In this paper, to start we defined osculating q-frame, normal q-frame, and rectifying q-frame along a space curve in Euclidean 3-space $ \mathbb{E}^3 $ by using the Darboux vector field of the q-frame. We obtained the derivative equations of these new frames. Later, we defined some new integral curves of a space curve and called them $ \overline{\mathsf{d}}_o $-direction curve, $ \overline{\mathsf{d}}_n $-direction curve and $ \overline{\mathsf{d}}_r $-direction curve. Finally, we gave some theorems and results related with these curves.
Citation: Bahar UYAR DÜLDÜL. On some new frames along a space curve and integral curves with Darboux q-vector fields in $ \mathbb{E}^3 $[J]. AIMS Mathematics, 2024, 9(7): 17871-17885. doi: 10.3934/math.2024869
In this paper, to start we defined osculating q-frame, normal q-frame, and rectifying q-frame along a space curve in Euclidean 3-space $ \mathbb{E}^3 $ by using the Darboux vector field of the q-frame. We obtained the derivative equations of these new frames. Later, we defined some new integral curves of a space curve and called them $ \overline{\mathsf{d}}_o $-direction curve, $ \overline{\mathsf{d}}_n $-direction curve and $ \overline{\mathsf{d}}_r $-direction curve. Finally, we gave some theorems and results related with these curves.
[1] | A. Alkan, H. Kocayiğit, T. A. Aydın, New moving frames for the curves lying on a surface, in press, Sigma J. Eng. Nat. Sci., 42 (2024). http://dx.doi.org/10.14744/sigma.2023.00049 doi: 10.14744/sigma.2023.00049 |
[2] | R. L. Bishop, There is more than one way to frame a curve, Am. Math. Mon., 82 (1975), 246–251. http://dx.doi.org/10.2307/2319846 doi: 10.2307/2319846 |
[3] | J. H. Choi, Y. H. Kim, Associated curves of a Frenet curve and their applications, Appl. Math. Comput., 218 (2012), 9116–9124. http://dx.doi.org/10.1016/j.amc.2012.02.064 doi: 10.1016/j.amc.2012.02.064 |
[4] | M. Dede, C. Ekici, H. Tozak, Directional tubular surfaces, Int. J. Algebr., 9 (2015), 527–535. http://dx.doi.org/10.12988/IJA.2015.51274 doi: 10.12988/IJA.2015.51274 |
[5] | M. Dede, A new representation of tubular surfaces, Houston J. Math., 45 (2019), 707–720. |
[6] | M. Dede, Why Flc-frame is better than Frenet frame on polynomial space curves? Math. Sci. Appl. E-Notes, 10 (2022), 190–198. |
[7] | N. Echabbi, A. O. Chahdi, Direction curves associated with Darboux vectors fields and their characterizations, Int. J. Math. Math. Sci., 2021 (2021), 3814032. http://dx.doi.org/10.1155/2021/3814032 doi: 10.1155/2021/3814032 |
[8] | İ. A. Güven, Some integral curves with a new frame, Open Math., 18 (2020), 1332–1341. http://dx.doi.org/10.1515/math-2020-0078 doi: 10.1515/math-2020-0078 |
[9] | S. Hananoi, I. Noriaki, S. Izumiya, Spherical Darboux images of curves on surfaces, Beitr. Algebr. Geom., 56 (2015), 575–585. http://dx.doi.org/10.1007/s13366-015-0240-z doi: 10.1007/s13366-015-0240-z |
[10] | B. Jüttler, C. Mäurer, Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling, Comput.-Aided Design, 31 (1999), 73–83. http://dx.doi.org/10.1016/S0010-4485(98)00081-5 doi: 10.1016/S0010-4485(98)00081-5 |
[11] | T. Körpınar, M. T. Sarıaydın, E. Turhan, Associated curves according to Bishop frame in Euclidean 3-space, Adv. Model. Optim., 15 (2013), 713–717. |
[12] | N. Macit, M. Düldül, Some new associated curves of a Frenet curve in $E^3$ and $E^4$, Turkish J. Math., 38 (2014), 1023–1037. http://dx.doi.org/10.3906/mat-1401-85 doi: 10.3906/mat-1401-85 |
[13] | M. Önder, Helices associated to helical curves, relatively normal-slant helices and isophote curves, arXiv: 2201.09684, 2022. Available from: https://arXiv.org/abs/2201.09684. |
[14] | P. D. Scofield, Curves of constant precession, Am. Math. Mon., 102 (1995), 531–537. http://dx.doi.org/10.2307/2974768 doi: 10.2307/2974768 |
[15] | B. Uzunoğlu, İ. Gök, Y. Yaylı, A new approach on curves of constant precession, Appl. Math. Comput., 275 (2016), 317–323. http://dx.doi.org/10.1016/j.amc.2015.11.083 doi: 10.1016/j.amc.2015.11.083 |
[16] | S. Yılmaz, Characterizations of some associated and special curves to type-2 Bishop frame in $E^3$, Kırklareli Univ. J. Eng. Sci., 1 (2015), 66–77. |