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1. Introduction 

Curves and surfaces are one of the most important fundamental topics in differential geometry, 

and we encounter this topic in almost every differential geometry book [1–7]. Recently, there have 

been studies on the characterization of surfaces, including the characterization of curves defined 

according to different frame and special surfaces such as ruled and tubular surfaces [8–10]. In 

addition, the problem of finding a family of surfaces passing through a given curve and accepting 
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this curve as a special curve is one of the important topics studied recently. In this sense, this 

problem was first formulated by Wang et al [11]. They gave necessary and sufficient conditions for 

the given curve to be geodesic on the surface. Later, this study was generalized by Kasap and 

Ayyıldız in [12]. Li et al [13] studied the problem of finding a family of surfaces that accepts a given 

curve as a line of curvature. There are also several studies on this topic in three-dimensional 

Minkowski space; see [14–15]. For recent studies on the problem of finding a surface family that 

contains known special curve pairs and accepts these curves as geodesic, asymptotic, and line of 

curvature, see [16–24]. As is well-known, there are various frames that can be installed on a curve, 

and the one that is most frequently studied is the Frenet frame. Although the Frenet frame is a frame 

that characterizes the curve, one of its disadvantages is that this frame cannot be defined when the 

curvature of the curve is zero. In 1975, Bishop eliminated this disadvantage and defined a new frame, 

the Bishop frame [25]. In addition, Sasai defined the modified orthogonal frame at points where the 

curvature is different from zero [26]. Bükçü and Karacan expressed Sasai's work in three-dimensional 

Minkowski space. They also gave a new version of the modified orthogonal frame with torsion in 

three-dimensional Euclidean and Minkowski space [27]. Recently, there have been several studies on 

special curve pairs and special surfaces based on the modified orthogonal frame [28–36]. 

In this study, we defined conditions for the given curve to be both parametric and geodesic, 

asymptotic, or a line of curvature on the parametric surface by using two types of modified 

orthogonal frames. Finally, we have given various examples to support the study. 

2. Preliminaries 

In this section, we will explain some basic definitions and two types of modified orthogonal 

frames defined for curves with nonzero curvature and torsion. 

Let ( )s  be a 3C  space curve of arc length parameter s in the Euclidean 3-space. Then, the 

Frenet frame  (s), (s), (s)t n b
 
of the curve  , where (s), (s), (s)t n b  are the tangents of the 

principal normal and binormal vectors of  , respectively, is defined by 

            

''( )
( ) '( ), ( ) , ( ) ( ) ( ).

''( )

s
s s s s s s

s





= = = t n b t n                     (2.1) 

Derivatives of the Frenet frame are given by the relations 

                      

( )
( )
( )

( )
( ) ( )

( )

( )
( )
( )

' 0 0

' 0

' 0 0

s s s

s s s s

s s s



 



    
    

= −    
    −   

t t

n n

b b

,                     (2.2) 

where (s) ''(s) =   and (s) b '(s),n(s) = −
 

are called the curvature and torsion of the curve 

 , respectively. 

Let ( )s  be an analytic curve. Then, this curve can be re-parameterized by its arc length s. For 

this curve, we assume that the curvature function ( )s  is not identically zero or has discrete zero 

points. Thus, an orthogonal frame  (s), (s), (s)  T N B  can be defined as follows: 

dd
, ,

ds ds


    


= = = 

T
T N B T N .                       (2.3) 
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Considering the above equations and the Frenet equations, the obtained relations linking the Frenet 

frame  (s), (s), (s)t n b
 
and a new frame at nonzero points of  are obtained as 

                           , ,  = =  = T t N n B b .                           (2.4)                                                             

In this case, 0 0(s ) (s ) 0= =n b  when ( )0 0s =
 
and the squares of the lengths of n and b vary 

analytically in s. Based on these equations, the deriative equations are obtained as 

                               

2

'( ) ( )

'
'( ) ( ) ( ) ( )

'
'( ) ( ) ( ).

s s

s s s s

s s s

 

   

  


 








=

= − + +

= − +

T N

N T N B

B N B

,                  (2.5) 

Where 
2

det( ', '', ''')  
 =

  
is the torsion of the curve .

 

A new frame makes it easier to incorporate the following equations using the Frenet frame:  

2T , N N ,B T ,B 0, T ,T 1, N , N B ,B . (2.6)           = = = = = = 
 

The orthogonal frame  (s), (s), (s)  T N B
 
is therefore called the modified orthogonal frame with 

nonzero curvature [26]. It is easy to see that for 1 = , the Frenet frame coincides with the modified 

orthogonal frame.
 

Let ( )s  be an analytic curve. Then, this curve can be re-parameterized by its arc length s. For 

this curve, we will assume that the torsion function ( )s  is not identically zero. Thus, an orthogonal 

frame  (s), (s), (s)  T N B
 
can be defined as follows: 

                    

dTd
, , .

ds ds


    


= = = T N B T N                        (2.7) 

Taking into account the above equations and the Frenet equations, we obtain the following relations 

linking the Frenet frame and a new frame at nonzero points of  : 

                           , , .  = =  = T t N n B b                               (2.8) 

A new frame makes it easier to include the following equations using the Frenet frame:                   
 

2T , N N ,B T ,B 0, T ,T 1, N , N B ,B . (2.9)           = = = = = =          (2.9) 

The derivative equations of the new orthogonal frame  (s), (s), (s)  T N B
 
are derived from these 

fundamental equations: 

                            

2

'( ) ( )

'
'( ) ( ) ( ) ( )

'
'( ) ( ) ( ).

s s

s s s s

s s s

 

   

  


 








=

= − + +

= − +

T N

N T N B

B N B

                    (2.10) 

Where 
2

det( ', '', ''')  
 =

  
is the torsion of the curve .  
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Thus, the orthogonal frame  (s), (s), (s)  T N B
 
is called the modified orthogonal frame with 

nonzero torsion [27]. 

An isoparametric curve α(s) is a curve on a surface ( ),s v =  and has a constant s or v 

parameter value. In other words, there exists a parameter 𝑠0 or  𝑣0 such that 0( ) ( , )s s v =
 
or 

0( ) ( , )v s v =  [4]. 

A curve   in 
3IR  is a geodesic of   provided that its acceleration ''  is always normal 

to   [4]. A regular curve   in 
3IR  is an asymptotic curve provided that its velocity '  

always points in an asymptotic direction, i.e., the direction in which the normal curvature is zero [4]. 

The simplest criterion for a curve in   to be asymptotic is that its acceleration ''  is to always be 

tangent to  . A regular curve   in 
3IR  is a line of curvature provided that its velocity '

always points in a principal direction [4]. 

Theorem 2.1. A surface curve is a line of curvature if and only if the surface normals along the 

curve form a developable surface [6]. 

3. Special curved surface families according to modified orthogonal frame 

3.1.  Special curved surface families according to modified orthogonal frame with curvature 

Suppose we are given a unit speed parametric curve ( )s  with unit velocity, such that 

''( ) 0s  , in three-dimensional space. The surface family that possesses   as a common curve is 

given in the parametric form as 

        1 2 1 2(s, v) [x(s, v) (s) y(s, v) (s) z(s, v) (s)], L s L , K v K(s)    = + + +     T N B ,    (3.1) 

where ( , ), ( , )x s v y s v , and ( , )z s v  are 1C  functions and are called marching scale functions and

 (s), (s), (s)  T N B
 
is the modified orthogonal frame with nonzero curvature of the curve .  

Remark 3.1. Note that choosing different marching scale functions gives different surfaces which have 

( )s  as a common curve.
 

 

Our goal is to find the conditions for which the given curve ( )s  is an isoparametric and 

geodesic, asymptotic, or line of curvature on the surface (s, v).  
To begin, as ( )s  is an 

isoparametric curve on the surface (s, v) , there exists a parameter  1 2,0v K K  such that 

( ) ( ) ( ) 1 2 1 2, , , 0, ,0 0 0 0x s v y s v z s v L s L K v K= =      .                   (3.2) 

The normal vector field of the surface   is given by 

( , ) ( , )
( , ) ,

s v s v
U s v

s v

 


  
= 

 
 

where “×” is the vector product. We calculate 

( , ) ( , ) ' ( , ) '
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( )

z s v y s v y s v
U s v x s v y s v z s v y s v z s v T s

v s v
 

 
 

 

     
= + + − − +           
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2( , ) ( , ) ' ( , ) ( , )
( , ) ( , ) 1 ( , ) ( )

x s v z s v z s v x s v
y s v z s v y s v N s

v s v s



 



      
+ + + − + −            

              

         

2( , ) ( , ) ( , ) ( , ) '
1 ( , ) ( , ) ( , ) ( , ) ( )

y s v x s v x s v y s v
y s v x s v y s v z s v B s

v s v s



 



      
+ + − − + + −            

. 

Along the curve ( )s  we have 

                     

0 0
0

( , ) ( , )
( , ) ( ) ( ) .

z s v y s v
U s v n s b s

v v
 

  
= − + 

  
                 (3.3) 

If the unit normal vector vanishes at any point of a surface (s, v) , i.e., at any points, then these 

points are called the singular points of the surface. So, the following result is obvious. 

Corollar 3.2. Since 0  , 0( , )z s v

v




 or 0( , )y s v

v




 must be different from zero for the normal to be 

defined. If 0( , )
0

z s v

v





 and  0( , )

0
y s v

v





, then there is no singular point on the surface ( , ).s v

 
Theorem 3.3. Let (s)  be a unit speed curve with nonzero curvature. (s)  are parametric and 

geodesic on the surface (s, v)  if 

                

0 0
0 0 0

1 2 1 0 2 0, ,

( , ) ( , )
( , ) ( , ) ( , ) 0 ,

( ).L s L K v v K v

y s v z s v
x s v y s v z s v

v v

fixed   

 
= = =  

 



                 (3.4) 

Theorem 3.4. Let (s)  be a unit speed curve with nonzero curvature. (s)  are parametric and 

asymptotic on the surface (s, v)  if  

                

0 0
0 0 0

1 2 1 0 2 0, ,

( , ) ( , )
( , ) ( , ) ( , ) 0 ,

( ).L s L K v v K v

z s v y s v
x s v y s v z s v

v v

fixed   

 
= = =  

 



                (3.5) 

Corollary 3.5. The curve given according to the modified orthogonal frame with curvature cannot be 

geodesic and asymptotic at the same time. 

Theorem 3.6. Let ( )s  be a unit speed curve with nonzero curvature. ( )s  are parametric and 

line of curvature on the surface (s, v)  if  

                  

( ) ( )

( ) ( )

0 0 0

0 0

1 2 1 0 2 0, ,

( , ) ( , ) ( , ) 0,

, ( ) 0

( , ) ( , )
( ) cos , ( )sin ,

( ).L s L K v v K v

x s v y s v z s v

s s ds s

z s v y s v
s s s s

v v

fixed

  

   

   

= = 


= − 

 

= − =
 




                (3.6) 

Proof. Let u (s)  
be a vector field orthogonal to the curve (s) . Then, we can write 

u (s) cos (s)N (s) sin (s)B (s),  =  +   
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where   is the angle between u (s)  and is the vector field N (s)  of the curve (s).  According 

to Theorem 2.1, a line of curvature on the surface is given by Eq (3.1) if, and only if,

0u (s) // U (s, v )   and the ruled surface 

1 2L s LQ (s, v) (s) vu (s),   =  + , 

is developable. Using (3.3), we have 

0 0 0

z y
u (s) // U (s, v ) (s, v ) (s)cos (s), (s, v ) (s)sin (s)

v v
 

 
 = −  =  

 
, 

and Q (s, v)  is developable if, and only if, det( '(s),u (s),u '(s)) 0  = . Since 

2det( '(s), u (s), u '(s)) ( (s) '(s)),  =   +  

is 0  , we get 

det( '(s), u (s),u '(s)) 0 (s) (s)ds  =  = −  , 

which completes the proof. 

3.2.  Special curved surface families according to modified orthogonal frame with torsion 

Suppose we are given a unit speed parametric curve ( )s  so that ''( ) 0s 
 
and ( ) 0s   in 

a three-dimensional space. The surface family that possesses   as a common curve is given in the 

parametric form as 

     
(s, v) [x(s, v) (s) y(s, v) (s) z(s, v) (s)](s)    = + + + T N B , 1 2 1 2,L s L K v K    ,         (3.7) 

where ( , ), ( , )x s v y s v , and ( , )z s v  are 1C  functions and are called marching scale functions, and

 (s), (s), (s)  T N B
 
is the modified orthogonal frame with nonzero torsion of the curve .  

Remark 3.7. Observe that choosing different marching scale functions yields different surfaces 

possessing ( )s  as a common curve. 

Our aim is to find the conditions under which the given curve ( )s  is isoparametric and 

geodesic, asymptotic, or line of curvature on the surface (s, v) . To begin, as ( )s  is an 

isoparametric curve on the surface (s, v) , there exists a parameter  1 2,0v K K  such that 

                   
( ) ( ) ( ) 1 2 1 2, , , 0, ,0 0 0 0x s v y s v z s v L s L K v K= =      .                 (3.8) 

The normal vector field of the surface (s, v)  is given by 

( , ) ( , )
( , ) ,

s v s v
U s v

s v

 


  
= 

 
 

where “×” is the vector product. We calculate 

( , ) ' ( , ) ( , ) ' ( , )
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( )

z s v y s v y s v z s v
U s v x s v y s v z s v y s v z s v T s

v s v s
 

  
 

  

      
= + + − − + +            
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( , ) ( , ) ' ( , ) ( , )
( , ) ( , ) 1 ( , ) ( )

x s v z s v z s v x s v
y s v z s v y s v N s

v s v s



 



      
+ + + − + −            

              

                           

 

        

( , ) ( , ) ( , ) ( , ) '
1 ( , ) ( , ) ( , ) ( , ) ( )

y s v x s v x s v y s v
y s v x s v y s v z s v B s

v s v s


 
 

 

      
+ + − − + + −            

.

 

Along the curve ( )s , we have 

                     

0 0
0

( , ) ( , )
( , ) ( ) ( ) .

z s v y s v
U s v n s b s

v v
 

  
= − + 

  
                    (3.9) 

If the unit normal vector vanishes at any point of a surface (s, v) , i.e., at any points, then these 

points are called singular points of the surface. So, the following result is obvious. 

Corollary 3.8. Since 0  , 0( , )z s v

v




 or 0( , )y s v

v




 must be different from zero for the normal to be 

defined. If 0( , )
0

z s v

v





 and 0( , )

0
y s v

v





, then there is no singular point on the surface ( ), .s v

 
Theorem 3.9. Let (s)  be a unit speed curve with nonzero torsion. (s)  are parametric and 

geodesic on the surface (s, v)  if  

                   

0 0
0 0 0

1 2 1 0 2 0, ,

( , ) ( , )
( , ) ( , ) ( , ) 0 ,

( ).L s L K v v K v

y s v z s v
x s v y s v z s v

v v

fixed   

 
= = =  

 



             (3.10) 

Theorem 3.10. Let (s)  be a unit speed curve with nonzero torsion. (s)  are parametric and 

asymptotic on the surface (s, v)  if 

                   

0 0
0 0 0

1 2 1 0 2 0, ,

( , ) ( , )
( , ) ( , ) ( , ) 0 ,

( ).L s L K v v K v

z s v y s v
x s v y s v z s v

v v

fixed   

 
= = =  

 



             (3.11) 

Corollary 3.11. The curve given according to the modified orthogonal frame with torsion cannot be 

geodesic and asymptotic at the same time. 

Theorem 3.12. Let ( )s  be a unit speed curve with nonzero torsion. ( )s  are parametric and line 

of curvature on the surface (s, v)  if 

                      

( ) ( )

( ) ( )

0 0 0

0 0

1 2 1 0 2 0, ,

( , ) ( , ) ( , ) 0,

, ( ) 0

( , ) ( , )
( ) cos , ( )sin ,

( ).L s L K v v K v

x s v y s v z s v

s s ds s

z s v y s v
s s s s

v v

fixed

  

   

   

= = 


= − 

 

= − =
 




           (3.12) 

Proof. It is done like the proof of Theorem 3.6. 
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4. Examples of generating special curved surfaces according to modified orthogonal frame 

Example 4.1. Let ( )
3 3
2 2

3 3 1
( ) , 1 ,

3 3 2
s s s s

 
= −  
 

 be the unit speed curve. The Frenet apparatus 

of   is 

( ) ( )

( ) ( )

( ) ( )

1 1
2 2

11
22

1 1
2 2

3 3 1
, 1 , ,

2 2 2

1 , ,0 ,

1 1 3
, 1 , ,

2 2 2

3 1
( ) , ( ) .

4 (1 ) 4 (1 )

t s s s

n s s s

b s s s

s s
s s s s

 

  
= − −   

  


  = −   


 
= − −   
 


 = =

− −

 

Curvature and torsion is differentiable for 0s   and 1s  . The modified orthogonal frame with 

curvature and torsion of the unit speed curve ( )s is the derived elements as follows, respectively: 

( ) ( )

( )

( )

( ) ( )

( )

( )

1 1 1 1
2 2 2 2

3 3 1 3 3 1
, 1 , , 1 ,

2 2 2 2 2 2

3 3 1 1
, ,0 , , ,0

4 4 1 4 4 1

1 1 33 3 3
, ,, ,

8 1 8 8 (1 )8 1 8 8 (1 )

T s s s T s s s

N s N s
s s s s

B sB s
s s s ss s s s

 

 



     
= − −   = − −          

 
    

= =     − −   
      = − = −      − −− −   

. 

Choosing ( ) ( ) ( )2

0, 0, , (1 ) , , (1 ), 0x s v y s v v s s z s v v s s v = − = − = , we obtain the surface 

( )
3 3

2 22 2(s, v)
3(1 s)3 3s 3 3s 1 3

s s 1 s v v, (1 s) v v, s v
3 8 3 4 8 2 8

 =
 −

+ − − − + + +  
 

. 

0 1, 2 2s v  −   , satisfying Eq (3.4) and accepting the ( )s  as a geodesic curve (Figure 1). 

For the same conditions, we obtain the surface 

3 3

2 22 2(s, v)
3 1 s 1 3 s 1 s 1 3

s v v s, (1 s) v v, s v
3 4 8 3 4 8 2 8

 =
 − −

+ − − + + +  
 

. 

0 1, 2 2s v  −   , satisfying Eq (3.10) and accepting the ( )s  as a geodesic curve (Figure 2). 
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Figure 1. A member of the surface family         Figure 2. A member of the surface family 

( (s, v) ) accepting the curve ( )s  as a          ( (s, v) ) accepting the curve ( )s  as a 

geodesic curve.                               geodesic curve. 

For the same curve, choosing ( ) ( ) ( )2

0, 0, , (1 ) , , (1 ), 0x s v y s v v s s z s v v s s v = − = − = , we 

obtain the surface 

( ) ( )3 3

2 2 22 2(s, v)
3 1 s 3 1 s3 3s 3 3s 1 3

s v v , (1 s) v v , s v
3 4 8 3 4 8 2 8

 =

 − −
 + − − + + +
 
 

. 

0 1, 2 2s v  −   , satisfying Eq (3.5) and accepting the ( )s  as an asymptotic curve (Figure 3). 

For the same conditions, we obtain the surface 

3 3

2 2 22 2(s, v)
3 1 s s 3 s 1 s 1 3

s v v , (1 s) v v , s v
3 4 8 3 4 8 2 8

 =
 − −

+ − − + + +  
 

, 

0 1, 2 2s v  −   , satisfying Eq (3.11) and accepting the ( )s  as an asymptotic curve (Figure 4). 
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Figure 3. A member of the surface family         Figure 4. A member of the surface family 

( (s, v) ) accepting the curve ( )s  as an         ( (s, v) ) accepting the curve ( )s  as a 

asymptotic curve.                            asymptotic curve. 

Example 4.2. Let ( ) ( )
3 3 4

( ) sin , cos ,
5 5 5

s s s s
 

= − 
 

 be a unit speed curve. The Frenet apparatus of 

 are 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )

3 3 4
cos , sin ,

5 5 5

sin , cos ,0

4 4 3
cos , sin ,

5 5 5

3 4
( ) , ( ) .

5 5

t s s s

n s s s

b s s s

s s 

  
=  
 

 = − −

  

= − −  
 


= = −



 

The modified orthogonal frame with curvature and torsion of the unit speed curve ( )s  is the 

derived elements as follows, respectively: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3 3 4 3 3 4
cos , sin , cos , sin ,

5 5 5 5 5 5

3 3 4 4
sin , cos ,0 , sin , cos ,0

5 5 5 5

12 12 9 16 16 12
cos , sin , cos , sin ,

25 25 25 25 25 25

T s s s T s s s

N s s s N s s s

B s s s B s s s

 

 

 

    
= =    
    

    
= − − =    
    

    
= − − = −    
    

. 

    

 

Choosing ( ) ( ) ( ) ( ) ( )2 2

0, sin , , cos , , , 0x s v v s y s v v s z s v sv v= = = = , we obtain the surface 
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( ) ( ) ( ) ( ) ( )2 2
(s, v)

3 12 3 3 12 4 4 9
sin s svcos s , cos s v svsin s , s v sin s sv

5 25 5 5 25 5 5 25
 =

 
+ − − − + − 

 
. 

, 2 2s v −   −   , satisfying Eq (3.4) and accepting the ( )s  as a geodesic curve (Figure 5). 

For the same conditions, we obtain the surface 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2 2 2 2 2

2 2

(s, v)

3 7 16 3 3 4 16
sin s v sin s cos s sv cos s , cos s v sin s , cos s ssin s ,

5 5 25 5 5 5 25

4 4 12
s v sin s sv

5 5 25

 =

  
+ − − + + +  

  
 

+ + 
 

. 

2 2 , 2 2s v −   −   , satisfying Eq. (3.10) and accepting the ( )s  as a geodesic curve (Figure 6). 

 

             
Figure 5. A member of the surface family           Figure 6. A member of the surface family 

( (s, v) ) accepting the curve ( )s  as a            ( (s, v) ) accepting the curve ( )s  as a 

geodesic curve.                                geodesic curve. 

Choosing ( ) ( ) ( ) ( ) ( ) 0, cos , , sin , , 0, 0x s v v s y s v v s z s v v= = −  = , we obtain the surface 

( ) ( ) ( ) ( ) ( )(s, v)
3 3 3 6 4 4

sin s v, cos s vcos s sin s , s vcos s
5 5 5 5 5 5

 =
 

+ − + + 
 

. 

, 2 2s v −   −   , satisfying Eq (3.5) and accepting the ( )s  as an asymptotic curve (Figure 7). 

For the same conditions, we obtain the surface 

( ) ( ) ( ) ( ) ( ) ( )(s, v)
3 3 3 1 4 4

sin s vcos 2s , cos s vcos s sin s , s vcos s
5 5 5 5 5 5

 =
 

+ − − + 
 

 

, 2 2s v −   −   , satisfying Eq. (3.11) and accepting the ( )s  as an asymptotic curve (Figure 8). 
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Figure 7. A member of the surface family            Figure 8. A member of the surface family 

( (s, v) ) accepting the curve ( )s  as an            ( (s, v) ) accepting the curve ( )s  as an 

asymptotic curve.                               asymptotic curve. 

Choosing ( ) ( ) ( ) 0

4 4
, 0, , sin , , cos , 0

5 5
x s v y s v sv s z s v sv s v

   
 = = − =   

   
, we obtain the surface 

( ) ( ) ( ) ( ) ( )
(s, v)

3 3 4 12 4 3 3 4 12 4
sin s svsin s sin s svcos s cos s , cos s svcos s sin s svsin(s)cos s ,

5 5 5 25 5 5 5 5 25 5

4 9 4
s svcos s

5 25 5

 =

        
− − − − +        

        
  

+  
  

. 

2 2 , 2 2s v −   −   , satisfying Eq. (3.6) and accepting the ( )s  as a line of curvature (Figure 9). 

For the same conditions, we obtain the surface 

( ) ( ) ( ) ( ) ( ) ( )
(s, v)

3 4 4 12 4 3 4 4 12 4
sin s svsin s sin s svcos s cos s , cos s svcos s sin s svsin s cos s ,

5 5 5 25 5 5 5 5 25 5

4 9 4
s svcos s

5 25 5

 =

        
+ − − + +        

        
  

+  
  

. 

2 2 , 2 2s v −   −   , satisfying Eq. (3.12) and accepting the ( )s  as a line of curvature 

(Figure 10). 
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Figure 9. A member of the surface family           Figure 10. A member of the surface family 

( (s, v) ) accepting the curve ( )s  as a             ( (s, v) ) accepting the curve ( )s  as a 

line line of curvature.                            of curvature. 

5. Conclusions 

In this study, the conditions for a geodesic, asymptotic and curvature line on the parametric surface 

were given according to the modified orthogonal frame defined at the points where the curvature and 

twist of a curve given in three-dimensional Euclidean space are different from zero. Additionally, the 

singular points of the surface given by the parametric equation were expressed. Finally, various examples 

supporting the study and their shapes were given using the Maple 15 program. 
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