Research article

On k-type pseudo null slant helices due to the Bishop frame in Minkowski 3-space E13

  • Received: 22 August 2019 Accepted: 28 October 2019 Published: 11 November 2019
  • MSC : 53A99, 53B99

  • In this study, we examine k-type pseudo null slant helices due to the Bishop frame, where k∈{0, 1, 2}. There are two different cases of the Bishop frame of a pseudo null curve related to the Bishop curvatures. Based on these cases, we present that every pseudo null curve is a k-type pseudo null curve according to the Bishop frame in Minkowski 3-space E13. Then we obtain the axes of k-type pseudo null slant helices, and determine their causal characters.

    Citation: Yasin Ünlütürk, Talat Körpınar, Muradiye Çimdiker. On k-type pseudo null slant helices due to the Bishop frame in Minkowski 3-space E13[J]. AIMS Mathematics, 2020, 5(1): 286-299. doi: 10.3934/math.2020019

    Related Papers:

  • In this study, we examine k-type pseudo null slant helices due to the Bishop frame, where k∈{0, 1, 2}. There are two different cases of the Bishop frame of a pseudo null curve related to the Bishop curvatures. Based on these cases, we present that every pseudo null curve is a k-type pseudo null curve according to the Bishop frame in Minkowski 3-space E13. Then we obtain the axes of k-type pseudo null slant helices, and determine their causal characters.


    加载中


    [1] S. Izumiya, N. Takeuchi, New special curves and developable surfaces, Turk. J. Math., 28 (2004), 153-164.
    [2] J. Walrave, Curves and surfaces in Minkowski space, Ph.D. thesis of Leuven University, 1995.
    [3] L. Kula, Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comput., 169 (2005), 600-607.
    [4] L. Kula, N. Ekmekçi, Y. Yayli, et al. Characterizations of slant helices in Euclidean 3-space, Turk. J. Math., 34 (2010), 261-274.
    [5] T. Körpinar, R. C. Demirkol, Z. Körpinar, Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in the ordinary space, Int. J. Geom. Methods M., 16 (2019), 1950117.
    [6] M. Ergüt, H. B. Öztekin, S. Aykurt, Non-null k-slant helices and their spherical indicatrices in Minkowski 3-space, J. Adv. Res. Dyn. Control Syst., 2 (2010), 1-12
    [7] A. Ali, R. Lopez, M. Turgut, k-type partially null and pseudo null slant helices in Minkowski 4-space, Math. Commun., 17 (2012), 93-103.
    [8] E. Nešovic, U. Öztürk, E. B. K. Öztürk, On type pseudo null Darboux helices in Minkowski 3-space, J. Math. Anal. Appl., 439 (2016), 690-700. doi: 10.1016/j.jmaa.2016.03.014
    [9] E. Nešovic, E. B. K. Öztürk, U. Öztürk, On type null Cartan slant helices in Minkowski 3-space, Math. Methods Appl. Sci., 41 (2018), 7583-7598. doi: 10.1002/mma.5221
    [10] U. Öztürk, E. Nešovic, On pseudo null and null Cartan Darboux helices in Minkowski 3-space, Kuwait J. Sci., 43 (2016), 64-82.
    [11] J. Qian, Y. H. Kim, Null helix and type null slant helices in E4, Rev. Un. Mat. Argentina, 57 (2016), 71-83.
    [12] M. Grbovic, E. Nešovic, On generalized Bishop frame of null Cartan curve in Minkowski 3-space, Kragujevac J. Math., 43 (2019), 559-573.
    [13] L. R. Bishop, There is more than one way to frame a curve, Am. Math. Mon., 82 (1975), 246-251. doi: 10.1080/00029890.1975.11993807
    [14] M. Erdoğdu, Parallel frame of non lightlike curves in Minkowski space time, Int. J. Geom. Methods M., 12 (2015), 1550109.
    [15] M. Grbovic, E. Nešovic, On the Bishop frames of pseudo null and null Cartan curves in Minkowski 3-space, J. Math. Anal. Appl., 461 (2018), 219-233. doi: 10.1016/j.jmaa.2018.01.014
    [16] F. Özçelik, Z. Bozkurt, İ. Gök, et al. Parallel transport frame in 4-dimensional Euclidean space, Casp. J. Math. Sci., 3 (2014), 91-102.
    [17] M. Özdemir, A. A. Ergin, Parallel frame of non-lightlike curves, Missouri J. Math. Sci., 20 (2008), 127-137.
    [18] T. Körpinar, R. C. Demirkol, Z. Körpinar, Soliton propagation of electromagnetic field vectors of polarized light ray traveling in a coiled optical fiber in Minkowski space with Bishop equations, Eur. Phys. J. D, 73 (2019), 203.
    [19] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, London: Academic press Inc, 1983.
    [20] R. Lopez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom., 3 (2010), 67-101.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3411) PDF downloads(533) Cited by(4)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog