Citation: Caterina Calgaro, Claire Colin, Emmanuel Creusé. A combined finite volume - finite element scheme for a low-Mach system involving a Joule term[J]. AIMS Mathematics, 2020, 5(1): 311-331. doi: 10.3934/math.2020021
[1] | M. Avila, J. Principe and R. Codina, A finite element dynamical nonlinear subscale approximation for the low Mach number flow equations, J. Comput. Phys., 230 (2011), 7988-8009. doi: 10.1016/j.jcp.2011.06.032 |
[2] | A. Beccantini, E. Studer, S. Gounand, et al. Numerical simulations of a transient injection flow at low Mach number regime, Int. J. Numer. Meth. Eng., 76 (2008), 662-696. doi: 10.1002/nme.2331 |
[3] | A. Bradji and R. Herbin, Discretization of coupled heat and electrical diffusion problems by finiteelement and finite-volume methods, IMA J. Numer. Anal., 28 (2008), 469-495. |
[4] | D. Bresch, E. H. Essoufi and M. Sy, Effect of density dependent viscosities on multiphasic incompressible fluid models, J. Math. Fluid Mech., 9 (2007), 377-397. doi: 10.1007/s00021-005-0204-4 |
[5] | D. Bresch, V. Giovangigli and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part I Well posedness for zero Mach number systems, J. Math. Pure. Appl., 104 (2015), 762-800. doi: 10.1016/j.matpur.2015.05.003 |
[6] | C. Calgaro, E. Chane-Kane, E. Creusé, et al. L∞-stability of vertex-based MUSCL finite volume schemes on unstructured grids: simulation of incompressible flows with high density ratios, J. Comput. Phys., 229 (2010), 6027-6046. doi: 10.1016/j.jcp.2010.04.034 |
[7] | C. Calgaro, C. Colin and E. Creusé, A combined finite volumes - finite elements method for a low-Mach model, Int. J. Numer. Meth. Fl., 90 (2019), 1-21. doi: 10.1002/fld.4706 |
[8] | C. Calgaro, C. Colin, E. Creusé, et al. Approximation by an iterative method of a low-Mach model with temperature dependant viscosity, Math. Method. Appl. Sci., 42 (2019), 250-271. doi: 10.1002/mma.5342 |
[9] | C. Calgaro, E. Creusé and T. Goudon, An hybrid finite volume-finite element method for variable density incompressible flows, J. Comput. Phys., 227 (2008), 4671-4696. doi: 10.1016/j.jcp.2008.01.017 |
[10] | C. Calgaro, E. Creusé and T. Goudon, Modeling and simulation of mixture flows: application to powder-snow avalanches, Comput. Fluids, 107 (2015), 100-122. doi: 10.1016/j.compfluid.2014.10.008 |
[11] | C. Calgaro, M. Ezzoug and E. Zahrouni, Stability and convergence of an hybrid finite volumefinite element method for a multiphasic incompressible fluid model, Commun. Pure Appl. Anal., 17 (2018), 429-448. doi: 10.3934/cpaa.2018024 |
[12] | C. Cancès and C. Guichard, Convergence of a nonlinear entropy diminishing control volume finite element scheme for solving anisotropic degenerate parabolic equations, Math. Comput., 85 (2016), 549-580. |
[13] | C. Chainais-Hillairet, Discrete duality finite volume schemes for two-dimensional drift-diffusion and energy-transport models, Int. J. Numer. Meth. Fl., 59 (2009), 239-257. doi: 10.1002/fld.1393 |
[14] | C. Chainais-Hillairet, Y.-J. Peng and I. Violet, Numerical solutions of Euler-Poisson systems for potential flows, Appl. Numer. Math., 59 (2009), 301-315. doi: 10.1016/j.apnum.2008.02.006 |
[15] | D. R. Chenoweth and S. Paolucci, Natural convection in an enclosed vertical air layer with large horizontal temperature differences, J. Fluid Mech., 169 (1986), 173-210. doi: 10.1017/S0022112086000587 |
[16] | P. G. Ciarlet, Introduction to numerical linear algebra and optimisation, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 1989. |
[17] | C. Colin, Analyse et simulation numérique par méthode combinée Volumes Finis - Eléments Finis de modèles de type Faible Mach, PhD thesis, Université de Lille, 2019. |
[18] | Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem, ESAIM: Mathematical Modelling and Numerical Analysis, 33 (1999), 493-516. doi: 10.1051/m2an:1999149 |
[19] | R. Danchin and X. Liao, On the well-posedness of the full low Mach number limit system in general critical Besov spaces, Commun. Contemp. Math., 14 (2012), 1250022. |
[20] | S. Dellacherie, On a diphasic low Mach number system, ESAIM: Mathematical Modelling and Numerical Analysis, 39 (2005), 487-514. doi: 10.1051/m2an:2005020 |
[21] | K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, ESAIM: Mathematical Modelling and Numerical Analysis, 39 (2005), 1203-1249. doi: 10.1051/m2an:2005047 |
[22] | J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math., 105 (2006), 35-71. doi: 10.1007/s00211-006-0034-1 |
[23] | P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion, Commun. Part. Diff. Eq., 12 (1987), 1227-1283. doi: 10.1080/03605308708820526 |
[24] | R. Eymard and T. Gallouët, H-convergence and numerical schemes for elliptic problems, SIAM J. Numer. Anal., 41 (2003), 539-562. doi: 10.1137/S0036142901397083 |
[25] | R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handbook of numerical analysis, 7 (2000), 713-1018. |
[26] | R. Eymard, T. Gallouët and R. Herbin, A cell-centered finite-volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal., 26 (2006), 326-353. doi: 10.1093/imanum/dri036 |
[27] | R. Herbin, J.-C. Latché and K. Saleh, Low Mach number limit of a pressure correction MAC scheme for compressible barotropic flows. In: Finite volumes for complex applications VIII- methods and theoretical aspects, volume 199 of Springer Proc. Math. Stat., pages 255-263. Springer, Cham, 2017. |
[28] | R. Herbin, J.-C. Latché and K. Saleh, Low Mach number limit of some staggered schemes for compressible barotropic flows, arXiv preprint, arXiv:1803.09568. |
[29] | V. Heuveline, On higher-order mixed FEM for low Mach number flows: application to a natural convection benchmark problem, Int. J. Numer. Meth. Fl., 41 (2003), 1339-1356. doi: 10.1002/fld.454 |
[30] | F. Huang and W. Tan, On the strong solution of the ghost effect system, SIAM J. Math. Anal., 49 (2017), 3496-3526. doi: 10.1137/16M106964X |
[31] | P. Le Quéré, C. Weisman, H. Paillère, et al. Modelling of natural convection flows with large temperature differences: a benchmark problem for low Mach number solvers. Part I. Reference solutions, ESAIM: Mathematical Modelling and Numerical Analysis, 39 (2005), 609-616. doi: 10.1051/m2an:2005027 |
[32] | C. D. Levermore, W. Sun and K. Trivisa, Local well-posedness of a ghost effect system, Indiana Univ. Math. J., 60 (2011), 517-576. doi: 10.1512/iumj.2011.60.4179 |
[33] | P.-L. Lions, Mathematical topics in fluid mechanics: Volume 2: Compressible models, volume 10 of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford University Press, New York, 1998. |
[34] | A. Majda and J. Sethian, The derivation and numerical solution of the equations for zero Mach number combustion, Combust. Sci. Technol., 42 (1985), 185-205. doi: 10.1080/00102208508960376 |