Citation: Huawei Huang, Xin Jiang, Changwen Peng, Geyang Pan. A new semiring and its cryptographic applications[J]. AIMS Mathematics, 2024, 9(8): 20677-20691. doi: 10.3934/math.20241005
[1] | H. S. Vandiver, Note on a simple type of algebra in which the cancellation 1 aw of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914–920. https://doi.org/10.1090/S0002-9904-1934-06003-8 doi: 10.1090/S0002-9904-1934-06003-8 |
[2] | A. Yamamura, A functional cryptosystem using a group action, In: Information Security and Privacy, Berlin: Springer, 1999. https://doi.org/10.1007/3-540-48970-3_26 |
[3] | A. Yamamura, Public-key cryptosystems using the modular group, In: Public Key Cryptography, Berlin: Springer, 1998. https://doi.org/10.1007/BFb0054026 |
[4] | R. Steinwandt, Loopholes in two public key cryptosystems using the modular group, In: Public Key Cryptography, Berlin: Springer, 2001. https://doi.org/10.1007/3-540-44586-2_14 |
[5] | D. Kahrobaei, C. Koupparis, V. Shpilrain, Public key exchange using matrices over group rings, Groups Complex. Crypt., 5 (2013), 97–115. https://doi.org/10.1515/gcc-2013-0007 doi: 10.1515/gcc-2013-0007 |
[6] | M. Eftekhari, Cryptanalysis of some protocols using matrices over group rings, In: Progress in Cryptology-AFRICACRYPT 2017, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-57339-7_13 |
[7] | I. Anshel, M. Anshel, D. Goldfeld, An algebraic method for public-key cryptography, Math. Res. Lett., 6 (1999), 287–291, https://doi.org/10.4310/MRL.1999.v6.n3.a3 doi: 10.4310/MRL.1999.v6.n3.a3 |
[8] | K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. S. Kang, C. Park, New public-key cryptosystem using Braid groups, In: Advances in Cryptology-CRYPTO 2000, Berlin: Springer, 2000. https://doi.org/10.1007/3-540-44598-6_10 |
[9] | I. Anshel, M. Anshel, B. Fisher, D. Goldfeld, New key agreement protocols in Braid group cryptography, In: Topics in Cryptology-CT-RSA 2001, Berlin: Springer, 2001. https://doi.org/10.1007/3-540-45353-9_2 |
[10] | D. Hofheinz, R. Steinwandt, A practical attack on some braid group based cryptographic primitives, In: Public Key Cryptography-PKC 2003, Berlin: Springer, 2003. https://doi.org/10.1007/3-540-36288-6_14 |
[11] | D. Sypeyer, B. Sturmfels, Tropical mathematics, Math. Mag., 82 (2009), 163–173, https://doi.org/10.1080/0025570X.2009.11953615 |
[12] | D. Grigoriev, V. Shpilrain, Tropical cryptography, Commun. Algebra, 42 (2014), 2624–2632. https://doi.org/10.1080/00927872.2013.766827 |
[13] | D. Grigoriev, V. Shpilrain, Tropical cryptography II: Extensions by homomorphisms, Commun. Algebra, 47 (2019), 4224–4229. https://doi.org/10.1080/00927872.2019.1581213 doi: 10.1080/00927872.2019.1581213 |
[14] | M. Kotov, A. Ushakov, Analysis of a key exchange protocol based on tropical matrix algebra, J. Math. Cryptol., 12 (2018), 137–141. https://doi.org/10.1515/jmc-2016-0064 doi: 10.1515/jmc-2016-0064 |
[15] | D. Rudy, C. Monico, Remarks on a tropical key exchange system, J. Math. Cryptol., 15 (2021), 280–283. https://doi.org/10.1515/jmc-2019-0061 doi: 10.1515/jmc-2019-0061 |
[16] | S. Isaac, D. Kahrobaei, A closer look at the tropical cryptography, Int. J. Comput. Math. Co., 6 (2021), 137–142. https://doi.org/10.1080/23799927.2020.1862303 doi: 10.1080/23799927.2020.1862303 |
[17] | A. Muanalifah, S. Sergeev, Modifying the tropical version of Stickel's key exchange protocol, Appl. Math., 65 (2022), 727–753. https://doi.org/10.21136/AM.2020.0325-19 doi: 10.21136/AM.2020.0325-19 |
[18] | O. Regev, On lattices, learning with errors, random linear codes, and cryptography, J. ACM, 56 (2009), 1–40. https://doi.org/10.1145/1568318.1568324 |
[19] | R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, Deep Space Netw. Progr. Rep., 44 (1978), 114–116. |
[20] | J. Patarin, Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric algorithms, In: Advances in Cryptology-EUROCRYPT'96, Berlin: Springer, 1996. https://doi.org/10.1007/3-540-68339-9_4 |
[21] | D. I. Nassr, M. Anwar, H. M. Bahig, New public key cryptosystem (First version), Cryptology ePrint Archive, 2021. |
[22] | D. S. Johnson, M. R. Garey, Computers and intractability: A guide to the theory of NP-completeness, WH Freeman, 1979. |
[23] | S. A. Cook, The complexity of theorem-proving procedures, In: Logic, Automata, and Computational Complexity: The Works of Stephen A. Cook, 1971,151–158. |
[24] | H. Huang, C. Li, Tropical cryptography based on multiple exponentiation problem of matrices, Secur. Commun. Netw., 2022 (2022), 1024161. https://doi.org/10.1155/2022/1024161 doi: 10.1155/2022/1024161 |
[25] | H. Huang, C. Li, L. Deng, Public-key cryptography based on tropical circular matrices, Appl. Sci., 12 (2022), 7401. https://doi.org/10.3390/app12157401 doi: 10.3390/app12157401 |
[26] | V. Thiruveni, Elgamal encryption using regular semiring, 2018. |
[27] | S. Nivetha, M. Chandramouleeswaran, Action of a semiring to encrypt asymmetric key elgamal, J. New Front. Math. Stat., 2 (2021), 1–10. |
[28] | G. Robert, Toeplitz and circulant matrices: A review, Found. Trends Commun., 2 (2006), 155–239. https://doi.org/10.1561/0100000006 doi: 10.1561/0100000006 |