Let dk(n) denote the k-th divisor function. In this paper, we give the asymptotic formula of the sum
∑x−y≤nri≤x+yi=1,2,…,ldk(nr1+nr2+…+nrl),
where n1,n2,…,nl∈Z+, k≥2, r≥3 and l>2r−1 are integers.
Citation: Huimin Wang, Liqun Hu. Sums of the higher divisor function of diagonal homogeneous forms in short intervals[J]. AIMS Mathematics, 2023, 8(10): 22577-22592. doi: 10.3934/math.20231150
[1] | Lei Liu, Zhefeng Xu . Mean value of the Hardy sums over short intervals. AIMS Mathematics, 2020, 5(6): 5551-5563. doi: 10.3934/math.2020356 |
[2] | Bhabesh Das, Helen K. Saikia . On the Sum of Unitary Divisors Maximum Function. AIMS Mathematics, 2017, 2(1): 96-101. doi: 10.3934/Math.2017.1.96 |
[3] | Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681 |
[4] | Bin Guan . A prime number theorem in short intervals for dihedral Maass newforms. AIMS Mathematics, 2024, 9(2): 4896-4906. doi: 10.3934/math.2024238 |
[5] | Bilal A. Rather, M. Aijaz, Fawad Ali, Nabil Mlaiki, Asad Ullah . On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings. AIMS Mathematics, 2022, 7(7): 12635-12649. doi: 10.3934/math.2022699 |
[6] | B.L. Mayer, L.H.A. Monteiro . On the divisors of natural and happy numbers: a study based on entropy and graphs. AIMS Mathematics, 2023, 8(6): 13411-13424. doi: 10.3934/math.2023679 |
[7] | Li Zhou, Liqun Hu . Sum of the triple divisor function of mixed powers. AIMS Mathematics, 2022, 7(7): 12885-12896. doi: 10.3934/math.2022713 |
[8] | Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227 |
[9] | Boran Kim . Locally recoverable codes in Hermitian function fields with certain types of divisors. AIMS Mathematics, 2022, 7(6): 9656-9667. doi: 10.3934/math.2022537 |
[10] | Zhen Guo . On mean square of the error term of a multivariable divisor function. AIMS Mathematics, 2024, 9(10): 29197-29219. doi: 10.3934/math.20241415 |
Let dk(n) denote the k-th divisor function. In this paper, we give the asymptotic formula of the sum
∑x−y≤nri≤x+yi=1,2,…,ldk(nr1+nr2+…+nrl),
where n1,n2,…,nl∈Z+, k≥2, r≥3 and l>2r−1 are integers.
For any integer k≥2, let
dk(n)=∑m1m2…mk=nm1,m2,…,mk∈Z+1 |
define the k-th divisor function and d(n)=d2(n).
Recently, the sums of divisor function about the quadratic form n21+n22+…+n2l with l≥3 has drawn researchers' attention. For k=2 and l=3, in 2000, Calderˊon and de Velasco [1] gave the following asymptotic formula,
∑1≤n1,n2,n3≤x12d(n21+n22+n23)=4ζ(3)5ζ(4)x32logx+O(x32). |
Later, Guo and Zhai [4] used the classical circle method to solve the case of k=2 and l=3. Furthermore, the error term was eventually upgraded by Zhao [14] to xlog7x. For k=2 and l≥3, Zhang [15] proved that
∑1≤n1,⋯,nl≤x12d(n21+…+n2l)=c1xl2logx+c2xl2+O(xl+14logl+4x+xl−22logx), |
where c1 and c2 are constants. Moreover, Lü and Mu [10] considered the nonhomogeneous case, the leading term of
∑1≤n1,n2≤x121≤n3≤x1kd(n21+n22+nk3) |
is x1+1k(1+logx).
In 2016, Sun and Zhang [12] began to take up the higher divisor function. For k=3 and l=3, they proved that
∑1≤n1,n2,n3≤x12d3(n21+n22+n23)=c3x32log2x+c4x32logx+c5x32+O(x32−18+ε), |
where c3, c4 and c5 are constants. Later, Hu and Yang [8] considered the cases of l=4. For k≥4 and l≥3, Hu and Lü [5] investigated that the main term of the sum
∑1≤n1,n2,…,nl≤x12dk(n21+n22+…+n2l) |
is xl2logk−1x.
Recently, the above results were summarized by Zhou and Ding [17], for r≥2, k≥2 and l>2r−1,
∑1≤n1,n2,…,nl≤x1rdk(nr1+nr2+…+nrl)∼c6xlrlogk−1x, |
where c6 is a constant.
Inspired by the above research involving the divisor function, Hu and Yao [7] considered the sums of divisor of the ternary quadratic form in short intervals. It is stated that, for θ=12+2ε and y=xθ, there holds
∑x−y<m1,m2,m3≤x+yd(m21+m22+m23)=c7L1(x,y)+c8L2(x,y)+O(y3−ε), |
where c7 and c8 are constants, and Lj(x,y) (j=1,2) satisfies L1(x,y)≍y3logy, L2(x,y)≍y3.
Later, Hu and Liu [6] explored the case of a quaternary quadratic form in short intervals. Moreover, Zhang and Li [16] studied the nonhomogenous case in short intervals. They proved that, y=x1−δk+4ε with δ3=215, δk=1k(2k−2+1) for 4≤k≤7 and δk=1k(k2−k+1) for k≥8, there holds
∑x−y<mk3≤x+yx−y<m2i≤x+yi=1,2d(m21+m22+mk3)=c9L1(x,y)+c10L2(x,y)+O(y3x−2+1k−ε), |
where c9 and c10 are constants, and Lj(x,y) (j=1,2) satisfies L1(x,y)≍y3x−2+1klogx, L2(x,y)≍y3x−2+1k.
In this paper, we will extend the result of Zhou and Ding [17] in short intervals. We want to consider the asymptotic formula of the sum
Sk(x,y)=∑x−y≤nri≤x+yi=1,2,…,ldk(nr1+nr2+…+nrl), |
where y=xθ with 0<θ≤1.
To give our result, let
Sr(q,a)=q∑h=1e(ahrq). | (1.1) |
For 0≤j≤k−1, we define
Aj(q)=q∑b=1e(−abq)cj+1(b,q), | (1.2) |
where a>0 is a positive integer. We learn from [3, p.372] that for (a,q)=1, Aj(q) is independent of a. The coefficients cj(b,q) can be written as
∑b1b2≡b(mod q)f(b1) |
for some function f.
Meanwhile, the number of terms in cj(b,q) depends only on k. More accurately, the coefficients cj(b,q) are given explicitly in [2, (2.13)]. Also, from [3, (4.8)] we can get
Aj(q)≪kq−1. | (1.3) |
Our result is as follows.
Theorem 1.1. Let k≥2, r≥3 and l>2r−1 be integers. We have
Sk(x,y)=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε), |
where
θ={(1−1r)(r2+l−2r−1k⋅2r−1−ε)r2+l−2r−1k⋅2r−1−12−εif3≤r≤7,(1−1r)(r2+l−2r(r−1)k⋅2r(r−1)−ε)r2+l−2r(r−1)k⋅2r(r−1)−12−εifr≥8, |
and Sr(q,a), Aj(q) are defined in (1.1) and (1.2), respectively. Moreover, S(x,y) is defined as
S(x,y)=1rl∑x−y≤ni≤x+yi=1,2…l1(n1…ni)1−1r∑l(x−y)≤n≤l(x+y)n1+n2+…+nl=nlogjn | (1.4) |
satisfying S(x,y)≍ylx−l+lrlogjx.
For this problem, unlike other results, we are interested in how to find a smaller suitable value of θ to make sure that Sk(x,y) has an asymptotic formula. We will establish Theorem 1.1 by the circle method and employ the estimate of the sum of the divisors over the arithmetic progression and some estimates of exponential sum in short intervals.
Notation: Throughout this paper, x always denotes a sufficiently large positive integer and y=xθ with 0<θ≤1, we take N1=x−y and N2=x+y, f(x)≪g(x) means that f(x)=O(g(x)), f(x)≍g(x) means that f(x)≪g(x)≪f(x). As usual, ||α|| denotes the distance from α to the nearest integer, e(x)=e2πix, ε always denotes an arbitrary small positive constant, which may not be the same at different occurrences. For λ∈R, we set
Tr(N1r1,N1r2)=1r∑N1≤n≤N2n1r−1e(nλ), |
T∗(lN1,lN2)=∑lN1≤n≤lN2(logjn)e(−nλ). |
We define
fr(α)=∑N1r1≤n≤N1r2e(αnr), g(α)=∑lN1≤n≤lN2dk(n)e(−nα). | (1.5) |
We list the following lemmas that will be used in subsequent sections.
Lemma 2.1. For any real numbers α and τ≥1, and integers a and q satisfying (a,q)=1,1≤q≤τ, α can be written as
α=aq+λ,|λ|≤1qτ. |
Proof. See Pan and Pan [11, Lemma 5.19].
Lemma 2.2. For any a,q∈Z with 1≤a≤q, (a,q)=1.
Sr(q,a)=q∑h=1e(ahrq)≪q1−1r. |
Proof. See Vaughan [13, Theorem 4.2].
Lemma 2.3. Let r≥3 and N1,N2 be defined as above. Then we get
Tr(N1r1,N1r2)≪min(yx−1+1r,1x1−1r||λ||), | (2.1) |
T∗(lN1,lN2)≪logj(lN2)min(y,1||λ||), | (2.2) |
T∗(lN1,lN2)=∫lN2lN1e(−λu)(logju)du+O(logr(lN2)(1+y|λ|)). | (2.3) |
Proof. For (2.1), (2.2) and (2.3), see [16, Lemmas 2.5 and 2.9].
Lemma 2.4. For r ≥ 3, We have
fr(α)=Sr(q,a)qTr(N1r1,N1r2)+O(q1−1r(1+|λ|y)). |
Proof. See [16, Lemma 2.10].
Lemma 2.5. Let g(α) be defined in (1.5). Then there holds
∫10|g(α)|2dα≪ylogk2−1x. |
Proof. By the definition of g(α), we have
∫10|g(α)|2dα=∑lN1≤n1≤lN2∑lN1≤n2≤lN2dk(n1)dk(n2)∫10e((n1−n2)α)dα=∑n≤lN2d2k(n)−∑n≤lN1d2k(n). |
It follows from [9, Theorem 1] that,
∑n≤xd2k(n)=x(logk2−1x+logk2−2x+…+logx)+O(exp(ec11k2)x1−c12k−43+ε), |
where k=o(√loglogx) and c11,c12>0 are constants. Then we have
∫10|g(α)|2dα=lN2logk2−1(lN2)−lN1logk2−1(lN1)+…+lN2log(lN2)−lN1log(lN1)+O(exp(ec11k2)N1−c12k−43+ε2). |
Noting the fact that log(1+u)≤u for u≥0, we can deduce that
lN2logk2−1(lN2)−lN1logk2−1(lN1)=(lN2−lN1)logk2−1(lN2)+lN1(logk2−1(lN2)−logk2−1(lN1))≪ylogk2−1x+N1log(N2N1)logk2−2x≪ylogk2−1x+N1log(1+N2−N1N1)logk2−2x≪ylogk2−1x. |
Therefore, by similar arguments, it's not hard to derive that
∫10|g(α)|2dα≪ylogk2−1x. |
Lemma 2.6. For r≥2 and fr(α) defined in (1.5), we have
∫10|fr(α)|2rdα≪(yx−1+1r)2r−r+ε. |
Proof. The proof is similar to that of [13, Lemma 2.5]. We notice that the key of proof of [13, Lemma 2.5] depends on the summation interval. It is showed that the only difference between these two proofs is the length of interval and easily to get N1r2−N1r1=(x+y)1r−(x−y)1r≍yx−1+1r. This completes the proof of Lemma 2.6.
Lemma 2.7. Suppose that (a,q)=1, q≤Q≤y1k. We have
g(α)=k−1∑j=0Aj(q)Ij(λ)+O(Qk+ε+yη+εQ), |
where η=k−1k+1 for 2≤k≤3, η=k−1k+2 for k≥4, and Aj(q) is defined as in (1.2).
Proof. When 2≤k≤3, by the definition of (1.5), we write
g(α)=∑lN1≤n≤lN2dk(n)e(−αn)=q∑b=1e(abq)∑lN1≤n≤lN2n≡b( mod q)dk(n)e(−nλ)=q∑b=1e(abq)∫lN2lN1e(−λu)d(Dk(u;b,q)), |
where
Dk(u;b,q)=∑1≤n≤un≡b( mod q)dk(n). |
According to the divisor problem for arithmetic progressions, we utilize it to isolate the main term and estimate the remainder. For the sake of simplicity, we denote
Dk(u;b,q)=Mk(u;b,q)+△k(u;b,q). |
We learn from [2, Theorem 1] that main term has the form
Mk(u;b,q)=k−1∑j=0cj+1(b,q)Lj(u), |
where Lj(u) is an antiderivative of logju/j!. Thus, the contribution of main term to g(α) can be written as
g(α)=k−1∑j=0Aj(q)Ij(λ), |
where Aj(q) is defined as in (1.2), and Ij(λ) is defined as in (2.4). After integrating by parts, one has
Ij(λ)=∫lN2lN1e(−λu)logjuj!du≪yεmin(y,λ−1). | (2.4) |
It follows from [3, (4.4)] that the contribution from error term is bounded by
O(Qk+ε+yη+εQ), |
when k≥4, the proof is similar, so we omit it.
In order to apply the circle method, we set
xε≪Q<τ, Qτ≍yx1−1r, Q=y1kx1kr−1k. | (3.1) |
By Lemma 2.1, each α∈I:=[1τ,1+1τ) can be written as
α=aq+λ,|λ|≤1qτ |
for two positive integers a,q with 1≤a≤q≤τ and (a,q)=1.
We define the major arcs M and m as follows:
M=⋃q≤Q⋃1≤a≤q(a,q)=1M(q,a),m=I∖M, |
where M(q,a)={α:α=aq+λ,|λ|≤1qτ}.
It is obvious that the major arcs M are actually disjoint when 1<Q<τ2. Noting that fr(α) and g(α) are defined in (1.5), we obtain
Sk(x,y)=∫1+1τ1τflr(α)g(α)dα=∫Mflr(α)g(α)dα+∫mflr(α)g(α)dα. |
First, we deal with the integrals over the minor arcs.
Lemma 3.1. Suppose α∈m with Q<q≤τ.
∙ For 3≤r≤7, we have
∫mflr(α)g(α)dα≪yl−r2+12x(1r−1)(l−r2)+ε(Q2r−1−l2r−1+y2r−1−l2r−1x(1r−1)(2r−1−l2r−1)). |
∙ For r≥8, we have
∫mflr(α)g(α)dα≪yl−r2+12x(1r−1)(l−r2)+ε(Q2r(r−1)−l2r(r−1)+y2r(r−1)−l2r(r−1)x(1r−1)(2r(r−1)−l2r(r−1))). |
Proof. The Cauchy's inequality gives us that
∫mflr(α)g(α)dα≪supα∈m|fr(α)|l−2r−1(∫10|fr(α)|2rdα)12(∫10g2(α)dα)12. |
We now use the result of [16] and get
{supα∈mfr(α)≪yx−1+1r+ε(Q−1+y−1x1−1r)12r−1,if3≤r≤7,supα∈mfr(α)≪yx−1+1r+ε(Q−1+y−1x1−1r)12r(r−1),ifr≥8. | (3.2) |
From that Lemma 2.5, Lemma 2.6 and (3.2), we get result of Lemma 3.1.
By the definition of major arcs, we clearly have
∫Mflr(α)g(α)dα=∑q≤Q∑1≤a≤q(a,q)=1∫M(q,a)flr(α)g(α)dα=∑q≤Q∑1≤a≤q(a,q)=1∫|λ|≤1qτflr(aq+λ)g(aq+λ)dλ. | (3.3) |
By (2.1), Lemmas 2.2 and 2.4, we can conclude that
flr(α)=Slr(q,a)qlTlr(N1r1,N1r2)+O(q1−lrmin(yl−1x(−1+1r)(l−1),1x(1−1r)(l−1)||λ||l−1)(1+|λ|y)). |
This combined with Lemma 2.7 gives that
flr(α)g(α)=U(q,λ)+O(∑1+∑2), |
where
U(q,λ)=Slr(q,a)qlTlr(N1r1,N1r2)k−1∑j=0Aj(q)Ij(λ), |
and
∑1=|flr(α)|(Qk+ε+yη+εQ), |
∑2=(q1−lrmin(yl−1x(−1+1r)(l−1),1x(1−1r)(l−1)||λ||l−1)(1+|λ|y))|k−1∑j=0Aj(q)Ij(λ)|. |
Taking these into (3.3), we obtain
∫Mflr(α)g(α)dα=∑q≤Q∑1≤a≤q(a,q)=1∫|λ|≤1qτU(q,λ)dλ+U1+U2, |
where the error terms Ui(i=1,2) satisfy
Ui≪∑q≤Q∑1≤a≤q(a,q)=1∫|λ|≤1qτ∑idλ. |
The estimate of U1 will be separated into two cases.
If 2r−1<l<2r, it can be obtained by Hölder's inequality and Lemma 2.6 that
∑q≤Q∑1≤a≤q(a,q)=1∫|λ|≤1qτ∑1dλ=(Qk+ε+yη+εQ)∫M|fr(α)|ldα≪(Qk+ε+yη+εQ)(∫10|fr(α)|2rdα)l2r≪y(1−r2r)lx(1r−1)(1−r2r)l+εQk+ε+y(1−r2r)l+ηx(1r−1)(1−r2r)l+εQ. |
If l≥2r, by Lemma 2.6, we have
∑q≤Q∑1≤a≤q(a,q)=1∫|λ|≤1qτ∑1dλ=(Qk+ε+yη+εQ)∫M|fr(α)|ldα≪(Qk+ε+yη+εQ)supα∈I|fr(α)|l−2r(∫10|fr(α)|2rdα)≪yl−rx(l−r)(1r−1)+εQk+ε+yl−r+ηx(l−r)(1r−1)+εQ. |
By (1.3) and (2.4), we have
∑q≤Q∑1≤a≤q(a,q)=1∫|λ|≤1qτ∑2dλ≪yl−1x(1r−1)(l−1)∑q≤Qq1−lr∑1≤a≤q(a,q)=1k−1∑j=0|Aj(q)|∫|λ|≤1qτ|Ij(λ)|1+λy|dλ≪ylx(1r−1)(l−1)τ−1yε∑q≤Qq−lr≪ylx(1r−1)(l−1)+ετ−1Q−lr+1. |
∑q≤Q∑1≤a≤q(a,q)=1∫|λ|≤1qτU(q,λ)dλ=∑q≤Q∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)∫|λ|≤1qτIj(λ)Tlr(N1r1,N1r2)dλ. |
By means of (2.3) and (2.4), we have
Ij(λ)Tlr(N1r1,N1r2)=1j!T∗(lN1,lN2)⋅Tlr(N1r1,N1r2)+O(|Tr(N1r1,N1r2)|llogj(lN2)(1+y|λ|)). |
First, according to (1.3), (2.1) and Lemma 2.2, the contribution of the O-term to the integrals over the major arcs is
≪∑q≤Q∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q){∫1y0ylx−l+lrlogj(lN2)(1+y|λ|)dλ+∫1qτ1yx−l+lrλ−llogj(lN2)(1+y|λ|)dλ}≪∑q≤Q∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)x−l+lr+εyl−1≪yl−1x−l+lr+εQ−lr+1. | (3.4) |
Hence, combining (3.4) and integrating over the major arcs, we obtain
∑q≤Q∑1≤a≤q(a,q)=1∫|λ|≤1qτU(q,λ)dλ=∑q≤Q∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!∫|λ|≤1qτT∗(lN1,lN2)Tlr(N1r1,N1r2)dλ+O(yl−1x−l+lr+εQ−lr+1). | (3.5) |
In the integral of above identity, we extend the interval to [−12,12]. By (2.1) and (2.2)
∫121qτT∗(lN1,lN2)⋅Tlr(N1r1,N1rr)dλ≪∫121qτxlr−l(logx)λ−l−1dλ≪xlr−lqlτl(logx). | (3.6) |
Noting the condition (1.3), (3.1) and Lemma 2.2, the contribution of the above upper bound to the integrals over the major arcs is
≪∑q≤Qxlr−lql−lrτl(logx)≪xlr−lτlQl−lr+1logx≪ylxlr−l−ε. | (3.7) |
From (3.4) – (3.7), we have
∑q≤Q∑1≤a≤q(a,q)=1∫|λ|≤1qτU(q,λ)dλ=∑q≤Q∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(yl−1x−l+lr+εQ−lr+1)+O(ylxlr−l−ε), |
where
S(x,y)=∫12−12T∗(lN1,lN2)⋅Tlr(N1r1,N1r2)dλ=1rl∑N1≤ni≤N2i=1,2…l1(n1…ni)1−1r∑lN1≤n≤lN2n1+n2+…+nl=nlogjn≍logjx∑N1≤ni≤N2i=1,2⋯l1(n1…ni)1−1r≍ylx−l+lrlogjx. |
Therefore, we have established the following identity
∑q≤Q∑1≤a≤q(a,q)=1∫|λ|≤1qτU(q,λ)dλ=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr(logjx)∑q>Qq−lr)+O(yl−1x−l+lr+εQ−lr+1)+O(ylx−l+lr−ε)=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε). | (3.8) |
By § 3.1.1, § 3.1.2 and (3.8), we get the following lemma.
Lemma 3.2. For α∈M, let k≥2, r≥3, l>2r−1 be integers.
∙ For 2r−1<l<2r, we have
∫Mflr(α)g(α)dα=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε)++O(y(1−r2r)lx(1r−1)(1−r2r)lQk+ε)+O(y(1−r2r)l+ηx(1r−1)(1−r2r)l+εQ)+O(ylx(1r−1)(l−1)+ετ−1Q−lr+1). |
∙ For l≥2r, we have
∫Mflr(α)g(α)dα=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε)++O(yl−rx(l−r)(1r−1)+εQk+ε)+O(yl−r+ηx(l−r)(1r−1)+εQ)+O(ylx(1r−1)(l−1)+ετ−1Q−lr+1), |
where Sr(q,a), Aj(q) and S(x,y) are defined in (1.1), (1.2) and (1.4), respectively.
Finally, combining Lemma 3.1, Lemma 3.2 and noting that η=k−1k+1 for 2≤k≤3 and η=k−1k+2 for k≥4 by condition of Lemma 2.7, we can get the following that.
Case 1. For 2r−1<l<2r, 2≤k≤3, 3≤r≤7,
Sk(x,y)=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε)+O(y(1−r2r)lx(1r−1)(1−r2r)l+εQk+ε)+O(y(1−r2r)l+k−1k+1x(1r−1)(1−r2r)l+εQ)+O(yl−r2+12x(1r−1)(l−r2)+ε(Q2r−1−l2r−1+y2r−1−l2r−1x(1r−1)(2r−1−l2r−1)))+O(ylx(1r−1)(l−1)+ετ−1Q−lr+1). |
Case 2. For 2r−1<l<2r, k≥4, 3≤r≤7,
Sk(x,y)=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε)+O(y(1−r2r)lx(1r−1)(1−r2r)l+εQk+ε)+O(y(1−r2r)l+k−1k+2x(1r−1)(1−r2r)l+εQ)+O(yl−r2+12x(1r−1)(l−r2)+ε(Q2r−1−l2r−1+y2r−1−l2r−1x(1r−1)(2r−1−l2r−1)))+O(ylx(1r−1)(l−1)+ετ−1Q−lr+1). |
Case 3. For l≥2r, 2≤k≤3, 3≤r≤7,
Sk(x,y)=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε)+O(yl−rx(l−r)(1r−1)+εQk+ε)+O(yl−r+k−1k+1x(l−r)(1r−1)+εQ)+O(yl−r2+12x(1r−1)(l−r2)+ε(Q2r−1−l2r−1+y2r−1−l2r−1x(1r−1)(2r−1−l2r−1)))+O(ylx(1r−1)(l−1)+ετ−1Q−lr+1). |
Case 4. For l≥2r, k≥4, 3≤r≤7,
Sk(x,y)=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε)++O(yl−rx(l−r)(1r−1)+εQk+ε)+O(yl−r+k−1k+2x(l−r)(1r−1)+εQ)+O(yl−r2+12x(1r−1)(l−r2)+ε(Q2r−1−l2r−1+y2r−1−l2r−1x(1r−1)(2r−1−l2r−1)))+O(ylx(1r−1)(l−1)+ετ−1Q−lr+1). |
Case 5. For 2r−1<l<2r, 2≤k≥3, r≥8,
Sk(x,y)=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε)++O(y(1−r2r)lx(1r−1)(1−r2r)l+εQk+ε)+O(y(1−r2r)l+k−1k+1x(1r−1)(1−r2r)l+εQ)+O(yl−r2+12x(1r−1)(l−r2)+ε(Q2r(r−1)−l2r(r−1)+y2r(r−1)−l2r(r−1)x(1r−1)(2r(r−1)−l2r(r−1))))+O(ylx(1r−1)(l−1)+ετ−1Q−lr+1). |
Case 6. For 2r−1<l<2r, k≥4, r≥8,
Sk(x,y)=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε)++O(y(1−r2r)l+x(1r−1)(1−r2r)l+εQk+ε)+O(y(1−r2r)l+k−1k+2x(1r−1)(1−r2r)l+εQ)+O(yl−r2+12x(1r−1)(l−r2)+ε(Q2r(r−1)−l2r(r−1)+y2r(r−1)−l2r(r−1)x(1r−1)(2r(r−1)−l2r(r−1))))+O(ylx(1r−1)(l−1)+ετ−1Q−lr+1). |
Case 7. For l≥2r, 2≤k≤3, r≥8,
Sk(x,y)=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε)++O(yl−rx(l−r)(1r−1)+εQk+ε)+O(yl−r+k−1k+1x(l−r)(1r−1)+εQ)+O(yl−r2+12x(1r−1)(l−r2)+ε(Q2r(r−1)−l2r(r−1)+y2r(r−1)−l2r(r−1)x(1r−1)(2r(r−1)−l2r(r−1))))+O(ylx(1r−1)(l−1)+ετ−1Q−lr+1). |
Case 8. For l≥2r, k≥4, r≥8,
Sk(x,y)=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε)++O(yl−rx(l−r)(1r−1)+εQk+ε)+O(yl−r+k−1k+2x(l−r)(1r−1)+εQ)+O(yl−r2+12x(1r−1)(l−r2)+ε(Q2r(r−1)−l2r(r−1)+y2r(r−1)−l2r(r−1)x(1r−1)(2r(r−1)−l2r(r−1))))+O(ylx(1r−1)(l−1)+ετ−1Q−lr+1). |
For Cases 1–4, we take y=xθ,θ=(1−1r)(r2+l−2r−1k⋅2r−1−ε)r2+l−2r−1k⋅2r−1−12−ε by condition of Theorem 1.1 and replace Q and τ in (3.1) by
xε≪Q<τ, Qτ≍yx1−1r, Q=y1kx1kr−1k. | (4.1) |
It is easy to see that
yl−r2+12x(1r−1)(l−r2)+εQ2r−1−l2r−1>yl−r2+12+2r−1−l2r−1x(1r−1)(l−r2+2r−1−l2r−1)+ε. |
In fact, we can check that the argument of Theorem 1.1 is valid if the parameters Q, τ and y satisfy the conditions
max{y(1−r2r)lx(1r−1)(1−r2r)l+εQk+ε,y(1−r2r)l+k−1k+1x(1r−1)(1−r2r)l+εQ}≪ylx−l+lr−ε,max{yl−rx(l−r)(1r−1)+εQk+ε,yl−r+k−1k+1x(l−r)(1r−1)+εQ}≪ylx−l+lr−ε, | (4.2) |
and
yl−r2+12x(1r−1)(l−r2)+εQ2r−1−l2r−1≪ylx−l+lr−ε,ylx(1r−1)(l−1)+ετ−1Q−lr+1≪ylx−l+lr−ε. |
Therefore,
Sk(x,y)=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε). |
For Cases 4–8, we take y=xθ,θ=(1−1r)(r2+l−2r(r−1)k⋅2r(r−1)−ε)r2+l−2r(r−1)k⋅2r(r−1)−12−ε by condition of Theorem 1.1. According to (4.1), we find
yl−r2+12x(1r−1)(l−r2)+εQ2r(r−1)−l2r(r−1)>yl−r2+12+2r(r−1)−l2r(r−1)x(1r−1)(l−r2+2r(r−1)−l2r(r−1))+ε. |
Actually, we can also deduce that Theorem 1.1 is available if the parameters Q, τ and y satisfying (4.2) and
yl−r2+12x(1r−1)(l−r2)+εQ2r(r−1)−l2r(r−1)≪ylx−l+lr−ε,ylx(1r−1)(l−1)+ετ−1Q−lr+1≪ylx−l+lr−ε. |
Similarly,
Sk(x,y)=∞∑q=1∑1≤a≤q(a,q)=1Slr(q,a)qlk−1∑j=0Aj(q)1j!S(x,y)+O(ylx−l+lr−ε). |
This completes the proof of Theorem 1.1.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work is supported by Natural Science Foundation of China (Grant Nos. 11761048), Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars (Grant Nos. 20212ACB211007) and Natural Science Foundation of Jiangxi Province (Grant Nos. 20224BAB201001). The authors would like to express their thanks to the referee for many useful suggestions and comments on the manuscript.
The authors declare there is no conflict of interests.
[1] |
C. Calderán, M. J. de Velasco, On divisors of a quadratic form, Bol. Soc. Bras. Mat., 31 (2000), 81–91. http://doi.org/10.1007/BF01377596 doi: 10.1007/BF01377596
![]() |
[2] |
C. E. Chace, The divisor problem for arithmetic progressions with small moduls, Acta Arith., 61 (1992), 35–50. http://doi.org/10.4064/AA-61-1-35-50 doi: 10.4064/AA-61-1-35-50
![]() |
[3] |
C. E. Chace, Writing integers as sums of products, T. Am. Math. Soc., 345 (1994), 367–379. https://doi.org/10.2307/2154608 doi: 10.2307/2154608
![]() |
[4] |
R. T. Guo, W. G. Zhai, Some problems about the ternary quadratic form m21+m22+m23, Acta Arith., 156 (2012), 101–121. https://doi.org/10.4064/AA156-2-1 doi: 10.4064/AA156-2-1
![]() |
[5] |
G. W. Hu, G. S. Lü, Sums of higher divisor functions, J. Number Theory, 220 (2021), 61–74. https://doi.org/10.1016/j.jnt.2020.08.009 doi: 10.1016/j.jnt.2020.08.009
![]() |
[6] |
L. Q. Hu, H. F. Liu, Sum of divisors of a quaternary quadratic form with almost equal variables, Ramanujan J., 40 (2016), 557–571. https://doi.org/10.1007/s11139-015-9758-9 doi: 10.1007/s11139-015-9758-9
![]() |
[7] |
L. Q. Hu, Y. J. Yao, Sums of divisors of the ternary quadratic with almost equal variables, J. Number Theory, 155 (2015), 248–263. https://doi.org/10.1016/j.jnt.2015.03.018 doi: 10.1016/j.jnt.2015.03.018
![]() |
[8] |
L. Q. Hu, L. Yang, Sums of the triple divisor function over values of a quaternary form, Acta Arith., 183 (2018), 63–85. https://doi.org/10.4064/AA170120-20-10 doi: 10.4064/AA170120-20-10
![]() |
[9] |
V. Kalinka, Variant of the divisor problem involving a large number of components, Lith. Math. J., 14 (1974), 442–448. https://doi.org/10.1007/BF01414921 doi: 10.1007/BF01414921
![]() |
[10] |
X. D. Lü, Q. W. Mu, The sum of divisors of mixed powers, Adv. Math., 45 (2016), 357–364. https://doi.org/10.11845/sxjz.2014147b doi: 10.11845/sxjz.2014147b
![]() |
[11] | C. D. Pan, C. B. Pan, Goldbach conjecture, Beijing: Science Press, 1992. |
[12] |
Q. F. Sun, D. Y. Zhang, Sums of the triper divisor function over values of a ternary quadratic form, J. Number Theory, 168 (2016), 215–246. https://doi.org/10.1016/j.jnt.2016.04.010 doi: 10.1016/j.jnt.2016.04.010
![]() |
[13] | R. C. Vaughan, The Hardy-Littlewood method, 2 Eds., Cambridge: Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511470929 |
[14] |
L. L. Zhao, The sum of divisors of a quadratic form, Acta Arith., 163 (2014), 161–177. http://doi.org/10.4064/aa163-2-6 doi: 10.4064/aa163-2-6
![]() |
[15] |
M. Zhang, An asymptotic formula related to the sums of divisors, Acta Arith., 175 (2016), 183–200. https://doi.org/10.4064/AA8391-5-2016 doi: 10.4064/AA8391-5-2016
![]() |
[16] |
M. Zhang, J. J. Li, On the sum of divisors of mixed powers in short intervals, Ramanujan J., 51 (2020), 333–352. https://doi.org/10.1007/s11139-018-0064-1 doi: 10.1007/s11139-018-0064-1
![]() |
[17] |
G. L. Zhou, Y. C. Ding, Sums of the higher divisor function of diagonal homogeneous forms, Ramanujan J., 59 (2022), 933–945. https://doi.org/10.1007/s11139-022-00579-z doi: 10.1007/s11139-022-00579-z
![]() |