
http://www.aimspress.com/journal/Math

AIMS Mathematics, 5(1): 311–331.
DOI:10.3934/math.2020021
Received: 16 July 2019
Accepted: 07 November 2019
Published: 13 November 2019

Research article

A combined finite volume - finite element scheme for a low-Mach system
involving a Joule term

Caterina Calgaro1∗, Claire Colin1 and Emmanuel Creusé2

1 University Lille, CNRS, UMR 8524, Inria - Laboratoire Paul Painlevé, F-59000 Lille, France
2 University Polytechnique Hauts-de-France, EA 4015, LAMAV - FR CNRS 2956, F-59313

Valenciennes, France

* Correspondence: Email: caterina.calgaro@univ-lille.fr.

Abstract: In this paper, we propose a combined finite volume - finite element scheme, for the
resolution of a specific low-Mach model expressed in the velocity, pressure and temperature variables.
The dynamic viscosity of the fluid is given by an explicit function of the temperature, leading to
the presence of a so-called Joule term in the mass conservation equation. First, we prove a discrete
maximum principle for the temperature. Second, the numerical fluxes defined for the finite volume
computation of the temperature are efficiently derived from the discrete finite element velocity field
obtained by the resolution of the momentum equation. Several numerical tests are presented to
illustrate our theoretical results and to underline the efficiency of the scheme in term of convergence
rates.
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1. Introduction

Variable density and low Mach numbers flows have been widely investigated for the last decades.
Indeed, they arise in plenty of physical phenomena in which the sound wave speed is much faster than
the convective characteristics of the fluid : flows in high-temperature gas reactors, meteorological
flows, combustion processes and many others. In this work, we are interested in a specific model
derived from the usual low-Mach one for a calorically perfect gas, coming from an asymptotic
expansion of the variables with respect to the Mach number M in the Navier-Stokes compressible
equations (see [34]). For the usual low-Mach model, the local-in-time existence of classical solutions
in Sobolev spaces is established in [23]. As observed in [33], a small perturbation of a constant initial

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2020021


312

density provides a global existence of weak solutions in the two-dimensional case. The originality of
the model considered here relies on the dynamic viscosity of the fluid being explicitly given as a
function of the temperature, as introduced in [4] and generalized in [5]. In this recent work, the
authors establish the global existence of weak solutions in the three-dimensional case with no
smallness assumption on the initial velocity.

Thanks to a change of variables, we obtain a system in which the velocity field is divergence-free,
leading in return to the presence of a non linear and so-called “Joule term” in the mass conservation
equation expressed in term of the temperature. In [8], some theoretical results are obtained on the local-
in-time existence of strong solutions in the three-dimensional case. We mention also [19] where the
authors study the local and global existence in critical Besov spaces, assuming that the initial density
is close to a constant and that the initial velocity is small enough. The formulation of this model is
close to the so-called ghost effect system, considered in [30, 32], where a thermal stress term is added
to the right-hand-side of the momentum equation. The local well-posedness of classical solutions is
established in [32] for 2D or 3D unbounded domains. A local well-posedness result for strong solutions
is proved in [30], where the authors give also the existence and uniqueness of a global strong solution
for the two-dimensional case.

From a numerical point of view, many authors compute flows at low-Mach number regime. We
refer only to the so-called pressure-based methods, widely used to compute incompressible flows (see
e.g. [1,2,20,29,31]), but there exists also the so-called density-based methods widely used to compute
supersonic or transonic flows, and recently adapted in the case of low-Mach regime (see [27, 28]). In
previous contributions on incompressible variable density flows [6, 9, 10] or on low-Mach flows with
large variations of temperature [7], a combined finite volume - finite element scheme was proposed.
Based on a time splitting, this combined method allows to solve the mass conservation equation by a
finite volume method, whereas the momentum equation associated with the divergence free constraint
and the temperature one are solved by a finite element method. It allows, in particular, to preserve the
constant density states and to ensure the discrete maximum principle. In the present work, following
the same idea, the nonlinear temperature equation is solved by a finite volume method, whereas the
velocity equation associated with the divergence free constraint is solved by a finite element one.

The main contribution of this paper is twofold. First, we prove a discrete maximum principle on
the temperature (see Theorem 3.1), similarly to the solution behavior at the continuous level. Second,
we establish a footbridge between the finite volume fluxes and the finite element velocity field (see
subsection 3.4), to ensure the good consistency of the method.

The outline of the paper is the following. Section 2 briefly introduces the model derivation. Section
3 details the proposed combined finite volume - finite element scheme. The maximum principle is
established (Theorem 3.1), some variants of the original scheme are proposed (subsection 3.3), and
the link between the finite volume fluxes and the finite element velocity field is carefully explained
(subsection 3.4). Finally, section 4 proposes several numerical tests to illustrate the obtained theoretical
results, and to investigate the behavior of the scheme on a physical benchmark corresponding to the
convection of the temperature in a cavity.

2. Model derivation

As already mentioned in the introduction, a low-Mach model is obtained by inserting the asymptotic
expansions of the variables with respect to the Mach number M in the Navier-Stokes compressible
equations (see for example [2, 20, 34]). One of the characteristics of the process is to consider the
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asymptotic expansion of the pressure π with respect toM. Denoting x ∈ Rd as the space variable and
t ∈ R+

∗ as the time one, we write

π(x, t) = P(t) +M2q(x, t) + o(M2),

where P is called the thermodynamic pressure and q the dynamic pressure. Here, we assume that
P(t) = P0 > 0 is constant for all t ≥ 0. The other variables considered here are the velocity u(x, t), the
density ρ(x, t) and the temperature θ(x, t).

Let Ω ⊂ Rd be an open polygonal domain with a boundary Γ and T a positive real. The continuity,
momentum, temperature and state equations in QT = Ω × [0; T ] for a calorically perfect gas are given
by:

∂tρ + ∇ · (ρu) = 0, (2.1a)

ρ∂tu + ρu · ∇u + ∇q − ∇ ·
(
µ̃

(
2Du −

2
3
∇ · uI

))
= ρ g, (2.1b)

∇ · u =
γ − 1
γ P0

∇ · (κ∇θ), (2.1c)

P0 = R ρ θ, (2.1d)

where µ̃ is the viscosity of the flow, κ is the heat conductivity which is assumed constant, R is the gas
law constant and γ is the gas specific heat ratio. Here, Du = (∇u + ∇T u)/2 denotes the deformation
tensor, I the identity matrix and g(x, t) the gravity field. In order to reduce the study to a system whose
velocity is solenoidal, we define:

v = u − λ∇θ,

where λ =
(γ − 1)κ
γ P0

> 0 is a fixed constant. In addition, the density is eliminated from the equations

thanks to the state equation (2.1d). Following the idea introduced in [5] where a particular relation
between the density and the viscosity in the combustion model was introduced, we assume moreover
that

µ̃(θ) =
P0

R
µ(θ),

with
µ(θ) = −λ ln θ,

so that µ(θ) is strictly positive if and only if θ ∈ (0; 1). If we denote by p the modified pressure, defined
by:

p =
R
P0

q + λ2∆θ −
2 λ
3
µ(θ) ∆θ,

we consequently obtain (see [8] for all details):

∂tθ + ∇ · (θ v) + 2λ|∇θ|2 − λ∇ · (θ∇θ) = 0, (2.2a)
1
θ

(∂tv + (v · ∇)v) − ∇ · (µ(θ)Dv) +
λ

θ
(∇v − ∇T v)∇θ + ∇p =

1
θ

g, (2.2b)

∇ · v = 0. (2.2c)
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The system (2.2) needs to be completed with suitable initial and boundary conditions. We set
Γ = ΓD ∪ ΓN , with ΓD ∩ ΓN = ∅. The initial conditions for the system (2.2) are given by:

θ(x, 0) = θ0(x) ∀x ∈ Ω,

v(x, 0) = v0(x) ∀x ∈ Ω,

with:
0 < m ≤ min

x∈Ω
θ0(x) ≤ max

x∈Ω
θ0(x) ≤ M < 1.

The boundary conditions on the temperature and the velocity are given by:

∇θ(x, t) · n = 0, ∀x ∈ ΓN , ∀t ∈ [0; T ],
θ(x, t) = θD(x, t), ∀x ∈ ΓD, ∀t ∈ [0; T ],
v(x, t) = vD(x, t), ∀x ∈ Γ, ∀t ∈ [0; T ].

The local existence of a regular solution to the problem (2.2) has been shown in [8] in the case of
dimension d = 3, as well as the maximum principle for the temperature. Furthermore, the unique
global strong solution can be proved in the case of dimension d = 2 following the proof of Theorem
1.5 in [30] and assuming that for any fixed θ̄ > 0, there exists a small constant δ(θ̄) > 0 such that

‖θ0 − θ̄‖L∞(Ω) ≤ δ(θ̄). (2.3)

In this paper, we will prove that there exists at least one solution to the discretized temperature equation,
and that this solution verifies the maximum principle. The questions of unicity and convergence of the
numerical scheme will be addressed in a further work.

3. A combined finite volume - finite element scheme

3.1. Spatial and temporal discretizations

3.1.1. The time splitting

The numerical scheme is based on a time splitting, allowing to solve the temperature equation with
finite volumes, whereas the velocity equation is solved with finite elements, using the same strategy as
in previous works [7, 9].

Let ∆t be the time step and tn = n ∆t. Functions approximated at time tn will be identified with
superscript n. Assuming that θn and vn are known:

1. We first compute the new temperature θn+1 by solving the temperature equation (2.2a) using an
Euler implicit scheme:

θn+1 − θn

∆t
+ ∇ · (θn+1 vn) + 2λ|∇θn+1|2 − λ∇ · (θn+1 ∇θn+1) = 0,

∇θn+1(x) · n = 0, ∀x ∈ ΓN ,

θn+1(x) = θn+1
D (x), ∀x ∈ ΓD,

(3.1)

with θn+1
D (x) = θD(x, tn+1). The non-linearities of Equation (3.1) are treated thanks to Newton’s

method.

AIMS Mathematics Volume 5, Issue 1, 311–331.



315

2. Then we compute the new velocity vn+1 and the new pressure pn+1 by solving the momentum
equation (2.2b)-(2.2c) by:

1
θn+1

(
vn+1 − vn

∆t
+ (vn · ∇)vn+1

)
− ∇ · (µ(θn+1)Dvn+1) +

λ

θn+1 (∇vn+1 − ∇T vn+1) ∇θn+1

+∇pn+1 =
1
θn+1 g,

∇ · vn+1 = 0,
vn+1(x) = vn+1

D (x), ∀x ∈ Γ.

(3.2)

Here and as usual, the nonlinear term in the momentum equation (3.2) is linearized.

3.1.2. Description of the mesh and notations

From now, we fix d = 2, but our study can be easily extended to the three-dimensional case. The
discretization in space is based on a triangulation T of the domain Ω ⊂ R2 (the elements of T are
called control volumes), a family E of edges and a set P = (xK)K∈T of points of Ω defining an
admissible mesh in the sense of Definition 3.1 in [25]. We recall that the admissibility of T implies
that the straight line between two neighboring centers of cells xK and xL is orthogonal to the edge
σ ∈ E such that σ = K ∩ L (and which is noted σ = K|L) in a point xσ (see Figure 1). This condition
is satisfied if all the angles of the triangles are less than π

2 .

The set of interior (resp. boundary) edges is denoted by Eint = {σ ∈ E ; σ 1 Γ} (resp.
Eext = {σ ∈ E ; σ ⊂ Γ}). Among the outer edges, there are EN =

{
σ ∈ E ; σ ⊂ ΓN

}
and

ED =
{
σ ∈ E ; σ ⊂ ΓD

}
. For all K ∈ T , we denote by EK =

{
σ ∈ E ; σ ⊂ K

}
the edges of K,

Eint
K = Eint ∩ EK , Eext

K = Eext ∩ EK , EN
K = EN

K ∩ EK and ED
K = ED

K ∩ EK .

The measure of K ∈ T is denoted by mK and the length of σ by mσ. For σ ∈ Eint such that σ = K|L,
dσ denotes the distance between xK and xL and dK,σ the distance between xK and σ. For σ ∈ Eext

K ,
we note dσ the distance between xK and σ. For σ ∈ E, The transmissibility coefficient is given by
τσ =

mσ

dσ
. Finally, for σ ∈ EK , we denote by nK,σ the exterior unit normal vector to σ. The size of the

mesh is given by:
h = max

K∈T
diam(K).

3.1.3. Spatial discretization

The piecewise constant temperature θh is computed with a cell-centered finite volume method
described in section 3.2, so that θh ∈ X(T ) with :

X(T ) =
{
θ ∈ L2(Ω) ; ∀K ∈ T ; θK = θ|K ∈ P0

}
.

The velocity vh is discretized with P2-Lagrange finite elements, and the pressure ph with P1-Lagrange
finite elements, so that they satisfy the usual LBB stability condition. The Degrees of Freedom of each
variable are shown in the Figure 1.

The computation of the velocity and pressure by finite elements is usual, and we refer to our
previous work for details [7, 9]. One of the original points of the present work is the computation of
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the temperature by finite volumes. Indeed, we aim to develop a numerical scheme that ensures the
discrete maximum principle property, see section 3.2. Another point of interest is the link between the
two numerical methods, see section 3.4. Indeed, from the velocity field that has been computed by
finite elements, we have to determine fluxes through the interfaces of the control volumes, which will
be used for the computation of the temperature.

dσ

xσdK,σ xL

xK

vh DoF

ph DoF

θh DoF

Figure 1. Degrees of Freedom (DoF) for each variable.

3.2. The finite volume scheme

Let v be a given velocity field and θn the previous approximate temperature, we aim at solving the
temperature equation:

θn+1 − θn

∆t
+ ∇ · (θn+1 v) + 2λ|∇θn+1|2 − λ∇ · (θn+1∇θn+1) = 0, ∀x ∈ Ω,

∇θn+1(x) · n = 0, ∀x ∈ ΓN ,

θn+1(x) = θn+1
D (x), ∀x ∈ ΓD.

(3.3)

Since we want to ensure maximum principle properties, we favor a finite volume method. The
main difficulty comes from the term |∇θn+1|2, called the Joule term in the context of the electrical
conductivity, see for example A. Bradji and R. Herbin [3] or the works from C. Chainais and her
collaborators [13,14]. Indeed, the definition of a discrete gradient is not straightforward, since the finite
volume solution is piecewise constant. We can thus refer to the work of R. Eymard and his collaborators
[24, 26] for some definitions of discrete gradients on an admissible mesh. Alternatively, K. Domelevo
and P. Omnes [21], and C. Chainais [13], used a discrete gradient reconstruction following the idea
from the paper of Y. Coudière, J.-P. Vila and P. Villedieu [18]. The principle of these schemes, valid
on very general meshes, consists in the double resolution of the equations, on primal and dual meshes.
Moreover in [22], J. Droniou and R. Eymard propose a scheme whose unknowns are the function, its
gradient and flows. Therefore, the definition of a discrete gradient by mesh is intrinsic to the scheme.

The respect of the bounds, and in particular of the lower bound, is another difficulty related to
the Joule term. Indeed, if we consider "close" models, like the equation of porous media, see for
example the work of C. Cancès and C. Guichard [12], or the convection-diffusion equation involved in
Khazhikhov-Smagulov models-type, see for example C. Calgaro, M. Ezzoug and E. Zahrouni [11], the
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maximum principle is obtained quite easily for one order schemes. Nevertheless, adding the positive
term |∇θn+1|2 in the temperature equation prevents the scheme from directly obtaining the lower bound.
Consequently, we will have to particularly pay attention to the discretization of this term.

We are looking for θn+1
h = (θn+1

K )K∈T ∈ X(T ) an approximated solution of θ(tn+1, .). The finite
volume scheme is classically obtained by integrating equation (3.3) on a control volume K, that is:

mK
θn+1

K − θn
K

∆t
+

∑
σ∈EK

vn
K,σ θ

n+1
σ,+ + 2λmK JK(θn+1

h ) + λ
∑
σ∈EK

Fn+1
K,σ = 0 for all K ∈ T , (3.4)

with

vn
K,σ =

∫
σ

v(x, tn) · nK,σ dγ(x). (3.5)

Here, θn+1
σ,+ is defined for σ ∈ EK by:

θn+1
σ,+ =

{
θn+1

K if vn
K,σ ≥ 0,

θn+1
K,σ otherwise,

(3.6)

with

θn+1
K,σ =


θn+1

L for σ ∈ Eint
K such that σ = K|L,

θn+1
D (xσ) for σ ∈ ED

K ,

θn+1
K for σ ∈ EN

K .

The numerical flux Fn+1
K,σ is an approximation of the exact flux of the diffusive term through the edge σ

and is given by:
Fn+1

K,σ = τσ θ
n+1
σ (θn+1

K − θn+1
K,σ), (3.7)

where we define θn+1
σ , an approximation of θn+1 at xσ, by:

θn+1
σ = max(θn+1

K , θn+1
K,σ). (3.8)

Concerning the Joule term, JK(θn+1
h ) is an approximation of 1

mK

∫
K
|∇θ(tn+1, x)|2dx. We notice that

|∇θ|2 = ∇ · (θ∇θ) − θ∆θ, and we propose the following definition:

JK(θn+1
h ) =

1
mK

∑
σ∈EK

τσ θ
n+1
σ

(
θn+1

K,σ − θ
n+1
K

)
−

1
mK

θn+1
K

∑
σ∈EK

τσ
(
θn+1

K,σ − θ
n+1
K

)
,

where θ
n+1
σ is another approximation of θn+1 at xσ (this choice will be justified later) defined this

time by:

θ
n+1
σ =

θn+1
K + θn+1

K,σ

2
. (3.9)

Finally we obtain:

JK(θn+1
h ) =

1
2 mK

∑
σ∈EK

τσ(θn+1
K,σ − θ

n+1
K )2. (3.10)

The rest of the section is devoted to the proof of the following result:
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Theorem 3.1. We assume that
0 < m ≤ θ0

K ≤ M, ∀K ∈ T , (3.11)

and:
m ≤ θn

D(xσ) ≤ M, ∀σ ∈ ED, ∀n = 1, · · · ,N. (3.12)

Then the scheme (3.4) admits at least one solution that satisfies:

m ≤ θn
K ≤ M, ∀K ∈ T , ∀n = 1, · · · ,N. (3.13)

Proof. We start by studying the following intermediate scheme:

mK
θn+1

K − θn
K

∆t
+

∑
σ∈EK

vn
K,σ θ

n+1
σ,+ + 2λmK JK(θn+1

h ) + λ
∑
σ∈EK

F̃n+1
K,σ = 0 for all K ∈ T , (3.14)

with the modified numerical flux

F̃n+1
K,σ = τσ θ̃

n+1
σ (θn+1

K − θn+1
K,σ), (3.15)

and
θ̃n+1
σ = max

(
0, θn+1

σ , θn+1
σ −

(
min(θn+1

K , θn+1
K,σ) − m

))
, for σ ∈ EK . (3.16)

We underline that the definition (3.16) ensures that θ̃n+1
σ ≥ 0. With this choice in the scheme (3.14),

the diffusion term has been a little “inflated” in order to compensate the Joule term and to increase the
stability, as it will be seen later. Note moreover that if θn+1

h is solution of (3.14) and satisfies (3.13), it
is also solution of (3.4).

The schedule of proof is as follows. We first show in Lemma 3.2 that a solution of (3.14) satisfies
the discrete maximum principle. Then, by an argument of topological degree, we prove the existence
of a solution to (3.14) (see Lemma 3.3). As this solution satisfies the maximum principle, it is also a
solution of (3.4) and this concludes the proof of Theorem 3.1.

Lemma 3.2. We assume that (3.11) and (3.12) are satisfied. Let θn+1
h be a solution of (3.14). Then θn+1

h
satisfies (3.13).

Proof. For n = 0, the property (3.13) clearly holds because of (3.11). Suppose now that (3.13) holds
at step n and assume that there exists KM ∈ T such that:

θn+1
KM

= max
K∈T

θn+1
K > M.

We write (3.14) for the control volume KM and obtain:

∑
σ∈EKM

vn
KM ,σ

θn+1
σ,+ + λ

∑
σ∈EKM

τσ(θn+1
KM ,σ
− θn+1

KM
)2 + λ

∑
σ∈EKM

τσ θ̃
n+1
σ (θn+1

KM
− θn+1

KM ,σ
) = mKM

θn
KM
− θn+1

KM

∆t
. (3.17)

The right hand side of (3.17) is negative, whereas the left hand side is non-negative (indeed, the
treatment of the first term is classical, see for instance [25], and the sign of other terms is obvious).
We thus obtain a contradiction.

Assume now that there exists Km ∈ T such that:
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θn+1
Km

= min
K∈T

θn+1
K < m. (3.18)

We write (3.14) on Km:∑
σ∈EKm

vn
Km ,σ

θn+1
σ,+ + λ

∑
σ∈EKm

τσ(θn+1
Km,σ
− θn+1

Km
)2 + λ

∑
σ∈EKm

τσ θ̃
n+1
σ (θn+1

Km
− θn+1

Km,σ
) = mKm

θn
Km
− θn+1

Km

∆t
. (3.19)

The right hand side of (3.19) is positive. Looking now at the left hand side, we notice that the first
(see [25]) and third terms are non positive, whereas the second is non negative. Thus, to obtain a
contradiction, we must reach a balance between the Joule term and the diffusive one. By noticing that:∑

σ∈EKm

τσ(θn+1
Km,σ
− θn+1

Km
)2 +

∑
σ∈EKm

τσ θ̃
n+1
σ (θn+1

Km
− θn+1

Km,σ
)

=
∑
σ∈EKm

τσ(θn+1
Km
− θn+1

Km,σ
+ θ̃n+1

σ )(θn+1
Km
− θn+1

Km,σ
),

a sufficient condition to obtain the contradiction is to show that for all σ ∈ EK , θn+1
Km
− θn+1

Km,σ
+ θ̃n+1

σ ≥ 0.
Indeed it holds, because of (3.18) and Definition (3.16) of θ̃n+1

σ , we have:

θn+1
Km
− θn+1

Km,σ
+ θ̃n+1

σ = θn+1
Km
− θn+1

Km,σ
+ θn+1

Km,σ
− (θn+1

Km
− m) = m ≥ 0. (3.20)

�

Lemma 3.3. We assume that (3.11) and (3.12) are satisfied. Then the scheme (3.14) admits at least
one solution.

Proof. Lemma 3.3 is proved thanks to a topological degree argument (see for instance [25]). Let
µ ∈ [0, 1], we define θn+1

h,µ = (θn+1
K,µ )K∈T as the solution of the scheme: ∀K ∈ T ,

mK

θn+1
K,µ − θ

n
K

∆t
+

∑
σ∈EK

vn
K,σ θ

n+1
σ,+,µ + 2µ λmK JK(θn+1

h ) + µ λ
∑
σ∈EK

F̃n+1
K,σ,µ

+ 2(1 − µ)λmK JK(θn+1
h,µ ) + (1 − µ) λ

∑
σ∈EK

F
n+1
K,σ,µ = 0, (3.21)

where θn+1
σ,+,µ and F̃n+1

K,σ,µ are respectively defined by (3.6) and (3.15) by replacing θn+1
K and θn+1

L by θn+1
K,µ

and θn+1
L,µ ; also F

n+1
K,σ,µ is defined by (3.22) and JK(θn+1

h,µ ) by (3.23):

F
n+1
K,σ,µ =τσ M (θn+1

K,µ − θ
n+1
K,σ,µ). (3.22)

JK(θn+1
h,µ ) =

1
2 mK

(M − m)
∑
σ∈EK

τσ (θn+1
K,σ,µ − θ

n+1
K,µ ). (3.23)

Then (3.21) is equivalent to:

mK

θn+1
K,µ − θ

n
K

∆t
+

∑
σ∈EK

vn
K,σ θ

n+1
σ,+,µ + 2µ λmK JK(θn+1

h,µ ) + µ λ
∑
σ∈EK

F̃n+1
K,σ,µ
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+ (1 − µ) λm
∑
σ∈EK

τσ
(
θn+1

K,µ − θ
n+1
K,σ,µ

)
= 0,

and consequently, we can show as in the proof of Lemma 3.2 that for all K ∈ T ,

m ≤ θn+1
K,µ ≤ M. (3.24)

We now define K = [m − 1; M + 1]#T a compact of R#T , andH : [0, 1] × R#T −→ R#T by: ∀K ∈ T ,

HK(µ, (θn+1
K )K∈T ) =mK

θn+1
K,µ − θ

n
K

∆t
+

∑
σ∈EK

vn
K,σ θ

n+1
σ,+,µ + 2µ λmK JK(θn+1

h ) + µ λ
∑
σ∈EK

F̃n+1
K,σ,µ

+ 2(1 − µ)λmK JK(θn+1
h,µ ) + (1 − µ) λ

∑
σ∈EK

F
n+1
K,σ,µ.

Then,H ∈ C([0, 1] × K ,R#T ) and thanks to (3.24),

HK(µ, (θn+1
K )K∈T ) = 0

admits no solution on ∂K . Consequently, its topological degree is independent of µ. As (3.21) admits
a solution for µ = 0 its topological degree is different from zero. We can now conclude that (3.21) has
a solution for µ = 1, and therefore (3.14) has at least one solution. �

Lemma 3.2 and Lemma 3.3 conclude the proof of Theorem 3.1 since as already mentioned, if θn+1
h

is solution of (3.14) and satisfies (3.13), it is also solution of (3.4). �

3.3. Variants of the scheme

In this subsection, several variants of the scheme (3.4), denoted in the following (SDmaxJcen), are
presented. The scheme (SDmoyJup) (subsection 3.3.1) will also fulfill the discrete maximum principle
without any condition, whereas the scheme (SDmoyJcen) (subsection 3.3.2) as well as (SDmaxJEGH)
and (SDmoyJEGH) (subsection 3.3.3) will fulfill the discrete maximum principle under some restrictions
on the temperature bounds m and M.

3.3.1. (SDmoyJup)

We propose here a first variant of (SDmaxJcen), which also leads to an unconditionally maximum
principle. The idea is to consider the scheme (3.4), but with two differences compared to (SDmaxJcen).
On the one hand, the diffusion term is centered, by defining now θn+1

σ used in the definition of the
diffusive flux Fn+1

K,σ in (3.7) by:

θn+1
σ =

θn+1
K + θn+1

K,σ

2
(3.25)

instead of (3.8). On the other hand, an upwind in the Joule term gives us

JK(θn+1
h ) =

1
mK

∑
σ∈EK

τσ
(
(θn+1

K − θn+1
K,σ)+

)2
(3.26)
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instead of (3.10), where we use the notation a+ = max(0, a). In that case, the maximum principle
occurs. Indeed, the proof of Theorem 3.1 can easily be adapted by noticing that

(
(θn+1

K − θn+1
K,σ)+

)2
= 0

if θn+1
K ≤ θn+1

K,σ. Let us note that the combination of (3.8) for the diffusion flux definition associated to
(3.26) for the Joule term flux definition would also lead to a scheme with an unconditional maximum
principle. Nevertheless, this choice would generate a loss of accuracy compared with (SDmaxJcen) and
(SDmoyJup) which are both already unconditionally maximum-principle preserving. Since it is useless
to upwind both the diffusion term and the Joule one, we did not considered it.

Remark 3.4. Note that we could also have considered the following definition in the diffusion term:

θn+1
σ =


dL,σ θ

n+1
K + dK,σ θ

n+1
L

dσ
, for σ = K|L,

θn+1
K + θn+1

D,σ

2
, for σ ∈ ED

K .

(3.27)

From the theoretical and numerical points of view, the cases (3.25) and (3.27) give similar results.

3.3.2. (SDmoyJcen)

A quite natural question, in order to increase the accuracy of the approximation, is to investigate the
behaviour of the scheme when both flux are centered. Namely, it would consist in considering (3.25) for
the definition of the diffusive flux Fn+1

K,σ in (3.7), while using (3.10) for the Joule term flux definition.
In that case, the upper bound can be obtained in the same way as in Lemma 3.2. Nevertheless, the
obtention of the lower bound needs an additional assumption, so that the maximum principle can be
ensured by a specific balance between the Joule term and the diffusion one. The definition of θ̃n+1

σ in
(3.16) has to be a little modified and given by :

θ̃n+1
σ = max

(
0, θn+1

σ , θn+1
σ −

3
2

(
min(θn+1

K , θn+1
K,σ) − m

))
for σ ∈ EK ,

so that the positivity of θn+1
Km
− θn+1

Km,σ
+ θ̃n+1

σ (see (3.20)) is ensured provided that M ≤ 3m. As it will
be illustrated in the numerical test 4.1 below, such a condition is necessary. This can seem strange
from the physical point of view. As we see in the proof, it is necessary for technical reasons, but could
also be linked to the fact that the global solution in time of the continuous model is ensured if the
initial datum is not too far from a constant state (see (2.3)). Anyway, even with this restriction in mind,
(SDmoyJcen) could be used for cases where temperature variations are low, to expect a better accuracy
of the solution compared to the one obtained by (SDmaxJcen) or (SDmoyJup).

3.3.3. (SDmaxJEGH) and (SDmoyJEGH)

Finally, two other schemes are investigated, considering another way to define the piecewise discrete
gradient in each control volume given by (see [26]) :

JK(θn+1
h ) =

 1
mK

∑
σ∈EK

τσ(θn+1
K − θn+1

K,σ)(xσ − xK)


2

, (3.28)

while considering either (3.8) or (3.25) for the computation of θn+1
σ arising in the definition of Fn+1

K,σ
given by (3.7), and leading respectively to the schemes denoted (SDmaxJEGH) and (SDmoyJEGH).
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Once again and in both cases, the maximum principle is ensured under a condition M ≤ C(T ) m with
C(T ) ∈ (1, 2), depending on geometrical characteristics of the mesh (see [17]).

In Section 4, we implement these different schemes and compare them on two main criteria:
verification of the maximum principle and convergence rates. Table 1 summarizes the five considered
schemes.

Table 1. Summary of considered schemes.

Diffusion term

θn+1
σ =

θn+1
K + θn+1

K,σ

2
max(θn+1

K , θn+1
K,σ)

Joule Term
1

2 mK

∑
σ∈EK

τσ(θn+1
K − θn+1

K,σ)2 (SDmoyJcen) (SDmaxJcen)

JK(θn+1
T

) =
1

mK

∑
σ∈EK

τσ
(
(θn+1

K − θn+1
K,σ)+

)2
(SDmoyJup) ×

(
1

mK

∑
σ∈EK

τσ(θn+1
K − θn+1

K,σ)(xσ − xK)
)2

(SDmoyJEGH) (SDmaxJEGH)

3.4. Coupling between finite elements and finite volumes

The resolution by a finite element method of (3.2) gives us the velocity field vn+1
h which is P2 on

each triangle K ∈ T . Let us denote by (vn+1
σ )σ∈E the value of this velocity field at the center of edges.

Thus, the local divergence constraint reads:

∑
σ∈EK

mσ vn+1
σ · nK,σ = αK , ∀K ∈ T . (3.29)

The sequence of reals (αK)K∈T is different from zero in general. Consequently, the velocity field
(vn+1

σ )σ∈E is not divergence-free in the Finite Volume sense, and can not be used for the resolution of
the temperature equation. Here we can not follow the idea of [9], adapted in [7] for the projection
method, which consists in defining a constant velocity per triangle. Indeed, the unknowns for the
temperature are located at the center of the cells, and no more at the vertices of the mesh.

For σ ∈ Eint, we define arbitrarly K+
σ and K−σ the two triangles such that σ = K+

σ |K
−
σ. For σ ∈ Eext,

we denote by K+
σ the triangle such that σ ⊂ ∂K+

σ. Let nσ the unit normal vector to σ getting out of K+
σ,

see Figure 2.

AIMS Mathematics Volume 5, Issue 1, 311–331.



323

K+
σ K−σ

nσ

Figure 2. Neighboring triangles of σ and unit normal vector.

We also define ∀K ∈ T and ∀σ ∈ EK:

εK,σ =

{
1 if K = K+

σ,

−1 if K = K−σ.

By denoting ( fσ) ∈ R#E the global numerical flux defined by:

fσ = mσ vn+1
σ · nσ, ∀σ ∈ E,

equation (3.29) can be written as: ∑
σ∈EK

εK,σ fσ = αK , ∀K ∈ T . (3.30)

We now approximate ( fσ)σ∈E by ( f̃σ)σ∈E in order to obtain the local divergence-free constraint∑
σ∈EK

εK,σ f̃σ = 0, ∀K ∈ T . (3.31)

Then the fluxes ( f̃σ)σ∈E are used in the cell-centered Finite Volume scheme (3.4) for the computation
of the temperature field, by setting:

vn+1
K,σ = εK,σ f̃σ.

Practically, ( f̃σ)σ∈E is computed as an approximation of ( fσ)σ∈E in the discrete least-mean-squares
sense, which fulfills the divergence-free constraint on each finite volume control. It consists in solving
the global optimization problem given by:

( f̃σ) = argmin
(h̃σ)∈R#E

1
2

∑
σ∈Eint

wσ

(
fσ − h̃σ

)2
; ∀K ∈ T ,

∑
σ∈EK

εK,σ h̃σ = 0

 , (3.32)

where (wσ)σ∈E is a sequence of strictly positive weights, which can be defined for example by wσ = 1
or wσ = mσ

dσ
, ∀σ ∈ E. Numerically, we observed similar behaviors for both possibilities. The solution

of the problem (3.32) is given by the following theorem:

Theorem 3.5. Let M ∈ R#T×#T the M-matrix defined ∀K, L ∈ T by:

MKL =



∑
σ∈EK

1
wσ

if K = L,

−
1

wσ

si K ∩ L = σ,

0 otherwise,
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and A = (αK)K∈T ∈ R
#T . Let Λ = (λK)K∈T ∈ R

#T be the solution of:

M Λ = A. (3.33)

Thus the solution of (3.32) can be defined ∀σ ∈ E by:

f̃σ = fσ −
1

wσ

(
λK+

σ
− λK−σ

)
, (3.34)

where for all σ ∈ Eext such that σ ⊂ ∂K, we set λK−σ = 0.

Proof. With the following change of variables:

gσ = f̃σ − fσ, (3.35)

problem (3.32) writes:

(gσ) = argmin
(hσ)∈R#E

1
2

∑
σ∈E

wσh2
σ ; ∀K ∈ T ,

∑
σ∈EK

εK,σ hσ + αK = 0

 . (3.36)

We define the lagrangian associated with (3.36) for (hσ) ∈ R#E and (µK) ∈ R#T by:

L ((hσ), (µK)) =
1
2

∑
σ∈E

wσh2
σ +

∑
K∈T

µK

∑
σ∈EK

εK,σ hσ + αK

 .
We will show the existence of a saddle point of L. Its first argument will therefore be the solution of
the problem (3.36), while the second one corresponds to the Lagrange multiplier associated with the
constraints, see for example [16]. We recall that if ((gσ), (λK)) is a saddle point of L, then:

sup
(µK )

inf
(hσ)
L ((hσ), (µK)) = L ((gσ), (λK)) = inf

(hσ)
sup
(µK )
L ((hσ), (µK)) .

We start with computing H ((µK)) = inf
(hσ)
L ((hσ), (µK)). We easily verify that (gσ) (which depends on

(µK)) defined by:

gσ = −
1

wσ

(
µK+

σ
− µK−σ

)
, ∀σ ∈ E (3.37)

is solution of
∂L

∂hσ
((gσ), (µK)) = 0.

We thus obtain:

H ((µK)) =
1
2

∑
σ∈E

1
wσ

(
µK+

σ
− µK−σ

)2
+

∑
K∈T

µK

∑
σ∈EK

−
εK,σ

wσ

(
µK+

σ
− µK−σ

)
+ αK


= −

1
2

∑
σ∈E

1
wσ

(
µK+

σ
− µK−σ

)2
+

∑
K∈T

µK αK

= −
1
2

∑
σ∈E

1
wσ

(
µK − µK,σ

)2
+

∑
K∈T

µK αK ,
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with the notation

µK,σ =

{
µL if σ ∈ Eint

K , σ = K|L,
0 if σ ∈ Eext

K .
(3.38)

We now compute (λK) = argmax
(µK )

H ((µK)) by solving:

∂(−H)
∂µK

((λK)) = 0, ∀K ∈ T ,

which is equivalent, applying the notation (3.38) to λK,σ, to∑
σ∈EK

1
wσ

(
λK − λK,σ

)
− αK = 0.

Thus, (λK) is obtained by solving the linear system (3.33). We therefore deduce the expression of (gσ)
thanks to (3.37) and then ( f̃σ) with (3.35). �

4. Numerical simulations

4.1. Verification of the maximum principle

We previously proved that the schemes (SDmaxJcen) and (SDmoyJup) satisfy the maximum
principle, without any restriction on m and M. This first experiment illustrates that if M is too large
compared to m, the other schemes do not respect the maximum principle. In this perspective, we
consider only the temperature equation (2.2a) and set:

v(x, t) = 0, ∀x ∈ Ω, ∀t ∈ [0,T ].

The initial temperature is defined on Ω = [0; 1]2 by:

θ0(x) = 1, ∀x ∈ Ω.

On all the boundaries, we impose Dirichlet conditions, see Figure 3. We denote by ΓH = {1}×(0, 3; 0, 7)
and set ∀t ∈ [0; T ]:

θD(x, t) =

{
1 if x ∈ Γ\ΓH

M if x ∈ ΓH.

We run the simulations for different values of M on a triangulation T with mesh size h = 7.25 ·10−2

and report the results in the Table 2. We find numerically the results shown previously. On the one
hand, the schemes (SDmaxJcen) and (SDmoyJup) allow us to obtain the maximum principle whatever
the value of M. On the other hand, the schemes (SDmoyJcen), (SDmoyJEGH) and (SDmaxJEGH) do not
give a solution that satisfies the maximum principle if M is too large.

4.2. Analytical benchmark

In this benchmark, we want to investigate the accuracy of the scheme described in section 3.2,
depending on the discretization of the diffusive and Joule terms. We consider the domain Ω = [0; 1]2.
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θ0 = 1

θD = 1

θD = M

Figure 3. Initial and boundary conditions.

Table 2. Verification of the maximum principle according to M. X : the maximum principle
is satisfied, × : it is not.

M =

Scheme
(SDmoyJEGH) (SDmaxJEGH) (SDmoyJcen) (SDmaxJcen) (SDmoyJup)

2 X X X X X

3 × X X X X

4 × X × X X

10 × × × X X

100 × × × X X

The simulations will be performed until the time T = 0.1. The exact solution is defined for (x, y, t) ∈
Ω × [0; T ] by:

θex(x, y, t) =
1 + t

10 λ π2
(1, 5 + cos πx) (1, 5 + cos πy) ,

with λ = 2. In (3.3), a source term is added accordingly. For the velocity, two cases are considered:

a) v = 0,
b) v defined by

v(x, y) =
1
λ π2


−

sin(π y)
1, 5 + cos(π y)

sin(π x)
1, 5 + cos(π x)

 . (4.1)

Here, Dirichlet conditions are imposed on all the boundaries, so that ΓD = Γ. The temperature error
in L∞(0,T ; L2(Ω)) is plotted in Figure 4 as a function of the mesh size h, in log-log scale, for each
scheme. We notice that without the convective term (case a)), the centered schemes (SDmoyJcen) and
(SDmoyJEGH) converge at order two, whereas the others are only at order one. Thus, the upwind
choice in the diffusion term (schemes (SDmaxJcen) and (SDmaxJEGH)) or in the Joule term (scheme
(SDmoyJup) degrades the rate of convergence to order one, but is necessary to obtain the maximum
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principle. Adding the convective term (case b)), the centered schemes (SDmoyJcen) and (SDmoyJEGH)
converge at order 3/2. This decrease of convergence rate can be explained by the upwind treatment of
the convective term in order to ensure the stability.

a) v = 0

10−2 10−1
10−7

10−6

10−5

10−4

h

E
rr

or

Temperature error

(SDmoyJEGH)
(SDmaxJEGH)
(SDmoyJcen)
(SDmaxJcen)
(SDmoyJup)

Slope 1
Slope 3/2
Slope 2

b) v given by (4.1)

10−2 10−1
10−7

10−6

10−5

10−4

h

E
rr

or

Temperature error

Figure 4. Errors in L∞(0,T ; L2(Ω)) norm.

4.3. The natural convection in a cavity

We will now validate the scheme (SDmaxJcen) by coupling the temperature equation with the
velocity one on the benchmark introduced in [1, 15, 29, 31] and used in [7] (slightly adapted because
of the choice of the model (2.2)). We consider a square cavity Ω = [0, 1]2 containing a calorifically
perfect gas, see Figure 5. The gas is initially at rest with uniform temperature:

u0 = 0 and θ0 = 0.5.

Note that the temperature has been scaled to be between 0 and 1. A temperature of θh = θ0(1 + ε)
(respectively θc = θ0(1 − ε)) is imposed on the left (respectively right) wall with ε = 0.01 as in [29].
For this small temperature amplitude, the thermodynamic pressure can be approximated by a constant,
where the author verifies numerically that P(T ) = P0 with an accuracy of 10−5). The horizontal walls
are insulated. Denoting by ΓN = [0, 1] × {0, 1}, we thus have:

∇θ(·, t) · n|ΓN = 0, ∀t ∈ [0; T ].
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g

θ0

θh

∇θ · n = 0

∇θ · n = 0

θc

Figure 5. The differentially heated cavity.

On all walls, the no-slip condition is imposed for the physical velocity u, which gives for the solenoidal
one:

v(x, t) = 0, ∀x ∈ ΓN , ∀t ∈ [0; T ],

v(x, t) = λ∇θ(x, t), ∀x ∈ ΓD, ∀t ∈ [0; T ].

We set λ = 4, 76 · 10−2, which corresponds to a Rayleigh number of 10−5, as it is the case in [31].

The time iterations are performed until the numerical steady state is reached, i.e. the relative errors
for the solenoidal velocity and the temperature are less than 10−10. The steady state is obtained
approximatively at T = 100, using for instance a mesh T composed by 3584 triangles (corresponding
to h = 1.8 · 10−2) and a time step ∆t of the order of 10−2. We represent in Figure 6 the streamlines of
the velocity field and the contour lines of the temperature at steady state. The solutions obtained are
close to the ones given in Figures 4 and 5 of [29]. We also verify that the maximum principle for the
temperature is always respected.

(a)
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Figure 6. Stationnary solution. (a) Velocity, (b) Temperature.
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Note that even though we have to solve a global optimization problem in order to obtain the fluxes
used in the finite volume scheme, its cost is negligible. Indeed, the matrix of the linear system (3.33)
is assembled a single time before the time loop. On the contrary, some matrices in the finite element
step must be assembled at each time step. Note moreover that the cost of Newton’s iterations for the
temperature equation resolution is also negligible. Indeed, only two or three iterations are necessary in
order to obtain the solution with an accuracy of 10−5. With this choice, approximatively only 10% of
the overall computation time is devoted to the resolution of the temperature equation. This ratio in the
computation cost is quite the same when we consider more coarse or more fine meshes.

5. Conclusion

In this work we propose some finite volume schemes for the resolution of an unsteady convection-
diffusion equation involving a Joule term. Several variants are investigated, depending on the way to
discretize the diffusion term as well as the Joule one. A first main point is that two of these schemes
verify the discrete maximum principle without any restriction on the data. Such schemes allow us to
define a combined finite volume - finite element scheme for a low-Mach system, where the temperature
is computed by the finite volume scheme whereas the velocity and pressure are approximated by a finite
element one. The second point is that the finite volume velocity field, used for the convective term in
the temperature equation, is computed from the finite element one by the resolution of a discrete least-
mean-squares problem to ensure the local free divergence constraint. The numerical results illustrate
the properties of the different schemes and confirm the relevance of the approach. The question of the
convergence remains to be investigated, and will be addressed in a future work.

Acknowledgments

This work was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01). The authors
gratefully acknowledge Clément Cancès, Claire Chainais-Hillairet and Benoit Merlet for fruitful
discussions about it.

Conflict of interest

The authors declare no conflicts of interest in this paper.

References

1. M. Avila, J. Principe and R. Codina, A finite element dynamical nonlinear subscale approximation
for the low Mach number flow equations, J. Comput. Phys., 230 (2011), 7988–8009.

2. A. Beccantini, E. Studer, S. Gounand, et al. Numerical simulations of a transient injection flow at
low Mach number regime, Int. J. Numer. Meth. Eng., 76 (2008), 662–696.

3. A. Bradji and R. Herbin, Discretization of coupled heat and electrical diffusion problems by finite-
element and finite-volume methods, IMA J. Numer. Anal., 28 (2008), 469–495.

4. D. Bresch, E. H. Essoufi and M. Sy, Effect of density dependent viscosities on multiphasic
incompressible fluid models, J. Math. Fluid Mech., 9 (2007), 377–397.

AIMS Mathematics Volume 5, Issue 1, 311–331.



330

5. D. Bresch, V. Giovangigli and E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part I
Well posedness for zero Mach number systems, J. Math. Pure. Appl., 104 (2015), 762–800.

6. C. Calgaro, E. Chane-Kane, E. Creusé, et al. L∞-stability of vertex-based MUSCL finite volume
schemes on unstructured grids: simulation of incompressible flows with high density ratios, J.
Comput. Phys., 229 (2010), 6027–6046.

7. C. Calgaro, C. Colin and E. Creusé, A combined finite volumes - finite elements method for a
low-Mach model, Int. J. Numer. Meth. Fl., 90 (2019), 1–21.

8. C. Calgaro, C. Colin, E. Creusé, et al. Approximation by an iterative method of a low-Mach model
with temperature dependant viscosity, Math. Method. Appl. Sci., 42 (2019), 250–271.

9. C. Calgaro, E. Creusé and T. Goudon, An hybrid finite volume-finite element method for variable
density incompressible flows, J. Comput. Phys., 227 (2008), 4671–4696.

10. C. Calgaro, E. Creusé and T. Goudon, Modeling and simulation of mixture flows: application to
powder-snow avalanches, Comput. Fluids, 107 (2015), 100–122.

11. C. Calgaro, M. Ezzoug and E. Zahrouni, Stability and convergence of an hybrid finite volume-
finite element method for a multiphasic incompressible fluid model, Commun. Pure Appl. Anal.,
17 (2018), 429–448.

12. C. Cancès and C. Guichard, Convergence of a nonlinear entropy diminishing control volume finite
element scheme for solving anisotropic degenerate parabolic equations, Math. Comput., 85 (2016),
549–580.

13. C. Chainais-Hillairet, Discrete duality finite volume schemes for two-dimensional drift-diffusion
and energy-transport models, Int. J. Numer. Meth. Fl., 59 (2009), 239–257.

14. C. Chainais-Hillairet, Y.-J. Peng and I. Violet, Numerical solutions of Euler-Poisson systems for
potential flows, Appl. Numer. Math., 59 (2009), 301–315.

15. D. R. Chenoweth and S. Paolucci, Natural convection in an enclosed vertical air layer with large
horizontal temperature differences, J. Fluid Mech., 169 (1986), 173–210.

16. P. G. Ciarlet, Introduction to numerical linear algebra and optimisation, Cambridge Texts in
Applied Mathematics. Cambridge University Press, Cambridge, 1989.

17. C. Colin, Analyse et simulation numérique par méthode combinée Volumes Finis - Eléments Finis
de modèles de type Faible Mach, PhD thesis, Université de Lille, 2019.

18. Y. Coudière, J.-P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a
two-dimensional convection-diffusion problem, ESAIM: Mathematical Modelling and Numerical
Analysis, 33 (1999), 493–516.

19. R. Danchin and X. Liao, On the well-posedness of the full low Mach number limit system in general
critical Besov spaces, Commun. Contemp. Math., 14 (2012), 1250022.

20. S. Dellacherie, On a diphasic low Mach number system, ESAIM: Mathematical Modelling and
Numerical Analysis, 39 (2005), 487–514.

21. K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary
two-dimensional grids, ESAIM: Mathematical Modelling and Numerical Analysis, 39 (2005),
1203–1249.

22. J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any
grid, Numer. Math., 105 (2006), 35–71.

AIMS Mathematics Volume 5, Issue 1, 311–331.



331

23. P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion, Commun.
Part. Diff. Eq., 12 (1987), 1227–1283.

24. R. Eymard and T. Gallouët, H-convergence and numerical schemes for elliptic problems, SIAM J.
Numer. Anal., 41 (2003), 539–562.

25. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handbook of numerical analysis, 7
(2000), 713–1018.

26. R. Eymard, T. Gallouët and R. Herbin, A cell-centered finite-volume approximation for anisotropic
diffusion operators on unstructured meshes in any space dimension, IMA J. Numer. Anal., 26
(2006), 326–353.

27. R. Herbin, J.-C. Latché and K. Saleh, Low Mach number limit of a pressure correction MAC
scheme for compressible barotropic flows. In: Finite volumes for complex applications VIII—
methods and theoretical aspects, volume 199 of Springer Proc. Math. Stat., pages 255–263.
Springer, Cham, 2017.

28. R. Herbin, J.-C. Latché and K. Saleh, Low Mach number limit of some staggered schemes for
compressible barotropic flows, arXiv preprint, arXiv:1803.09568.

29. V. Heuveline, On higher-order mixed FEM for low Mach number flows: application to a natural
convection benchmark problem, Int. J. Numer. Meth. Fl., 41 (2003), 1339–1356.

30. F. Huang and W. Tan, On the strong solution of the ghost effect system, SIAM J. Math. Anal., 49
(2017), 3496–3526.

31. P. Le Quéré, C. Weisman, H. Paillère, et al. Modelling of natural convection flows with large
temperature differences: a benchmark problem for low Mach number solvers. Part I. Reference
solutions, ESAIM: Mathematical Modelling and Numerical Analysis, 39 (2005), 609–616.

32. C. D. Levermore, W. Sun and K. Trivisa, Local well-posedness of a ghost effect system, Indiana
Univ. Math. J., 60 (2011), 517–576.

33. P.-L. Lions, Mathematical topics in fluid mechanics: Volume 2: Compressible models, volume 10
of Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press, Oxford
University Press, New York, 1998.

34. A. Majda and J. Sethian, The derivation and numerical solution of the equations for zero Mach
number combustion, Combust. Sci. Technol., 42 (1985), 185–205.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 5, Issue 1, 311–331.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Model derivation
	A combined finite volume - finite element scheme
	Spatial and temporal discretizations
	The time splitting
	Description of the mesh and notations
	Spatial discretization

	The finite volume scheme
	Variants of the scheme
	black (SDmoyJup) 
	black (SDmoyJcen) 
	black  (SDmaxJEGH) and (SDmoyJEGH) 

	Coupling between finite elements and finite volumes

	Numerical simulations
	Verification of the maximum principle
	Analytical benchmark
	The natural convection in a cavity

	Conclusion

