 2β(d) −

2ζ
′

(2)
ζ(2)

+ 2γ −
1

r + 1

)

+O

∑
d≤y

|µ(d)|σ∗−1+ε(d)σ∗−θ(d)(y/d)r+ 1
2 δ(y/d)


=

yr+1

(r + 1)ζ(2)

∑
d≤y

µ(d)
drψ(d)

(
log y −

2ζ
′

(2)
ζ(2)

+ 2γ −
1

r + 1

)
+

yr+1

(r + 1)ζ(2)

∑
d≤y

µ(d)
drψ(d)

(
α(d) − 2β(d) − log d

)
+O

∑
d≤y

σ∗−1+ε(d)σ∗−θ(d)(y/d)r+ 1
2 δ(y/d)

 .
Notice that for any integer n ≥ 1,

α(n) =
∏
p|n

log p
p − 1

≤
∏
p|n

log p ≤ log n,

β(n) =
∏
p|n

log p
p2 − 1

≤
∏
p|n

log p
p2 ,

which implies that α(n) = O(log(n)), β(n) = O(1).
Then by the definition of ψ, it is clear that for any integer r ≥ 0, the series

∞∑
d=1

µ(d)
drψ(d)

AIMS Mathematics Volume 6, Issue 12, 13157–13169.
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and
∞∑

d=1

µ(d)
drψ(d)

(
α(d) − 2β(d) − log d

)
are both absolutely convergent. Applying Euler product,we can obtain

∞∑
d=1

µ(d)
drψ(d)

=
∏

p

(
1 −

1
pr(p + 1)

)
,

Moreover, since σ∗
−θ(n) ≤ τ(n), σ∗

−1+ε(n) ≤ τ(n) for ε ≤ 1, and yrδ(y) is increasing. so the error term
can be simplified as

O

∑
d≤y

σ∗−1+ε(d)σ∗−θ(d)(y/d)r+ 1
2 δ(y/d)


= O

yr+ 1
2 δ(y)

∑
d≤y

τ2(d)

dr+ 1
2−ε


= O

(
yr+ 1

2 δ(y)
)
.

Now, by a simple calculation, we get∑
nr≤x

P̃r(nr) =
x1+ 1

r C1

(r + 1)ζ(2)

(
log x

r
−

2ζ
′

(2)
ζ(2)

+ 2γ −
1

r + 1
+

C2

C1

)
+ O

(
x1+ 1

2r δ(x)
)
.

This completes the proof of Theorem 1.

4. The proof of Theorem 2

For any integer r > 1, s > 1, by taking y = x1/r and using lemma 2, we have∑
nr≤x

P̃r,s(nr) =
∑
nr≤x

∑
kϵRegr(nr)

((k, nr)r)s =
∑
nr≤x

∑
(k,nr)r∥nr

((k, nr)r)s

=
∑
nr≤x

∑
ar∥nr

ars
nr/ar∑
k=1

(k,nr/ar)r=1

1 =
∑
ab≤y

(a,b)=1

arsϕr(br)

=
∑
b≤y

ϕr(br)
∑

a≤y/b
(a,b)=1

ars

=
yrs+1

rs + 1

∑
b≤y

ϕr(br)φ(b)
brs+2 + O

yrs
∑
b≤y

ϕr(br)τ(b)
brs


=

yrs+1

rs + 1

∞∑
b=1

ϕr(br)φ(b)
brs+2 + O

yrs+1
∑
b>y

1
brs−r


+O

yrs
∑
b≤y

ϕr(br)τ(b)
brs

 .
AIMS Mathematics Volume 6, Issue 12, 13157–13169.
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Since r > 1,s > 1, the series
∞∑

n=1

ϕr(nr)φ(n)
nrs+2 ≤

1
nrs−r

is absolutely convergent and the general term is a multiplicative function, thus the series can be
expended into an infinite product of Euler type

∞∑
n=1

ϕr(nr)φ(n)
nrs−r+1

=
∏

p

(
1 +

(p − 1)(pr − 1)
prs−r+1 +

(p − 1)p(pr − 1)pr

p2(rs−r+1) +
(p − 1)p2(pr − 1)p2r

p3(rs−r+1) · · ·

)
=

∏
p

(
1 +

(p − 1)(pr − 1)
prs−r+1 − pr+1

)
.

For the error term, we can deduce that

O

yrs+1
∑
b>y

1
brs−r

 = O
(
yr+2

)
,

O

yrs
∑
b≤y

τ(b)
brs−r

 = O (yrs) .

To sum up, we can obtain∑
nr≤x

P̃r,s(nr) =
xs+ 1

r

rs + 1

∏
p

(
1 +

(p − 1)(pr − 1)
prs−r+1 − pr+1

)
+ O (xs) .

5. The proof of Theorems 3 and 4

Firstly, we prove Theorem 4. By using Lemma 3, it is easily seen that

L̃r,a(n) =
∑

kϵRegr(n)

([k, n]r)a

=
∑

kϵRegr(n)

(
kn

(k, n)r

)a

=
∑
dr∥n

na

dra

∑
k≤n

gcd(k,n)r=dr

ka

=
∑
dr∥n

na

dra

∑
j≤n/dr

gcd( j,n/dr)r=1

( jdr)a = na
∑
dr∥n

∑
j≤n/dr

gcd( j,n/dr)r=1

ja

=
∑
dr∥n

dra
( n
dr

)2a
·

(
1
2

g0

( n
dr

)
+

1
a + 1

ϕr

( n
dr

))

+
∑
dr∥n

dra
( n
dr

)2a
·

 1
a + 1

⌊a/2⌋∑
m=1

(
a + 1
2m

)
B2m

∑
ab= n

dr

µr(a)b1−2m

 .
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Then ∑
n≤x

L̃r,a(n)

=
∑
dr≤x

dra
∑

e≤x/dr

gcd(e,dr)=1

e2a ·

(
1
2

g0(e) +
1

a + 1
ϕr(e)

)

+
∑
dr≤x

dra
∑

e≤x/dr

gcd(e,dr)=1

e2a ·

 1
a + 1

⌊a/2⌋∑
m=1

(
a + 1
2m

)
B2m

∑
ab=e

µr(a)b1−2m


=

1
a + 1

⌊a/2⌋∑
m=1

(
a + 1
2m

)
B2m

∑
dr≤x

dra
∑

e≤x/dr

(dr ,e)=1

e2a
∑
ab=e

µr(a)b1−2m

+
1

a + 1

∑
dr≤x

dra
∑

e≤x/dr

(dr ,e)=1

e2aϕr(e) + O
(
x2a

)
= A0 + A1 + O

(
x2a

)
.

By using Lemma 4(a), we get

A1 =
1

a + 1

∑
dr≤x

dra
∑

e≤x/dr

(dr ,e)=1

e2aϕr(e)

=
1

a + 1

∑
dr≤x

dra ·
φ(dr)d2r·r

(2a + 2)ζ(2r)φ2r(dr)dr

( x
dr

)2a+2

+
1

a + 1

∑
dr≤x

dra · O
(( x

dr

)2a+1
log

( x
dr

)
τ(dr)

)

=
x2a+2

2(a + 1)2ζ(2r)

∑
dr≤x

φ(dr)d2r·r

φ2r(dr)dra+3r + O

x2a+1 log x
∑
dr≤x

τ(dr)
dar+r


=

x2a+2

2ζ(2r)(a + 1)2

∞∑
d=1

φ(dr)d2r·r

φ2r(dr)dra+3r

+O

x2a+2
∑

d>x1/r

φ(dr)d2r·r

φ2r(dr)dra+3r

 + O

x2a+1 log x
∑

d≤x1/r

τ(dr)
dar+r

 .
And it can be calculated by Euler product that

∞∑
d=1

φ(dr)d2r·r

φ2r(dr)dra+3r =
∏

p

(
1 +

p2r−1(p − 1)
(p2r − 1)(pa+2 − 1)

)
.

So

A1 =
x2a+2

2ζ(2r)(a + 1)2

∏
p

(
1 +

p2r−1(p − 1)
(p2r − 1)(pa+2 − 1)

)
+ O

(
xa+2 log2 x

)
,
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where we have used ∑
d>x

φ(dr)
dra+3r ≤

∑
d>x

1
dra+2r = O(x1−ar−2r),

∑
n≤x

τ(n)
na = O(x1−a log x).

And for m, a ∈ IN with a > m,∑
n≤x/dr

(n,k)=1

n2a
∑
ab=n

µr(a)b1−2m =
∑
d≤x

(d,k)=1

µr(d)d2a
∑

e≤x/d
(e,k)=1

e2a−2m+1 ≪ x2a+1,

so

A0 = O

∑
dr≤x

dra
( x
dr

)2a+1
 = O

(
x2a+1

)
.

To sum up, we can obtain that∑
n≤x

L̃r,a(n) = A0 + A1 + O
(
x2a

)
=

x2a+2

2ζ(2r)(a + 1)2

∏
p

(
1 +

p2r−1(p − 1)
(p2r − 1)(pa+2 − 1)

)
+ O

(
x2a+1

)
.

This completes the proof of Theorem 4.
Theorem 3 can be deduced by Lemma 3 and Lemma 4(b), and the proof method is similar to

Theorem 4.

6. Conclusions

In this article, we firstly introduced the basic concepts and properties of r-regular integers ( mod nr),
and the r-gcd-sum function and r-lcm-sum function over those integers. Let P̃r(nr) denote the r-gcd-
sum function over r-regular integers (mod nr), Theorem 1 offered a different proof of Prasad, Reddy
and Rao’s result, and L. Tóth’s result ( [7], Theorem 2) can be deduced from our result. Theorem 2
gave an asymptotic formula for generalized r-gcd-sum function over r-regular integers (mod nr). In
addition, we defined least rth power common multiple [k, n]r based on the relationship between the
common lcm and gcd, we also defined r-lcm-sum function Lr,a(n) and generalized r-lcm-sum function
L̃r,a(n) over r-regular integers (mod n). By making use of Euler product and some knowledge of
elementary and analytic number theory, we obtained asymptotic formulas for their summatory function.
As a supplement, we can also got an asymptotic formula for lcm-sum function over regular integers
(mod n) easily.
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6. L. Tóth, Regular integers modulo n, Ann. Univ. Sci. Budapest., Sect. Comp., 29 (2008), 263–275.
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