Let $ d_k(n) $ denote the k-th divisor function. In this paper, we give the asymptotic formula of the sum
$ \sum\limits_{\substack{x-y\le n_i^r \le x+y \\ i = 1,2,\ldots,l} }{d_k(n_1^r+n_2^r+\ldots+n_l^r)}, $
where $ n_1, n_2, \ldots, n_l \in \mathbb{Z}^+ $, $ k\ge2 $, $ r\ge 3 $ and $ l > 2^{r-1} $ are integers.
Citation: Huimin Wang, Liqun Hu. Sums of the higher divisor function of diagonal homogeneous forms in short intervals[J]. AIMS Mathematics, 2023, 8(10): 22577-22592. doi: 10.3934/math.20231150
Let $ d_k(n) $ denote the k-th divisor function. In this paper, we give the asymptotic formula of the sum
$ \sum\limits_{\substack{x-y\le n_i^r \le x+y \\ i = 1,2,\ldots,l} }{d_k(n_1^r+n_2^r+\ldots+n_l^r)}, $
where $ n_1, n_2, \ldots, n_l \in \mathbb{Z}^+ $, $ k\ge2 $, $ r\ge 3 $ and $ l > 2^{r-1} $ are integers.
[1] | C. Calderán, M. J. de Velasco, On divisors of a quadratic form, Bol. Soc. Bras. Mat., 31 (2000), 81–91. http://doi.org/10.1007/BF01377596 doi: 10.1007/BF01377596 |
[2] | C. E. Chace, The divisor problem for arithmetic progressions with small moduls, Acta Arith., 61 (1992), 35–50. http://doi.org/10.4064/AA-61-1-35-50 doi: 10.4064/AA-61-1-35-50 |
[3] | C. E. Chace, Writing integers as sums of products, T. Am. Math. Soc., 345 (1994), 367–379. https://doi.org/10.2307/2154608 doi: 10.2307/2154608 |
[4] | R. T. Guo, W. G. Zhai, Some problems about the ternary quadratic form $m_1^2+m_2^2+m_3^2$, Acta Arith., 156 (2012), 101–121. https://doi.org/10.4064/AA156-2-1 doi: 10.4064/AA156-2-1 |
[5] | G. W. Hu, G. S. Lü, Sums of higher divisor functions, J. Number Theory, 220 (2021), 61–74. https://doi.org/10.1016/j.jnt.2020.08.009 doi: 10.1016/j.jnt.2020.08.009 |
[6] | L. Q. Hu, H. F. Liu, Sum of divisors of a quaternary quadratic form with almost equal variables, Ramanujan J., 40 (2016), 557–571. https://doi.org/10.1007/s11139-015-9758-9 doi: 10.1007/s11139-015-9758-9 |
[7] | L. Q. Hu, Y. J. Yao, Sums of divisors of the ternary quadratic with almost equal variables, J. Number Theory, 155 (2015), 248–263. https://doi.org/10.1016/j.jnt.2015.03.018 doi: 10.1016/j.jnt.2015.03.018 |
[8] | L. Q. Hu, L. Yang, Sums of the triple divisor function over values of a quaternary form, Acta Arith., 183 (2018), 63–85. https://doi.org/10.4064/AA170120-20-10 doi: 10.4064/AA170120-20-10 |
[9] | V. Kalinka, Variant of the divisor problem involving a large number of components, Lith. Math. J., 14 (1974), 442–448. https://doi.org/10.1007/BF01414921 doi: 10.1007/BF01414921 |
[10] | X. D. Lü, Q. W. Mu, The sum of divisors of mixed powers, Adv. Math., 45 (2016), 357–364. https://doi.org/10.11845/sxjz.2014147b doi: 10.11845/sxjz.2014147b |
[11] | C. D. Pan, C. B. Pan, Goldbach conjecture, Beijing: Science Press, 1992. |
[12] | Q. F. Sun, D. Y. Zhang, Sums of the triper divisor function over values of a ternary quadratic form, J. Number Theory, 168 (2016), 215–246. https://doi.org/10.1016/j.jnt.2016.04.010 doi: 10.1016/j.jnt.2016.04.010 |
[13] | R. C. Vaughan, The Hardy-Littlewood method, 2 Eds., Cambridge: Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511470929 |
[14] | L. L. Zhao, The sum of divisors of a quadratic form, Acta Arith., 163 (2014), 161–177. http://doi.org/10.4064/aa163-2-6 doi: 10.4064/aa163-2-6 |
[15] | M. Zhang, An asymptotic formula related to the sums of divisors, Acta Arith., 175 (2016), 183–200. https://doi.org/10.4064/AA8391-5-2016 doi: 10.4064/AA8391-5-2016 |
[16] | M. Zhang, J. J. Li, On the sum of divisors of mixed powers in short intervals, Ramanujan J., 51 (2020), 333–352. https://doi.org/10.1007/s11139-018-0064-1 doi: 10.1007/s11139-018-0064-1 |
[17] | G. L. Zhou, Y. C. Ding, Sums of the higher divisor function of diagonal homogeneous forms, Ramanujan J., 59 (2022), 933–945. https://doi.org/10.1007/s11139-022-00579-z doi: 10.1007/s11139-022-00579-z |