Research article Special Issues

Sweeping surface due to rotation minimizing Darboux frame in Euclidean 3-space $ \mathbb{E}^{3} $

  • Received: 06 September 2022 Revised: 14 September 2022 Accepted: 22 September 2022 Published: 08 October 2022
  • MSC : 53A04, 53A05, 53A17

  • In this paper, we address a new version of Darboux frame using a common tangent vector field to a surface along a curve and call this frame the rotation minimizing Darboux frame (RMDF). Then, we give the parametric equation due to the RMDF frame for a sweeping surface and show that the parametric curves on this surface are curvature lines. Consequently, necessary and sufficient conditions for sweeping surfaces to be developable ruled surfaces are derived. Also, we analyze the conditions when the resulting developable surface is a cylinder, cone or tangential surface. We also provide some examples to illustrate the main results.

    Citation: Maryam T. Aldossary, Rashad A. Abdel-Baky. Sweeping surface due to rotation minimizing Darboux frame in Euclidean 3-space $ \mathbb{E}^{3} $[J]. AIMS Mathematics, 2023, 8(1): 447-462. doi: 10.3934/math.2023021

    Related Papers:

  • In this paper, we address a new version of Darboux frame using a common tangent vector field to a surface along a curve and call this frame the rotation minimizing Darboux frame (RMDF). Then, we give the parametric equation due to the RMDF frame for a sweeping surface and show that the parametric curves on this surface are curvature lines. Consequently, necessary and sufficient conditions for sweeping surfaces to be developable ruled surfaces are derived. Also, we analyze the conditions when the resulting developable surface is a cylinder, cone or tangential surface. We also provide some examples to illustrate the main results.



    加载中


    [1] F. Klok, Two moving coordinate frames for sweeping along a 3D trajectory, Comput. Aided Geom. D., 3 (1986), 217–229. http://dx.doi.org/10.1016/0167-8396(86)90039-7 doi: 10.1016/0167-8396(86)90039-7
    [2] W. Wang, B. Joe, Robust computation of the rotation minimizing frame for sweeping surface modelling, Comput. Aided Design, 29 (1997), 379–391. http://dx.doi.org/10.1016/S0010-4485(96)00077-2 doi: 10.1016/S0010-4485(96)00077-2
    [3] T. Chen, P. Ye, J. Wang, Local interference detection and avoidance in five-axis NC machining of sculptured surfaces, Int. J. Adv. Manuf. Technol., 25 (2005), 343–349. http://dx.doi.org/10.1007/s00170-003-1921-6 doi: 10.1007/s00170-003-1921-6
    [4] R. Farouki, C. Giannelli, M. Sampoli, A. Sestini, Rotation-minimizing osculating frames, Comput. Aided Geom. D., 31 (2014), 27–42. http://dx.doi.org/10.1016/j.cagd.2013.11.003 doi: 10.1016/j.cagd.2013.11.003
    [5] R. Abdel-Baky, Y. Ynlütürk, On the curvatures of spacelike circular surface, Kuwait J. Sci., 43 (2016), 50–58.
    [6] S. Hu, Z. Wang, X. Tang, Tubular surfaces of center curves on spacelike surfaces in Lorentz-Minkowski 3-space, Math. Method. Appl. Sci, 42 (2019), 3136–3166. http://dx.doi.org/10.1002/mma.5574 doi: 10.1002/mma.5574
    [7] R. Abdel-Baky, Developable surfaces through sweeping surfaces, Bull. Iran. Math. Soc., 45 (2019), 951–963. http://dx.doi.org/10.1007/s41980-018-0177-8 doi: 10.1007/s41980-018-0177-8
    [8] R. Abdel-Baky, N. Alluhaibi, A. Ali, F. Mofarreh, A study on timelike circular surfaces in Minkowski 3-space, Int. J. Geom. Methods M., 17 (2020), 2050074. http://dx.doi.org/10.1142/S0219887820500747 doi: 10.1142/S0219887820500747
    [9] R. Abdel-Baky, F. Mofarreh, Sweeping surfaces according to type-2 Bishop frame in Euclidean 3-space, Asian-Eur. J. Math., 14 (2021), 2150184. http://dx.doi.org/10.1142/S1793557121501849 doi: 10.1142/S1793557121501849
    [10] S. Kobayashi, Differential geometry of curves and surfaces, Singapore: Springer Nature, 2019. http://dx.doi.org/10.1007/978-981-15-1739-6
    [11] T. Willmore, An introduction to differential geometry, Oxford: Oxford University Press, 1959.
    [12] H. Zhao, G. Wang, A new method for designing a developable surface utilizing the surface pencil through a given curve, Prog. Nat. Sci., 18 (2008), 105–110. http://dx.doi.org/10.1016/j.pnsc.2007.09.001 doi: 10.1016/j.pnsc.2007.09.001
    [13] C. Li, R. Wang, C. Zhu, Parametric representation of a surface pencil with a common line of curvature, Comput. Aided Design, 43 (2011), 1110–1117. http://dx.doi.org/10.1016/j.cad.2011.05.001 doi: 10.1016/j.cad.2011.05.001
    [14] E. Bayram, F. Güler, E. Kasap, Parametric representation of a surface pencil with a common asymptotic curve, Comput. Aided Design, 44 (2012), 637–643. http://dx.doi.org/10.1016/j.cad.2012.02.007 doi: 10.1016/j.cad.2012.02.007
    [15] C. Li, R. Wang, C. Zhu, An approach for designing a developable surface through a given line of curvature, Comput. Aided Design, 45 (2013), 621–627. http://dx.doi.org/10.1016/j.cad.2012.11.001 doi: 10.1016/j.cad.2012.11.001
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1489) PDF downloads(139) Cited by(3)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog