Citation: Muhammad Sheraz, Vasile Preda, Silvia Dedu. Non-extensive minimal entropy martingale measures and semi-Markov regime switching interest rate modeling[J]. AIMS Mathematics, 2020, 5(1): 300-310. doi: 10.3934/math.2020020
[1] | J. Hunt, P. Devolder, semi-Markov regime switching interest rate models and minimal entropy measure, Phys. A Stat. Mech. Appl., 390 (2011), 3767-3778. |
[2] | F. Shafee, Lambert function and a new non-extensive form of entropy, J. App. Math., 72 (2007), 785-800. |
[3] | C. E. Shannon, W. Weaver, The Mathematical Theory of Communication, Urbana: The University of Illinois Press, 1998. |
[4] | G. Kaniadakis, Non-linear kinetics underlying generalized statistics, Phys. A Stat. Mech. Appl., 296 (2001), 405-425. |
[5] | A. Renyi, On measures of entropy and information, In: Proceed. 4th. Berkely. Symp. Math Stat. Prob., 1 (1961), 547-561. |
[6] | C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys., 52 (1988), 479-487. |
[7] | M. R. Ubriaco, Entropies based on fractional calculus, Phys. Lett. A Stat. Mech. Appl., 373 (2009), 2516-2519. |
[8] | T. S. Y. Ho, S. B. Lee, Term structure movements and pricing interest rate contingent claims, J. Financ., 41 (1986), 1011-1029. |
[9] | J. C. Cox, J. E. Ingersoll, S. A. Ross, A theory of the term structure of interest rates, Econometrica, 53 (1985), 385-408. |
[10] | J. Hull, A. White, Pricing interest-rate derivative securities, Rev. Financ. Stud., 3 (1990), 573-592. |
[11] | O. Vasicek, An equilibrium characterization of the term structure, J. Financ. Econ., 5 (1977), 177-188. |
[12] | P. J. Hunt, J. E. Kennedy, Financial Derivatives in Theory and Practice, John Wiley and Sons, 2004. |
[13] | G. C. Philippatos, C. J. Wilson, Entropy, market risks and the selection of efficient portfolios, Appl. Econ., 4 (1972), 209-220. |
[14] | L. Gulko, The entropy theory of stock option pricing, Int. J. Theo. Appl. Financ., 2 (1999), 331-355. |
[15] | B. Trivellato, Deformed exponentials and applications to finance, Entropy, 15 (2013), 3471-3489. |
[16] | B. Trivellato, The minimal k-entropy martingale measure, Int. J. Theo. Appl. Financ., 15 (2012), 1250038. |
[17] | V. Preda, S. Dedu, M. Sheraz, New measure selection for Hunt and Devolder semi-Markov regime switching interest rate model, Phys. A Stat. Mech. Appl., 407 (2014), 350-359. |
[18] | V. Preda, S. Dedu, C. Gheorghe, New classes of Lorenz curves by maximizing Tsallis entropy under mean and Gini equality and inequality constraints, Phys. A Stat. Mech. Appl., 436 (2015), 925-932. |
[19] | V. Preda, M. Sheraz, Risk-neutral densities in entropy theory of stock options using Lambert function and a new approach, P. Romanian Acad. A, 4 (2015), 20-27. |
[20] | M. Sheraz, V. Preda, S. Dedu, Tsallis and Kaniadakis entropy measures for risk neutral densities, International Conference on Computer Aided Systems Theory, Springer, 2017. |
[21] | T. Bjö rk, Arbitrage Theory in Continuous Time, New York: Oxford University Press, 2009. |
[22] | J. C. Cox, S. A. Ross, M. Rubinstein, Option pricing: A simplified approach, J. Financ. Econ., 7 (1979), 229-263. |
[23] | S. R. Valluri, R. M. Corrless, D. J. Jeffrey, Some applications of Lambert W function to physics, Canadian J. Phys., 78 (2000), 823-831. |
[24] | J. Borwein, R. Choksi, P. Maréchal, Probability distributions of assets inferred from option prices via the principle of maximum entropy, SIAM J. Optimiz., 14 (2003), 464-478. |
[25] | D. G. Luenberger, Optimization by Vector Space Methods, New York: Wiely, 1969. |