In a recent paper Tunçer [
Citation: Semra Kaya Nurkan, İlkay Arslan Güven. Construction of vectorial moments via direction curves[J]. AIMS Mathematics, 2023, 8(6): 12857-12871. doi: 10.3934/math.2023648
In a recent paper Tunçer [
[1] | M. Barros, General helices and a theorem of Lancret, P. Am. Math. Soc., 125 (1997), 1503–1509. |
[2] | M. Barros, A. Ferrandez, P. Lucas, M. Merono, General helices in three dimensional Lorentzian space forms, Rocky Mountain J. Math., 31 (2001), 373–388. |
[3] | Ç. Camcı, K. İlarslan, L. Kula, H. Hacısalihoğlu, Harmonic curvatures and generalized helices in E$^{n}$, Chaos Soliton. Fract., 40 (2009), 2590–2596. http://dx.doi.org/10.1016/j.chaos.2007.11.001 doi: 10.1016/j.chaos.2007.11.001 |
[4] | Ü. Çiftçi, A generalization of Lancret theorem, J. Geom. Phys., 59 (2009), 1597–1603. http://dx.doi.org/10.1016/j.geomphys.2009.07.016 doi: 10.1016/j.geomphys.2009.07.016 |
[5] | J. Choi, Y. Kim, Associated curves of a Frenet curve and their applications, Appl. Math. Comput., 218 (2012), 9116–9124. http://dx.doi.org/10.1016/j.amc.2012.02.064 doi: 10.1016/j.amc.2012.02.064 |
[6] | S. Desmukh, B. Chen, A. Alghanemi, Natural mates of Frenet curves in Euclidean 3-space, Turk. J. Math., 24 (2018), 2826–2840. http://dx.doi.org/10.3906/mat-1712-34 doi: 10.3906/mat-1712-34 |
[7] | H. Hayden, On a general helix in Riemannian n-space, Proc. London Math. Soc., 32 (1931), 321–336. http://dx.doi.org/10.1112/plms/s2-32.1.337 doi: 10.1112/plms/s2-32.1.337 |
[8] | L. Jantschi, S. Bolboaca, Study of geometrical shaping of linear chained polymers stabilized as helixes, Studia UBB Chemia, 4 (2016), 123–136. |
[9] | T. Körpınar, M. Sarıaydın, E. Turhan, Associated curves according to Bishop frame in Euclidean 3-space, Advanced Modeling and Optimization, 15 (2013), 713–717. |
[10] | R. Millman, G. Parker, Elements of differential geometry, London: Pearson, 1977. |
[11] | S. Nurkan, İ. Güven, M. Karacan, Characterizations of adjoint curves in Euclidean 3-space, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 89 (2019), 155–161. http://dx.doi.org/10.1007/s40010-017-0425-y doi: 10.1007/s40010-017-0425-y |
[12] | D. Struik, Lectures on classical differential geometry, New York: Dover Publications, 1988. |
[13] | S. Şenyurt, H. Şardağ, O. Çakır, On vectorial moment of the Darboux vector, Konuralp Journal of Mathematics, 8 (2020), 144–151. |
[14] | Y. Tunçer, Vectorial moments of curves in Euclidean 3-space, Int. J. Geom. Methods M., 14 (2017), 1750020. http://dx.doi.org/10.1142/S0219887817500207 doi: 10.1142/S0219887817500207 |
[15] | S. Yılmaz, Characterizations of some associated and special curves to type-2 Bishop frame in E$^{3}$, Kırklareli University Journal of Engineering and Science, 1 (2015), 66–77. |
[16] | E. Yashima, K. Maeda, H. Iida, Y. Furusho, K. Nagai, Helical polymers: synthesis, structures, and functions, Chem. Rev., 109 (2009), 6102–6211. http://dx.doi.org/10.1021/cr900162q |