In this paper, we address a new version of Darboux frame using a common tangent vector field to a surface along a curve and call this frame the rotation minimizing Darboux frame (RMDF). Then, we give the parametric equation due to the RMDF frame for a sweeping surface and show that the parametric curves on this surface are curvature lines. Consequently, necessary and sufficient conditions for sweeping surfaces to be developable ruled surfaces are derived. Also, we analyze the conditions when the resulting developable surface is a cylinder, cone or tangential surface. We also provide some examples to illustrate the main results.
Citation: Maryam T. Aldossary, Rashad A. Abdel-Baky. Sweeping surface due to rotation minimizing Darboux frame in Euclidean 3-space $ \mathbb{E}^{3} $[J]. AIMS Mathematics, 2023, 8(1): 447-462. doi: 10.3934/math.2023021
In this paper, we address a new version of Darboux frame using a common tangent vector field to a surface along a curve and call this frame the rotation minimizing Darboux frame (RMDF). Then, we give the parametric equation due to the RMDF frame for a sweeping surface and show that the parametric curves on this surface are curvature lines. Consequently, necessary and sufficient conditions for sweeping surfaces to be developable ruled surfaces are derived. Also, we analyze the conditions when the resulting developable surface is a cylinder, cone or tangential surface. We also provide some examples to illustrate the main results.
[1] | F. Klok, Two moving coordinate frames for sweeping along a 3D trajectory, Comput. Aided Geom. D., 3 (1986), 217–229. http://dx.doi.org/10.1016/0167-8396(86)90039-7 doi: 10.1016/0167-8396(86)90039-7 |
[2] | W. Wang, B. Joe, Robust computation of the rotation minimizing frame for sweeping surface modelling, Comput. Aided Design, 29 (1997), 379–391. http://dx.doi.org/10.1016/S0010-4485(96)00077-2 doi: 10.1016/S0010-4485(96)00077-2 |
[3] | T. Chen, P. Ye, J. Wang, Local interference detection and avoidance in five-axis NC machining of sculptured surfaces, Int. J. Adv. Manuf. Technol., 25 (2005), 343–349. http://dx.doi.org/10.1007/s00170-003-1921-6 doi: 10.1007/s00170-003-1921-6 |
[4] | R. Farouki, C. Giannelli, M. Sampoli, A. Sestini, Rotation-minimizing osculating frames, Comput. Aided Geom. D., 31 (2014), 27–42. http://dx.doi.org/10.1016/j.cagd.2013.11.003 doi: 10.1016/j.cagd.2013.11.003 |
[5] | R. Abdel-Baky, Y. Ynlütürk, On the curvatures of spacelike circular surface, Kuwait J. Sci., 43 (2016), 50–58. |
[6] | S. Hu, Z. Wang, X. Tang, Tubular surfaces of center curves on spacelike surfaces in Lorentz-Minkowski 3-space, Math. Method. Appl. Sci, 42 (2019), 3136–3166. http://dx.doi.org/10.1002/mma.5574 doi: 10.1002/mma.5574 |
[7] | R. Abdel-Baky, Developable surfaces through sweeping surfaces, Bull. Iran. Math. Soc., 45 (2019), 951–963. http://dx.doi.org/10.1007/s41980-018-0177-8 doi: 10.1007/s41980-018-0177-8 |
[8] | R. Abdel-Baky, N. Alluhaibi, A. Ali, F. Mofarreh, A study on timelike circular surfaces in Minkowski 3-space, Int. J. Geom. Methods M., 17 (2020), 2050074. http://dx.doi.org/10.1142/S0219887820500747 doi: 10.1142/S0219887820500747 |
[9] | R. Abdel-Baky, F. Mofarreh, Sweeping surfaces according to type-2 Bishop frame in Euclidean 3-space, Asian-Eur. J. Math., 14 (2021), 2150184. http://dx.doi.org/10.1142/S1793557121501849 doi: 10.1142/S1793557121501849 |
[10] | S. Kobayashi, Differential geometry of curves and surfaces, Singapore: Springer Nature, 2019. http://dx.doi.org/10.1007/978-981-15-1739-6 |
[11] | T. Willmore, An introduction to differential geometry, Oxford: Oxford University Press, 1959. |
[12] | H. Zhao, G. Wang, A new method for designing a developable surface utilizing the surface pencil through a given curve, Prog. Nat. Sci., 18 (2008), 105–110. http://dx.doi.org/10.1016/j.pnsc.2007.09.001 doi: 10.1016/j.pnsc.2007.09.001 |
[13] | C. Li, R. Wang, C. Zhu, Parametric representation of a surface pencil with a common line of curvature, Comput. Aided Design, 43 (2011), 1110–1117. http://dx.doi.org/10.1016/j.cad.2011.05.001 doi: 10.1016/j.cad.2011.05.001 |
[14] | E. Bayram, F. Güler, E. Kasap, Parametric representation of a surface pencil with a common asymptotic curve, Comput. Aided Design, 44 (2012), 637–643. http://dx.doi.org/10.1016/j.cad.2012.02.007 doi: 10.1016/j.cad.2012.02.007 |
[15] | C. Li, R. Wang, C. Zhu, An approach for designing a developable surface through a given line of curvature, Comput. Aided Design, 45 (2013), 621–627. http://dx.doi.org/10.1016/j.cad.2012.11.001 doi: 10.1016/j.cad.2012.11.001 |