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Abstract: This paper introduced a novel semiring structure involving nonnegative integers, where
operations depended on the comparison of the magnitudes of decimal digit sums. Consequently, a
corresponding matrix semiring can be established on this commutative semiring. We showed that
the 3-satisfiability problem can be polynomial-time reduced to solving systems of quadratic polynomial
equations over this semiring. We proposed a key exchange protocol based on this matrix semiring, with
its security relying on the two-sided digital circulant matrix action problem over this semiring. This
scheme provides a novel cryptographic primitive for post-quantum cryptography.
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1. Introduction

Research on the theory of semiring algebra began in the early twentieth century when Vandiver [1]
introduced the concept of semiring in 1934. Semirings encompass all properties of rings except for
additive inverses and have extensive applications in combinatorics, functional analysis, topology,
automata, computer science theory, and cryptography. Over the past two decades, various algebraic
structures have been employed to enhance existing public-key cryptosystems. In 1998,
Yamamura [2,3] employed modulo groups to construct cryptosystems; however, in 2001,
Steinwandt [4] demonstrated their vulnerability to ciphertext-only attacks. In 2013, Kahrobaei
et al. [5] employed the 3 × 3 matrix over F7 [S 5] to develop a key exchange protocol and
cryptosystem, which Eftekhari [6] later successfully cracked. Literature [7–9] proposed cryptosystems
based on braid groups, but Hofheinz and Steinwandt [10] demonstrated their insecurity.

Brazilian mathematician Imre Simon [11] introduced the concept of tropical semirings, where
addition represents the comparative size of a number, and multiplication corresponds to ordinary
addition. Recently, researchers have actively explored the application of tropical semirings in various
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cryptographic schemes. Shpilrain and Grigoriev [12, 13] developed a key exchange protocol utilizing
tropical matrix semirings.

However, Kotov and Ushakov [14] identified patterns in higher powers of tropical matrices,
resulting in an attack on the protocol proposed by Shpilrain and Grigoriev [12]. Rudy and
Monico [15] exploited the monotonically decreasing nature of the first part of the sequence {(M,H)m}

to propose a fairly effective attack on [13]. Isaac and Kahrobaei [16] utilized the almost linear
periodicity of the first part of the sequence {(M,H)m} to propose an attack on [13] and demonstrated
that the second protocol cannot be implemented. Muanalifah and Sergeev [17] proposed three types
of key exchange protocols using the Jones matrix and Line de la Puente matrix, along with
introducing a generalized Kotov-Ushakov attack.

Cryptographic schemes generally rely on the hardness of certain mathematical problems. If such a
problem is non-deterministic polynomial-time (NP) complete or NP hard, the corresponding
cryptographic scheme is considered to be resistant to quantum attacks. The main types of
post-quantum cryptography currently include lattice-based cryptography [18], code-based
cryptography [19], and multivariate cryptography [20]. Their security relies on the shortest vector
problem of lattice, the closest vector problem of lattice, the problem of decoding random linear codes,
and the problem of solving systems of multivariate quadratic equations over finite fields.
Lattice-based cryptographic schemes are considered highly secure against quantum attacks. In recent
years, this field of research has developed rapidly. For example, Nassr, Anwar, and Bahig [21]
proposed a new lattice-based cryptosystem, which offers significant improvements in security and
efficiency. The system’s security is comparable to that of the number theory research unit (NTRU)
and remains robust against attacks by quantum computers.

The 3-satisfiability (3-SAT) problem is a well-known NP-complete problem in the computational
complexity theory. It involves determining if there exists an assignment of variables that satisfies a
given Boolean formula expressed in conjunctive normal form (CNF) with exactly three literals per
clause. Introduced in the early 1970s, the 3-SAT problem is a cornerstone in theoretical computer
science, serving as a benchmark for many computational problems and algorithms [22,23].

In the literature [24, 25], several quantum-resistant cryptosystems have been proposed. These
cryptosystems utilize the multiple exponential power problem of tropical matrices and the tropical
circulant matrix action problem, respectively. Other researchers have proposed cryptosystems based
on different types of semirings. For instance, Thiruveni [26] devised an Elgamal-type cryptographic
system using regular semirings, while Nivetha [27] extended the Diffie-Hellman key exchange
protocol by incorporating exponential semirings within its multiplicative left ideal.

This paper introduces a new semiring called the digital semiring and proposes a key exchange
protocol based on the matrix semiring over it. Its security relies on the difficulty of solving quadratic
polynomial systems over it. We show that the 3-SAT problem can be polynomial-time reduced to it.
The scheme presented in this article introduces a new paradigm for post-quantum cryptography.

2. A new semiring and its matrix semiring

Definition 2.1. [1] A semiring is a nonempty set S on which the operations of + and · are defined to
satisfy the following conditions:

(1) (S ,+) is a commutative monoid with identity element 0 ;
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(2) (S , ·) is a monoid with identity element 1s;
(3) Multiplication distributes over addition from either side;
(4) s · 0 = 0 · s = 0, for all s ∈ S ;
(5) 0 , 1s.
The semiring satisfies all properties of the ring except the additive inverse. If (S , ·) is commutative,

then S is referred to as a commutative semiring. For example, the set N of natural numbers, including 0,
forms a commutative semiring under addition and multiplication.

Let W = N ∪ {∞}, where N is the set of natural numbers. We define the symbol “( )” as follows:

(a) =
{

b when a ∈ N,
∞ when a = ∞,

where b is the sum of all digits of a. For example, (123) = 1 + 2 + 3 = 6, (3456) = 3 + 4 + 5 + 6 = 18.
Definition 2.2. Define two operations ⊕ and ⊗ over W = N ∪ {∞} as follows:

a ⊕ b =


a (a) > (b),
b (a) < (b),

max(a, b) (a) = (b),

a ⊗ b =


a (a) < (b),
b (a) > (b),

min(a, b) (a) = (b).

Theorem 2.3. (W,⊕,⊗) is a semiring.
Proof. (1) First, we prove that W forms a commutative monoid with respect to the operation ⊕. Let
a, b, c ∈ W.

(A) Since the result of a⊕ b is either a or b, it follows that the operation ⊕ satisfies closure property.
(B) The operation ⊕ satisfies the associative property. Table 1 shows that the associative law of ⊕

when (a), (b), and (c) are pairwise distinct. Table 2 shows that the associative law of ⊕ when two
of (a), (b), and (c) are equal.

Table 1. The associative property of ⊕ ((a) , (b) , (c)).

Possible cases a ⊕ (b ⊕ c) (a ⊕ b) ⊕ c
(a) < (b) < (c) a ⊕ c = c b ⊕ c = c
(a) < (c) < (b) a ⊕ b = b b ⊕ c = b
(b) < (a) < (c) a ⊕ c = c a ⊕ c = c
(b) < (c) < (a) a ⊕ c = a a ⊕ c = a
(c) < (a) < (b) a ⊕ b = b b ⊕ c = b
(c) < (b) < (a) a ⊕ b = a a ⊕ c = a
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Table 2. The associative property of ⊕ ((a), (b), and (c) involve two elements being equal).

Possible cases a ⊕ (b ⊕ c) (a ⊕ b) ⊕ c
(a) = (b) < (c), a ≤ b a ⊕ c = c b ⊕ c = c
(a) = (b) < (c), a > b a ⊕ c = c a ⊕ c = c
(a) = (b) > (c), a ≤ b a ⊕ b = b b ⊕ c = b
(a) = (b) > (c), a > b a ⊕ b = a a ⊕ c = a
(a) = (c) < (b), a ≤ c a ⊕ b = b b ⊕ c = b
(a) = (c) < (b), a > c a ⊕ b = b b ⊕ c = b
(a) = (c) > (b), a ≤ c a ⊕ c = c a ⊕ c = c
(a) = (c) > (b), a > c a ⊕ c = a a ⊕ c = a
(b) = (c) < (a), b ≤ c a ⊕ c = a a ⊕ c = a
(b) = (c) < (a), b > c a ⊕ b = a a ⊕ c = a
(b) = (c) > (a), b ≤ c a ⊕ c = c b ⊕ c = c
(b) = (c) > (a), b > c a ⊕ b = b b ⊕ c = b

When (a) = (b) = (c), we have a ⊕ (b ⊕ c) = max(a, b, c) = (a ⊕ b) ⊕ c.
(C) ∀a ∈ W, and we have a ⊕ 0 = 0 ⊕ a = a. Thus, 0 is the identity element (zero element) for the

operation ⊕.
(D) ∀a, b ∈ W, and we have a ⊕ b = b ⊕ a. Therefore, ⊕ satisfies the commutative property.
(E) Let a, b ∈ W. If a , 0, then a ⊕ b , 0. Hence, apart from 0, none of the other elements have

additive inverses.
In summary, W forms a commutative monoid with respect to the operation ⊕.
(2) Next, we prove that W forms a monoid with respect to the operation ⊗.
(A) Since the result of a ⊗ b is either a or b, the operation ⊗ is closed.
(B) The operation ⊗ satisfies the associative property. Table 3 describes the associative law of ⊗

when (a), (b), and (c) are pairwise distinct. Table 4 describes the associative law of ⊗ when two
of (a), (b), and (c) are equal.

Table 3. The associative property of ⊗ ((a) , (b) , (c)).

Possible cases a ⊗ (b ⊗ c) (a ⊗ b) ⊗ c
(a) < (b) < (c) a ⊗ b = a a ⊗ c = a
(a) < (c) < (b) a ⊗ c = a a ⊗ c = a
(b) < (a) < (c) a ⊗ b = b b ⊗ c = b
(b) < (c) < (a) a ⊗ b = b b ⊗ c = b
(c) < (a) < (b) a ⊗ c = c a ⊗ c = c
(c) < (b) < (a) a ⊗ c = c b ⊗ c = c
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Table 4. The associative property of ⊗ ((a), (b), and (c) involve two elements being equal.

Possible cases a ⊗ (b ⊗ c) (a ⊗ b) ⊗ c
(a) = (b) < (c), a ≤ b a ⊗ b = a a ⊗ c = a
(a) = (b) < (c), a > b a ⊗ b = b b ⊗ c = b
(a) = (b) > (c), a ≤ b a ⊗ c = c a ⊗ c = c
(a) = (b) > (c), a > b a ⊗ c = c b ⊗ c = c
(a) = (c) < (b), a ≤ c a ⊗ c = a a ⊗ c = a
(a) = (c) < (b), a > c a ⊗ c = c a ⊗ c = c
(a) = (c) > (b), a ≤ c a ⊗ b = b b ⊗ c = b
(a) = (c) > (b), a > c a ⊗ b = b b ⊗ c = b
(b) = (c) < (a), b ≤ c a ⊗ b = b b ⊗ c = b
(b) = (c) < (a), b > c a ⊗ c = c b ⊗ c = c
(b) = (c) > (a), b ≤ c a ⊗ b = a a ⊗ c = a
(b) = (c) > (a), b > c a ⊗ c = a a ⊗ c = a

When (a) = (b) = (c), we have a ⊗ (b ⊗ c) = min(a, b, c) = (a ⊗ b) ⊗ c.
(C) ∀a ∈ W, a ⊗∞ = ∞⊗ a = a. Therefore, the identity element for ⊗ is∞.
In conclusion, W forms a monoid with respect to the operation ⊗.
(3) Next, we prove that the operation ⊗ distributes over ⊕. Table 5 shows that ⊗ satisfies the

distributive law over ⊕ when (a), (b), and (c) are pairwise distinct. Table 6 shows that ⊗ satisfies the
distributive law over ⊕ when two of (a), (b), and (c) are equal.

When (a) = (b) = (c), we have

a ⊗ (b ⊕ c) = min(a,max(b, c)) = max(min(a, b),min(a, c)) = a ⊗ b ⊕ a ⊗ c.

Table 5. The distributive property ((a) , (b) , (c)).

Possible cases a ⊗ (b ⊕ c) a ⊗ b ⊕ a ⊗ c
(a) < (b) < (c) a ⊗ c = a a ⊕ a = a
(a) < (c) < (b) a ⊗ b = a a ⊕ a = a
(b) < (a) < (c) a ⊗ c = a b ⊕ a = a
(b) < (c) < (a) a ⊗ c = c b ⊕ c = c
(c) < (a) < (b) a ⊗ b = a a ⊕ c = a
(c) < (b) < (a) a ⊗ b = b b ⊕ c = b
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Table 6. The distributive property ( two elements are equal in (a), (b), (c).

Possible cases a ⊗ (b ⊕ c) a ⊗ b ⊕ a ⊗ c
(a) = (b) < (c), a ≤ b a ⊗ c = a a ⊕ a = a
(a) = (b) < (c), a > b a ⊗ c = a b ⊕ a = a
(a) = (b) > (c), a ≤ b a ⊗ b = a a ⊕ c = a
(a) = (b) > (c), a > b a ⊗ b = b b ⊕ c = b
(a) = (c) < (b), a ≤ c a ⊗ b = a a ⊕ a = a
(a) = (c) < (b), a > c a ⊗ b = a a ⊕ c = a
(a) = (c) > (b), a ≤ c a ⊗ c = a b ⊕ a = a
(a) = (c) > (b), a > c a ⊗ c = c b ⊕ c = c
(b) = (c) < (a), b ≤ c a ⊗ b = b b ⊕ c = b
(b) = (c) < (a), b > c a ⊗ b = b b ⊕ c = b
(b) = (c) > (a), b ≤ c a ⊗ c = a a ⊕ a = a
(b) = (c) > (a), b > c a ⊗ b = a a ⊕ a = a

In conclusion, the distributive property of ⊗ over ⊕ holds.
Finally, let’s prove the last two conditions.
(4) ∀a ∈ W, and we have a ⊗ 0 = 0 ⊗ a = 0.
(5) 0 , ∞.
In conclusion, (W,⊕,⊗) forms a semiring and is also a commutative semiring.
For convenience, we refer to it as “digital semiring”. It has the following properties:
(1) (W,⊕) is a commutative monoid with identity element 0 ;
(2) (W,⊗) is a monoid with identity element∞;
(3) a ⊕ a = a, a ⊗ a = a, for all a ∈ W.
The security of the cryptographic scheme proposed in this paper relies on the problem of solving

quadratic polynomial systems over the new semiring. If this problem is NP-hard, then cryptographic
schemes based on it will be resistant to quantum attacks. If we can prove that the 3-SAT problem
can be polynomial-time reduced to the problem of solving quadratic polynomial systems over the new
semiring, then the problem of solving quadratic polynomial systems over the new semiring is NP-hard.

The Boolean satisfiability problem is NP complete. If all expressions are written in the form of a
conjunction normal form with 3 variables per clause (3-CNF), then it is still an NP complete problem
and called the 3-SAT problem. The theorem below asserts that the problem of solving quadratic
polynomial systems over this semiring is usually NP hard.
Theorem 2.4. 3-SAT problem can be polynomial-time reduced to the problem of solving quadratic
polynomial systems over this semiring.

Proof: Suppose we have a 3-CNF. We can construct a system of nonlinear equations on a digital
semiring. And this system of equations has a solution if and only if there is a solution for the 3-CNF.
Let the variable in the 3-CNF be ui, corresponding to two variables xi and yi, where ui = xi and ¬ui = yi.
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Suppose a clause in a 3-CNF expression: ui ∨ ¬u j ∨ uk. The corresponding system of polynomial
equations can be constructed as follows:

xi ⊗ yi = 0,
x j ⊗ y j = 0,
xk ⊗ yk = 0,
xi ⊕ yi = 1,
x j ⊕ y j = 1,
xk ⊕ yk = 1,

xi ⊕ y j ⊕ xk = 1.

(∇)

Suppose ui ∨ ¬u j ∨ uk is TURE, i.e., ui = 1, u j = 0, or uk = 1.
(1) If ui = 1, then xi = 1, yi = 0, and the system of equations (∇) is satisfied;
(2) if u j = 0, then x j = 0, y j = 1, and the equation (∇) is satisfied;
(3) if uk = 1, then xk = 1, yk = 0, and the equation (∇) is satisfied.
So, when ui ∨ ¬u j ∨ uk is TURE, there is a solution to equation (∇).
Conversely, when there is a solution to equation (∇), i.e., xi = 1, y j = 1, or xk = 1.
(1) If xi = 1, then ui = 1, and ui ∨ ¬u j ∨ uk is TURE;
(2) if y j = 1, then ¬u j = 1, and ui ∨ ¬u j ∨ uk is TURE;
(3) if xk = 1, then uk = 1, and ui ∨ ¬u j ∨ uk is TURE.
Thus, for each clause in the given 3-CNF, we can construct a system of quadratic polynomial

equations on a digital semiring. Finally, we obtain the corresponding system of equations over the
whole 3-CNF that has a solution if, and only if, the given 3-CNF expression is satisfied. Thus,
the 3-CNF satisfiability problem can be effectively reduced to solving a system of quadratic
polynomial equations over the digital semiring.

Next, we define the matrix semiring for digital semiring.
Definition 2.5. Let Mn(W) be the set of all n × n matrices over W. We can define ⊕ and ⊗ as follows:

(A ⊕ B)i j = ai j ⊕ bi j, (A ⊗ B)i j =

n⊕
k=1

(
aik ⊗ bk j

)
, for all A, B ∈ Mn(W).

Then, (Mn(W),⊕,⊗) is also a semiring with respect to the above operation, which is called a digital
matrix semiring.

The identities under ⊕ and ⊗ on (Mn(W),⊕,⊗) are:

O =


0 0 · · · 0
0 0 · · · 0
...
...
. . .

...

0 0 · · · 0

 , I =

∞ 0 · · · 0
0 ∞ · · · 0
...
...
. . .

...

0 0 · · · ∞

 , respectively.

Definition 2.6. [28] If a matrix A has the following form,

A =



a1 a2 a3 · · · an

an a1 a2 · · · an−1

an−1 an a1 · · · an−2
...

...
...
. . .

...

a2 a3 a4 · · · a1
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then it is called a circulant matrix and it is denoted A = [a1, a2, · · · , an]. It can be easily verified that if
A, B are circulant, then A ⊗ B = B ⊗ A. For example,

828 6086 354
354 828 6086

6086 354 828

 ⊗


939 1083 5143
5143 939 1083
1083 5143 939

 =


828 6086 5143
5143 828 6086
6086 5143 828

 ,


939 1083 5143
5143 939 1083
1083 5143 939

 ⊗


828 6086 354
354 828 6086

6086 354 828

 =


828 6086 5143
5143 828 6086
6086 5143 828

 .
3. Key exchange protocol based on digital semiring

3.1. Protocol

Alice and Bob agree to exchange keys over the digital semiring W and randomly select a matrix
M ∈ Mn(W) and a prime p as public keys. To obtain the shared secret, Alice and Bob perform the
following steps:

(1) Alice chooses two circulant matrices A1, A2 ∈ Mn(W) as her private keys. She computes her
public key U = A1 ⊗ M ⊗ A2 and sends it to Bob;

(2) Bob chooses two circulant matrices B1, B2 ∈ Mn(W) as his private keys. He computes his public
key V = B1 ⊗ M ⊗ B2 and sends it to Alice;

(3) Alice computes: Kab = A1⊗V⊗A2 = A1⊗B1⊗M⊗B2⊗A2. Bob computes: Kba = B1⊗U⊗B2 =

B1 ⊗ A1 ⊗ M ⊗ A2 ⊗ B2. By the commutability of the circulant matrix, Kab = Kba.
(4) Alice and Bob compute the shared key:

K =

 n∑
i=1

a1i,

n∑
i=1

a2i, · · · ,

n∑
i=1

ani

 mod p, ai j ∈ Kab, 1 ≤ i, j ≤ n.

An example with small parameter.
Alice and Bob choose p = 199 and the public matrix M,

M =


75908 263379 841480 305528 181377

194915 62915 549784 877525 578192
467300 907097 86372 271936 176267
245134 578159 386596 937699 196995
62727 321244 820495 823705 615166


.

(1) Alice chooses two circulant matrices A1, A2 ∈ M5(W) and computes U;

A1 = [211034, 686963, 978737, 940353, 370520],
A2 = [983661, 534026, 194077, 276808, 138247],

U =


276808 907097 983661 983661 578192
276808 983661 983661 983661 983661
276808 983661 983661 983661 983661
75908 263379 820495 75908 263379

276808 276808 983661 983661 578192


.
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(2) Bob chooses two circulant matrices B1, B2 ∈ M5(W) and computes V;

B1 = [680091, 792838, 334272, 935627, 522570],
B2 = [787257, 284933, 18528, 186041, 365280],

V =


284933 935627 787257 877525 935627
176267 907097 284933 820495 176267
284933 578159 787257 787257 787257
284933 194915 935627 935627 578192
176267 907097 284933 271936 176267


.

(3) Alice and Bob’s shared matrix is

Kab =


276808 983661 983661 983661 983661
276808 983661 983661 983661 983661
276808 907097 935627 935627 578192
276808 935627 983661 983661 935627
276808 935627 983661 983661 935627


.

(4) Alice and Bob’s shared key is

K = (4211452, 4211452, 3633351, 4115384, 4115384) mod 199 = (15, 15, 9, 64, 64).

Table 7 shows the size of the private and public key matrices under different parameters, as well
as the time of key generation, where the elements of the matrix are randomly selected in

[
0, 106

]
and

p = 199.

Table 7. Performance comparison under different parameters.

n Size of private key B Size of public key (B) Key generation s
20 49.83 996.57 0.2066
25 62.29 1557.14 0.4029
30 74.74 2,242.28 0.6872
35 87.20 3051.20 1.1041
40 99.66 3,986.28 1.6526
45 112.11 5,045.14 2.3468

Our tests were run on Intel Core: Intel(R) Core (TM) i5-1155G7@2.50GHz

4. Security analysis

In this section, we evaluate the security of the proposed key exchange protocol.
Definition 4.1. Let A1, A2 ∈ Mn(W) be circulant matrices and M ∈ Mn(W) be an arbitrary matrix.
Suppose that A1 ⊗ M ⊗ A2 = U. The two-side digital circulant matrix action problem (MAP) is to find
two circulant matrices A1, A2 ∈ Mn(W) such that A1 ⊗ M ⊗ A2 = U, given the matrices M,U.
Definition 4.2. Let A1, A2, B1, B2 ∈ Mn(W) be circulant matrices and M ∈ Mn(W) be an arbitrary
matrix. Suppose that A1⊗M⊗A2 = U and B1⊗M⊗B2 = V . The computational two-side digital circulant
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matrix action problem (CMAP) is to find a matrix Kab ∈ Mn(W) such that A1⊗B1⊗M⊗B2⊗A2 = Kab,
given the matrices M,U, and V .
Proposition 4.3. An algorithm that solves MAP can be used to solve CMAP.

Proof. Suppose there is an algorithm A of solving MAP. Then, for M,U,V in definition 4.2,
A(M,U) = (A1, A2) such that A1MA2 = U.

So, we have
A1 ⊗ V ⊗ A2 = A1 ⊗ B1 ⊗ M ⊗ B2 ⊗ A2 = Kab.

Proposition 4.4. Solving CMAP is equivalent to finding the matrix Kab from the public information of
the protocol.
Proof. Suppose there is an algorithm A of solving CMAP. Let the public information in the protocol
be public matrix M, Alice’s public key U, and Bob’s public key V . Then,

A(M,U,V) = A1 ⊗ B1 ⊗ M ⊗ B2 ⊗ A2 = Kab.

Conversely, suppose there is an algorithm B which can compute the matrix Kab when the input is the
public information in the protocol. Let the instance of CMAP be (M,U,V). Then we can take M as the
public matrix, U as Alice’s public key, and V as Bob’s public key. So, B(M,U,V) = Kab. According
to Definition 4.2, this solves the problem of CMAP.
Proposition 4.5. MAP can be reduced to the problem of solving quadratic polynomial systems over
the digital semiring.
Proof. Suppose there is an algorithmAwhich can solve the systems of quadratic polynomial equations
over this semiring. That is,

A(( f1, b1), ( f2, b2) · · · , ( fm, bm)) = (a1, · · · , an),

where fi = fi(x1, · · · , xn) is a quadratic polynomial over this semiring and ai ∈ W such that
f1 (a1, a2, · · · , an) = b1,

f2 (a1, a2, · · · , an) = b2,

· · ·

fm (a1, a2, · · · , an) = bm.

Suppose that we are given U,M ∈ Mn(W), where U = A1MA2 for some A1, A2 ∈ Mn(W). Then we can
find A1, A2 by the algorithmA. Let

A1 =



x1 x2 x3 · · · xn

xn x1 x2 · · · xn−1

xn−1 xn x1 · · · xn−2
...

...
...
. . .

...

x2 x3 x4 · · · x1


,

and

A2 =



y1 y2 y3 · · · yn

yn y1 y2 · · · yn−1

yn−1 yn y1 · · · yn−2
...

...
...
. . .

...

y2 y3 y4 · · · y1


.
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By U = A1MA2, we can obtain a system of quadratic polynomial equations with 2n unknowns
x1, · · · , xn, y1, · · · , yn and n2 equations as follows,

g1 (x1, · · · , xn, y1, · · · , yn) = d1,

g2 (x1, · · · , xn, y1, · · · , yn) = d2,

· · ·

gn2 (x1, · · · , xn, y1, · · · , yn) = dn2 .

Now, we can compute its solution by the algorithm A since g1, · · · , gn2 are the quadratic polynomial
equations over the semiring.
Proposition 4.6. The computational complexity of solving the CMAP by enumeration is
O
((

n2 + 1
)

tn2
)
, where n is the order of the matrix and t is the number of distinct elements in U,V,M.

Proof. Kab is completely dependent on the matrices U,V , and M, that is, Kab is a certain combination
of different elements in U,V , and M. If we solve CMAP through an exhaustive attack, we need to
enumerate all possible scenarios, which requires O(tn2

) operations, where t is the number of different
elements in U,V , and M, and n is the order of the matrix. After each operation, we need to determine
whether the possible value is equal to Kab, each determination requires O

(
n2
)

operations, and verifying

all possible values requires O
(
n2ttn

2
)

operations. Therefore, in the worst case, where all combinations

need to be verified, O
((

n2 + 1
)

tn2
)

operations are required. Therefore, the computational complexity

of solving CMAP through exhaustive search is O
((

n2 + 1
)

tn2
)
.

In summary, it is infeasible for an attacker to obtain the shared secret key using exhaustive search
methods. The attacker’s only option is to acquire the shared matrix Kab by solving the MAP or CMAP.
However, the currently known methods for solving MAP involve addressing quadratic polynomial
systems over the digital semiring. Theorem 2.4 demonstrates that solving such systems of equations is
typically NP-hard.

In the appendix, we explain why the key exchange protocol based on the digital semiring is resistant
to Kotov-Ushakov(KU) attacks.

5. Conclusions

This paper introduces a novel semiring structure called the digital semiring and proposes a new
key exchange protocol based on it. The shared matrix Kab in this protocol is entirely dependent on
the matrices U, V , and M, but this does not compromise the security of the protocol. Solving Kab

through U, V , and M is equivalent to solving the CMAP. Proposition 4.6 states that the computational
complexity of CMAP is O((n2+1)tn2

). Current methods for solving CMAP involve addressing quadratic
polynomial systems over the digital semiring. Theorem 2.4 demonstrates that solving such systems is
an NP-hard problem. Additionally, the traditional KU attack cannot be applied within the digital
semiring.

This work highlights the application value of the digital semiring in cryptography. This semiring
possesses many intriguing properties that are yet to be discovered, presenting ample opportunities
for future research. We recommend further exploration of the structure and properties of the digital
semiring to uncover its full potential in cryptography and related fields.

The key exchange protocol proposed in this study offers a new primitive for post-quantum
cryptography. This not only enriches the theoretical framework of cryptography but also provides new
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methods for constructing secure encryption systems. Future work could include the following
directions:

(1) In-depth analysis of the algebraic properties of the digital semiring: Investigate its behavior
under different operations to identify possible optimizations and enhancements.

(2) Expanding the application scope of the digital semiring: Explore its potential use in other
cryptographic problems, such as signature algorithms and zero-knowledge proofs.

(3) Improving efficiency and security of the protocol: Enhance the performance and resistance to
attacks by refining algorithms and incorporating new mathematical tools.

(4) Experimental validation and practical implementation: Test the protocol’s performance and
security in real-world applications to facilitate its practical adoption.

In conclusion, the digital semiring offers new perspectives and tools for cryptographic research,
and we anticipate that future studies will further explore its potential, contributing new insights and
advancements to the field of cryptography.
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Appendix: Resist KU attack

The tropical semiring (a ⊕1 b = min(a, b), a ⊗1 b = a + b) has higher computational efficiency,
which has attracted many cryptologists’ research in recent years. However, there are also many
attacks. In particular, the KU attack has a significant impact on two-side tropical matrix action. Next,
we will describe the KU attack and explain how our scheme can resist this attack.

KU attack [14]:
Assuming matrices A, B, and U (= p1(A) ⊗1 p2(B)) are known, find X and Y such that U = X ⊗1 Y .

(1) suppose X =
D
⊕
i=0

xi ⊗1 Ai,Y =
D
⊕
j=0

y j ⊗1 B j;

(2)

U = X ⊗1 Y =
D
⊕1

i=0, j=0

(
xi ⊗1 y j

)
⊗1 Ai ⊗1 B j =

D
⊕1

i=0, j=0

(
xi ⊗1 y j

)
⊗1 V i j

where V i j = Ai ⊗1 B j;
(3) From the properties of tropical semiring operations, we can obtain:

min
i, j

(
xi + y j + T i j

kl

)
= 0,T i j

kl = V i j
kl − Uk,

where T i j = Ai ⊗1 B j − U;
(4) Compute mi j = mini, j

(
T i j

rs

)
, Pi j =

{
(r, s) | T i j

rs = mi j

}
;
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(5) Among all minimal covers of Cartesian product [1, 2, · · · , n] × [1, 2, · · · , n] by Pi j, that is, all
minimal subsets τ ⊆ [0, 1, · · · ,D] × [0, 1, · · · ,D] such that

∪
(i, j)∈τ

Pi j = [1, 2, · · · , n] × [1, 2, · · · , n]

find a cover for which the system
{

xi + y j = −mi j, (i, j) ∈ τ
xi + y j ≥ −mi j, (i, j) < τ

is solvable.

We can find that from step (2) to step (3):

U =
D
⊕1

i=0, j=0
xi ⊗1 y j ⊗1 V i j ⇄ 0 =

D
⊕1

i=0, j=0

(
xi ⊗1 y j

)
⊗1 V i j − U ⇄ min

i, j

(
xi + y j + T i j

kl

)
= 0,T i j

kl = V i j
kl − Ukl · (⋄)

Now, regarding the new semiring in this article, we analyze whether similar methods are feasible. Since
any circulant matrix can be linearly represented by a basic circulant matrix, that is,

A = a0 ⊗ I ⊕ a1 ⊗ P ⊕ a2 ⊗ P2 ⊕ · · · ⊕ an−1 ⊗ Pn−1,

where

P =


0 0 · · · 0 ∞

∞ 0 · · · 0 0
...
...
. . .

...
...

0 0 · · · ∞ 0

 ,
0 is the additive identity element, and∞ is the multiplicative identity element.

In our protocol,
(a) let A1 =

⊕n−1
i=0 ai ⊗ Pi, A2 =

⊕n−1
j=0 b j ⊗ P j, such that U = A1 ⊗ M ⊗ A2;

(b) U = A1⊗M⊗A2 =
⊕n−1

i=0, j=0(ai⊗b j)⊗Pi⊗M⊗P j =
⊕n−1

i=0, j=0(ai⊗b j)⊗V i j where V i j = Pi⊗M⊗P j.
However, due to the difference of operation between digital semiring and tropical semirings, the

implication relationship similar to (⋄) cannot be established on the digital semiring. Therefore, our
protocol can resist the KU attack.
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