Research article Special Issues

A new semiring and its cryptographic applications

  • Received: 07 March 2024 Revised: 28 May 2024 Accepted: 13 June 2024 Published: 26 June 2024
  • MSC : 15A80, 94A60

  • This paper introduced a novel semiring structure involving nonnegative integers, where operations depended on the comparison of the magnitudes of decimal digit sums. Consequently, a corresponding matrix semiring can be established on this commutative semiring. We showed that the 3-satisfiability problem can be polynomial-time reduced to solving systems of quadratic polynomial equations over this semiring. We proposed a key exchange protocol based on this matrix semiring, with its security relying on the two-sided digital circulant matrix action problem over this semiring. This scheme provides a novel cryptographic primitive for post-quantum cryptography.

    Citation: Huawei Huang, Xin Jiang, Changwen Peng, Geyang Pan. A new semiring and its cryptographic applications[J]. AIMS Mathematics, 2024, 9(8): 20677-20691. doi: 10.3934/math.20241005

    Related Papers:

  • This paper introduced a novel semiring structure involving nonnegative integers, where operations depended on the comparison of the magnitudes of decimal digit sums. Consequently, a corresponding matrix semiring can be established on this commutative semiring. We showed that the 3-satisfiability problem can be polynomial-time reduced to solving systems of quadratic polynomial equations over this semiring. We proposed a key exchange protocol based on this matrix semiring, with its security relying on the two-sided digital circulant matrix action problem over this semiring. This scheme provides a novel cryptographic primitive for post-quantum cryptography.


    加载中


    [1] H. S. Vandiver, Note on a simple type of algebra in which the cancellation 1 aw of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914–920. https://doi.org/10.1090/S0002-9904-1934-06003-8 doi: 10.1090/S0002-9904-1934-06003-8
    [2] A. Yamamura, A functional cryptosystem using a group action, In: Information Security and Privacy, Berlin: Springer, 1999. https://doi.org/10.1007/3-540-48970-3_26
    [3] A. Yamamura, Public-key cryptosystems using the modular group, In: Public Key Cryptography, Berlin: Springer, 1998. https://doi.org/10.1007/BFb0054026
    [4] R. Steinwandt, Loopholes in two public key cryptosystems using the modular group, In: Public Key Cryptography, Berlin: Springer, 2001. https://doi.org/10.1007/3-540-44586-2_14
    [5] D. Kahrobaei, C. Koupparis, V. Shpilrain, Public key exchange using matrices over group rings, Groups Complex. Crypt., 5 (2013), 97–115. https://doi.org/10.1515/gcc-2013-0007 doi: 10.1515/gcc-2013-0007
    [6] M. Eftekhari, Cryptanalysis of some protocols using matrices over group rings, In: Progress in Cryptology-AFRICACRYPT 2017, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-57339-7_13
    [7] I. Anshel, M. Anshel, D. Goldfeld, An algebraic method for public-key cryptography, Math. Res. Lett., 6 (1999), 287–291, https://doi.org/10.4310/MRL.1999.v6.n3.a3 doi: 10.4310/MRL.1999.v6.n3.a3
    [8] K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. S. Kang, C. Park, New public-key cryptosystem using Braid groups, In: Advances in Cryptology-CRYPTO 2000, Berlin: Springer, 2000. https://doi.org/10.1007/3-540-44598-6_10
    [9] I. Anshel, M. Anshel, B. Fisher, D. Goldfeld, New key agreement protocols in Braid group cryptography, In: Topics in Cryptology-CT-RSA 2001, Berlin: Springer, 2001. https://doi.org/10.1007/3-540-45353-9_2
    [10] D. Hofheinz, R. Steinwandt, A practical attack on some braid group based cryptographic primitives, In: Public Key Cryptography-PKC 2003, Berlin: Springer, 2003. https://doi.org/10.1007/3-540-36288-6_14
    [11] D. Sypeyer, B. Sturmfels, Tropical mathematics, Math. Mag., 82 (2009), 163–173, https://doi.org/10.1080/0025570X.2009.11953615
    [12] D. Grigoriev, V. Shpilrain, Tropical cryptography, Commun. Algebra, 42 (2014), 2624–2632. https://doi.org/10.1080/00927872.2013.766827
    [13] D. Grigoriev, V. Shpilrain, Tropical cryptography II: Extensions by homomorphisms, Commun. Algebra, 47 (2019), 4224–4229. https://doi.org/10.1080/00927872.2019.1581213 doi: 10.1080/00927872.2019.1581213
    [14] M. Kotov, A. Ushakov, Analysis of a key exchange protocol based on tropical matrix algebra, J. Math. Cryptol., 12 (2018), 137–141. https://doi.org/10.1515/jmc-2016-0064 doi: 10.1515/jmc-2016-0064
    [15] D. Rudy, C. Monico, Remarks on a tropical key exchange system, J. Math. Cryptol., 15 (2021), 280–283. https://doi.org/10.1515/jmc-2019-0061 doi: 10.1515/jmc-2019-0061
    [16] S. Isaac, D. Kahrobaei, A closer look at the tropical cryptography, Int. J. Comput. Math. Co., 6 (2021), 137–142. https://doi.org/10.1080/23799927.2020.1862303 doi: 10.1080/23799927.2020.1862303
    [17] A. Muanalifah, S. Sergeev, Modifying the tropical version of Stickel's key exchange protocol, Appl. Math., 65 (2022), 727–753. https://doi.org/10.21136/AM.2020.0325-19 doi: 10.21136/AM.2020.0325-19
    [18] O. Regev, On lattices, learning with errors, random linear codes, and cryptography, J. ACM, 56 (2009), 1–40. https://doi.org/10.1145/1568318.1568324
    [19] R. J. McEliece, A public-key cryptosystem based on algebraic coding theory, Deep Space Netw. Progr. Rep., 44 (1978), 114–116.
    [20] J. Patarin, Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric algorithms, In: Advances in Cryptology-EUROCRYPT'96, Berlin: Springer, 1996. https://doi.org/10.1007/3-540-68339-9_4
    [21] D. I. Nassr, M. Anwar, H. M. Bahig, New public key cryptosystem (First version), Cryptology ePrint Archive, 2021.
    [22] D. S. Johnson, M. R. Garey, Computers and intractability: A guide to the theory of NP-completeness, WH Freeman, 1979.
    [23] S. A. Cook, The complexity of theorem-proving procedures, In: Logic, Automata, and Computational Complexity: The Works of Stephen A. Cook, 1971,151–158.
    [24] H. Huang, C. Li, Tropical cryptography based on multiple exponentiation problem of matrices, Secur. Commun. Netw., 2022 (2022), 1024161. https://doi.org/10.1155/2022/1024161 doi: 10.1155/2022/1024161
    [25] H. Huang, C. Li, L. Deng, Public-key cryptography based on tropical circular matrices, Appl. Sci., 12 (2022), 7401. https://doi.org/10.3390/app12157401 doi: 10.3390/app12157401
    [26] V. Thiruveni, Elgamal encryption using regular semiring, 2018.
    [27] S. Nivetha, M. Chandramouleeswaran, Action of a semiring to encrypt asymmetric key elgamal, J. New Front. Math. Stat., 2 (2021), 1–10.
    [28] G. Robert, Toeplitz and circulant matrices: A review, Found. Trends Commun., 2 (2006), 155–239. https://doi.org/10.1561/0100000006 doi: 10.1561/0100000006
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(515) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog