Mathematics

Research article

On some new frames along a space curve and integral curves with Darboux q-vector fields in \mathbb{E}^{3}

Bahar UYAR DÜLDÜL*

Yildiz Technical University, Faculty of Education, Department of Mathematics and Science Education, Istanbul, Türkiye

* Correspondence: Email: buduldul@yildiz.edu.tr; Tel: +902123835556.

Abstract

In this paper, to start we defined osculating q-frame, normal q-frame, and rectifying qframe along a space curve in Euclidean 3 -space \mathbb{E}^{3} by using the Darboux vector field of the q -frame. We obtained the derivative equations of these new frames. Later, we defined some new integral curves of a space curve and called them $\overline{\mathrm{d}}_{o}$-direction curve, $\overline{\mathrm{d}}_{n}$-direction curve and $\overline{\mathrm{d}}_{r}$-direction curve. Finally, we gave some theorems and results related with these curves.

Keywords: q-frame; integral curve; osculating q-frame; normal q-frame; rectifying q-frame Mathematics Subject Classification: 53A04

1. Introduction

The Frenet frame is the best known and the most used frame for characterizing curves in differential geometry. However, there exist other frames for characterizing curves. Some of these alternative frames are the Bishop frame (rotation minimizing frame), the Flc (Frenet-like curve) frame, the $\{\mathrm{N}, \mathrm{C}, \mathrm{W}\}$ frame, etc. The Bishop frame [2] is also very suitable for engineering applications [10] because of being defined at points where even curvatures vanish. That's why many studies have been done by using this frame. On the other hand, the Bishop frame cannot be calculated analytically [6]. Therefore, Dede [5] recently introduced a new moving frame called the Flc frame. This frame has much easier calculations and a more analytical form that the Bishop frame does not have. The other alternative frame, $\{\mathrm{N}, \mathrm{C}, \mathrm{W}\}$, has been defined by Scofield [14], providing a different approach. Uzunoğlu et al. [15] showed that the $\{\mathrm{N}, \mathrm{C}, \mathrm{W}\}$ frame has an important advantage according to the Frenet frame since the expression of slant helix characterization is more short with the new curvatures. As an alternative to the Frenet frame, Dede et al. [4] defined a new adapted frame along a space curve. They called this new frame as q -frame and obtained the relations between the Frenet frame and the q-frame.

By using the Darboux frame $\{\mathrm{T}, \mathrm{V}, \mathrm{U}\}$ along a regular curve α lying on an oriented surface M in \mathbb{E}^{3}, Hananoi et al. [9] defined the osculating Darboux vector field D_{o}, the normal Darboux vector field D_{n}, and the rectifying Darboux vector field D_{r}, where T is the unit tangent vector field of α, U is the unit normal vector field of M restricted to α, and $\mathrm{V}=\mathrm{U} \times \mathrm{T}$. Considering these vector fields, Önder [13] defined three special curves on a surface as D_{i}-Darboux slant helices, where $i \in\{o, n, r\}$. In recent days, Alkan et al. [1] defined osculator Darboux frame, normal Darboux frame, and rectifying Darboux frame.

Recently, many researchers $[3,7,8,11,12,16]$ have studied associated curves and have revealed the relationships between the main curve and the associated curves. The spherical indicators, the involuteevolute curve couple, the Bertrand curve couple, the Mannheim curve couple, and the integral curves are the most familiar ones among these associated curves. Integral curves are one of the interesting curves among these curves since they are tangent to the vector field at every point.

In this study, considering the Darboux vector field of the q-frame, we first define some new frames called the osculating q -frame, the normal q -frame, and the rectifying q -frame along a space curve in \mathbb{E}^{3} and obtain their derivative equations. Second, by using some vector fields of these new q-frames, we define new integral curves called $\overline{\mathrm{d}}_{o}$-direction curve, $\overline{\mathrm{d}}_{n}$-direction curve, and $\overline{\mathrm{d}}_{r}$-direction curve of a space curve.

2. Preliminaries

Let $\alpha=\alpha(t)$ be a regular space curve with nondegenerate condition $\alpha^{\prime} \times \alpha^{\prime \prime} \neq 0$. Then, the Frenet frame vector fields are defined as

$$
\mathrm{t}=\frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|}, \quad \mathrm{n}=\mathrm{b} \times \mathrm{t}, \quad \mathrm{~b}=\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|},
$$

where t, n, and b denote the tangent, the principal normal, and the binormal vector fields of the curve α and the prime denotes the derivative with respect to t. Then, we have the following Frenet equations:

$$
\left\{\begin{array}{l}
\mathrm{t}^{\prime}=v \kappa \mathrm{n}, \\
\mathrm{n}^{\prime}=v(-\kappa \mathrm{t}+\tau \mathrm{b}), \\
\mathrm{b}^{\prime}=-v \tau \mathrm{n},
\end{array}\right.
$$

where $v=\left\|\alpha^{\prime}(t)\right\|$, and the curvature and the torsion functions are

$$
\kappa=\frac{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|}{\left\|\alpha^{\prime}\right\|^{3}}, \quad \tau=\frac{\left\langle\alpha^{\prime} \times \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right\rangle}{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|^{2}},
$$

respectively.
The q -frame $\left\{\mathrm{t}, \mathrm{n}_{q}, \mathrm{~b}_{q}, \mathrm{k}\right\}$, which is an alternative to the Frenet frame along a space curve $\alpha=\alpha(t)$, is given by Dede et al. [4], and its vector fields are defined as

$$
\mathrm{t}=\frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|}, \quad \mathrm{n}_{q}=\frac{\mathrm{t} \times \mathrm{k}}{\|\mathrm{t} \times \mathrm{k}\|}, \quad \mathrm{b}_{q}=\mathrm{t} \times \mathrm{n}_{q},
$$

where the vector $\mathrm{k}=(0,0,1)$ is the projection vector and the vectors n_{q} and b_{q} are the quasi-normal and the quasi-binormal vector, respectively. The relation matrix between the Frenet frame and the q -frame
is given by

$$
\left(\begin{array}{c}
\mathrm{t} \\
\mathrm{n} \\
\mathrm{~b}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{c}
\mathrm{t} \\
\mathrm{n}_{q} \\
\mathrm{~b}_{q}
\end{array}\right)
$$

where θ is the angle between the vectors n and n_{q}.
Let $\alpha=\alpha(s)$ be a space curve with arc length parameter s. Then, the q -frame equations are given by

$$
\left(\begin{array}{c}
\mathrm{t}^{\prime} \tag{2.1}\\
\mathrm{n}_{q}^{\prime} \\
\mathrm{b}_{q}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & k_{1} & k_{2} \\
-k_{1} & 0 & k_{3} \\
-k_{2} & -k_{3} & 0
\end{array}\right)\left(\begin{array}{c}
\mathrm{t} \\
\mathrm{n}_{q} \\
\mathrm{~b}_{q}
\end{array}\right)
$$

where k_{1}, k_{2}, k_{3} denote the q-curvatures of α [4]. The relations between the curvatures are

$$
k_{1}=\kappa \cos \theta, \quad k_{2}=-\kappa \sin \theta, \quad k_{3}=\theta^{\prime}+\tau
$$

where κ, τ are the Frenet curvatures. The Darboux vector d_{q} of the q -frame $\left\{\mathrm{t}, \mathrm{n}_{q}, \mathrm{~b}_{q}, \mathrm{k}\right\}$ is given by

$$
\mathrm{d}_{q}=k_{3} \mathrm{t}-k_{2} \mathrm{n}_{q}+k_{1} \mathrm{~b}_{q} .
$$

Thus, the instantaneous angular speed of the q -frame is calculated as

$$
\left\|\mathrm{d}_{q}\right\|=\sqrt{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}} .
$$

Let us consider the vector fields $\mathrm{d}_{o}, \mathrm{~d}_{n}$, and d_{r} which are called the osculating q-vector field, the normal q -vector field, and the rectifying q -vector field along α, respectively:

$$
\begin{gathered}
\mathrm{d}_{o}=k_{3} \mathrm{t}-k_{2} \mathrm{n}_{q}, \\
\mathrm{~d}_{n}=-k_{2} \mathrm{n}_{q}+k_{1} \mathrm{~b}_{q}, \\
\mathrm{~d}_{r}=k_{3} \mathrm{t}+k_{1} \mathrm{~b}_{q} .
\end{gathered}
$$

Then, the unit osculating q-vector field, the unit normal q-vector field, and the unit rectifying q-vector field along α are given by, respectively:

$$
\begin{align*}
& \overline{\mathrm{d}}_{o}=\frac{k_{3}}{\sqrt{k_{2}^{2}+k_{3}^{2}}} \mathrm{t}-\frac{k_{2}}{\sqrt{k_{2}^{2}+k_{3}^{2}}} \mathrm{n}_{q}, \tag{2.2}\\
& \overline{\mathrm{~d}}_{n}=-\frac{k_{2}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \mathrm{n}_{q}+\frac{k_{1}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \mathrm{~b}_{q} \tag{2.3}\\
& \overline{\mathrm{~d}}_{r}=\frac{k_{3}}{\sqrt{k_{1}^{2}+k_{3}^{2}}} \mathrm{t}+\frac{k_{1}}{\sqrt{k_{1}^{2}+k_{3}^{2}}} \mathrm{~b}_{q} \tag{2.4}
\end{align*}
$$

3. Some new frames along a space curve

In this section, let us define some new frames along a space curve using the Darboux vector field of the q -frame and give some theorems related with these frames.
Definition 3.1. Let α be a space curve in $\mathbb{E}^{3},\left\{\mathrm{t}, \mathrm{n}_{q}, \mathrm{~b}_{q}, \mathrm{k}\right\}$ be its q -frame, and $\overline{\mathrm{d}}_{o}$ be the unit osculating q vector field along the curve α. Then, the orthonormal frame $\left\{\overline{\mathrm{d}}_{o}, \mathrm{~b}_{q}, \mathrm{e}_{o}\right\}$ is called the osculating q -frame along α, where $\mathrm{e}_{o}=\overline{\mathrm{d}}_{o} \times \mathrm{b}_{q}$.
Theorem 3.2. Let $\left\{\overline{\mathrm{d}}_{o}, \mathrm{~b}_{q}, \mathrm{e}_{o}\right\}$ be the osculating q-frame along the curve α. Then, the derivative equations according to this frame can be found as

$$
\left\{\begin{array}{l}
\overline{\mathrm{d}}_{o}^{\prime}=-\rho_{o} \mathbf{e}_{o}, \tag{3.1}\\
\mathbf{b}_{q}^{\prime}=\eta_{o} \mathbf{e}_{o} \\
\mathrm{e}_{o}^{\prime}=\rho_{o} \overline{\mathrm{~d}}_{o}-\eta_{o} \mathbf{b}_{q},
\end{array}\right.
$$

where $\rho_{o}=\frac{\left(k_{3}^{\prime} k_{2}-k_{2}^{\prime} k_{2} 3\right)+k_{1}\left(k_{2}^{2}+k_{3}^{2}\right)}{k_{2}^{2}+k_{3}^{2}}$ and $\eta_{o}=\sqrt{k_{2}^{2}+k_{3}^{2}}$ are the curvatures of α according to the osculating q-frame.
Proof. Since $\overline{\mathrm{d}}_{o}$ is the unit osculating q-vector field along the curve α, we get $\overline{\mathrm{d}}_{o} \in \operatorname{Sp}\left\{\mathrm{t}, \mathrm{n}_{q}\right\}$. So, $\overline{\mathrm{d}}_{o} \perp$ b_{q}, and, thus, $\left\{\overline{\mathrm{d}}_{o}, \mathrm{~b}_{q}, \mathrm{e}_{o}\right\}$ is an orthonormal frame along α, where $\mathrm{e}_{o}=\overline{\mathrm{d}}_{o} \times \mathrm{b}_{q}$. Since $\overline{\mathrm{d}}_{o}^{\prime} \in \operatorname{Sp}\left\{\overline{\mathrm{d}}_{o}, \mathrm{~b}_{q}, \mathrm{e}_{o}\right\}$, we can write

$$
\overline{\mathrm{d}}_{o}^{\prime}=a_{1} \overline{\mathrm{~d}}_{o}+a_{2} \mathrm{~b}_{q}+a_{3} \mathrm{e}_{o}
$$

Taking the inner product of both sides of this equation with $\overline{\mathrm{d}}_{o}$ yields $a_{1}=\left\langle\overline{\mathrm{d}}_{o}^{\prime}, \overline{\mathrm{a}}_{o}\right\rangle=0$ because of $\left\|\overline{\mathrm{d}}_{o}\right\|=1$. So, we get

$$
\begin{equation*}
\overline{\mathrm{d}}_{o}^{\prime}=a_{2} \mathrm{~b}_{q}+a_{3} \mathrm{e}_{o} . \tag{3.2}
\end{equation*}
$$

If we take the inner product of both sides of Eq (3.2) with b_{q} and e_{o}, respectively, we obtain $a_{2}=$ $\left\langle\overline{\mathrm{d}}_{o}^{\prime}, \mathrm{b}_{q}\right\rangle$ and $a_{3}=\left\langle\overline{\mathrm{d}}_{o}^{\prime}, \mathrm{e}_{o}\right\rangle$. Substituting

$$
\begin{equation*}
\sin \phi=\frac{k_{3}}{\sqrt{k_{2}^{2}+k_{3}^{2}}}, \quad \cos \phi=\frac{k_{2}}{\sqrt{k_{2}^{2}+k_{3}^{2}}} \tag{3.3}
\end{equation*}
$$

into Eq (2.2) gives

$$
\begin{equation*}
\overline{\mathrm{d}}_{o}=\sin \phi \mathrm{t}-\cos \phi \mathrm{n}_{q} . \tag{3.4}
\end{equation*}
$$

If we differentiate this equation with respect to s and use $\operatorname{Eq~(2.1),~we~have~}$

$$
\overline{\mathrm{d}}_{o}^{\prime}=\left(\phi^{\prime}+k_{1}\right) \cos \phi \mathrm{t}+\left(\phi^{\prime}+k_{1}\right) \sin \phi \mathrm{n}_{q}+\left(k_{2} \sin \phi-k_{3} \cos \phi\right) \mathrm{b}_{q} .
$$

If we use Eq (3.3), we get $a_{2}=0$. So,

$$
\begin{equation*}
\overline{\mathrm{d}}_{o}^{\prime}=\left(\phi^{\prime}+k_{1}\right)\left[\cos \phi \mathrm{t}+\sin \phi \mathrm{n}_{q}\right] . \tag{3.5}
\end{equation*}
$$

Moreover, using Eq (3.4), we obtain

$$
\begin{equation*}
\mathrm{e}_{o}=-\cos \phi \mathrm{t}-\sin \phi \mathrm{n}_{q} . \tag{3.6}
\end{equation*}
$$

If we use Eqs (3.5) and (3.6), we obtain $a_{3}=-\left(\phi^{\prime}+k_{1}\right)$. Also, Eq.(3.3) gives $\tan \phi=\frac{k_{3}}{k_{2}}$, and by doing some calculations, we find

$$
a_{3}=-\left[\frac{\left(k_{3}^{\prime} k_{2}-k_{2}^{\prime} k_{3}\right)+k_{1}\left(k_{2}^{2}+k_{3}^{2}\right)}{k_{2}^{2}+k_{3}^{2}}\right] .
$$

So, from Eq (3.2), we obtain

$$
\begin{equation*}
\overline{\mathrm{d}}_{o}^{\prime}=-\left[\frac{\left(k_{3}^{\prime} k_{2}-k_{2}^{\prime} k_{3}\right)+k_{1}\left(k_{2}^{2}+k_{3}^{2}\right)}{k_{2}^{2}+k_{3}^{2}}\right] \mathrm{e}_{o} . \tag{3.7}
\end{equation*}
$$

In a similar way, we may write b_{q}^{\prime} as a linear combination of the vectors $\overline{\mathrm{d}}_{o}, \mathrm{~b}_{q}$, and e_{o}, i.e.,

$$
\begin{equation*}
\mathrm{b}_{q}^{\prime}=b_{1} \overline{\mathrm{~d}}_{o}+b_{2} \mathrm{~b}_{q}+b_{3} \mathrm{e}_{o} . \tag{3.8}
\end{equation*}
$$

Taking the inner product of both sides of Eq (3.8) with $\overline{\mathrm{d}}_{o}$ yields $b_{1}=\left\langle\mathrm{b}_{q}^{\prime}, \overline{\mathrm{d}}_{o}\right\rangle$. If we use Eqs (2.1), (3.3), and (3.4), we find $b_{1}=0$. Also, since $\left\|\mathbf{b}_{q}\right\|=1$, we get $b_{2}=0$. Then, we have

$$
\begin{equation*}
\mathrm{b}_{q}^{\prime}=b_{3} \mathrm{e}_{o} . \tag{3.9}
\end{equation*}
$$

If we take the inner product of both sides of Eq (3.9) with e_{o} and use Eqs (2.1), (3.3), and (3.6), we obtain

$$
\begin{equation*}
\mathrm{b}_{q}^{\prime}=\sqrt{k_{2}^{2}+k_{3}^{2}} \mathrm{e}_{o} \tag{3.10}
\end{equation*}
$$

Moreover, since $\mathrm{e}_{o}^{\prime} \in \operatorname{Sp}\left\{\overline{\mathrm{d}}_{o}, \mathrm{~b}_{q}, \mathrm{e}_{o}\right\}$, it can be written as

$$
\begin{equation*}
\mathrm{e}_{o}^{\prime}=c_{1} \overline{\mathrm{~d}}_{o}+c_{2} \mathbf{b}_{q}+c_{3} \mathbf{e}_{o} . \tag{3.11}
\end{equation*}
$$

Taking the inner product of both sides of Eq (3.11) with $\overline{\mathrm{d}}_{o}$ gives $c_{1}=\left\langle\mathrm{e}_{o}^{\prime}, \overline{\mathrm{d}}_{o}\right\rangle$. Using Eqs (2.1) and (3.6) yields

$$
\begin{equation*}
\mathrm{e}_{o}^{\prime}=\left(\phi^{\prime}+k_{1}\right) \sin \phi \mathrm{t}-\left(\phi^{\prime}+k_{1}\right) \cos \phi \mathrm{n}_{q}-\left(k_{2} \cos \phi+k_{3} \sin \phi\right) \mathrm{b}_{q} . \tag{3.12}
\end{equation*}
$$

If we use Eqs (3.3), (3.4), and (3.12), we obtain

$$
c_{1}=\frac{\left(k_{3}^{\prime} k_{2}-k_{2}^{\prime} k_{3}\right)+k_{1}\left(k_{2}^{2}+k_{3}^{2}\right)}{k_{2}^{2}+k_{3}^{2}}
$$

From Eqs (3.3), (3.11), and (3.12), we get $c_{2}=-\sqrt{k_{2}^{2}+k_{3}^{2}}$. Also, since $\left\|\mathbf{e}_{o}\right\|=1$, we have $c_{3}=0$. Then, from Eq (3.11), we find

$$
\begin{equation*}
\mathrm{e}_{o}^{\prime}=\left[\frac{\left(k_{3}^{\prime} k_{2}-k_{2}^{\prime} k_{3}\right)+k_{1}\left(k_{2}^{2}+k_{3}^{2}\right)}{k_{2}^{2}+k_{3}^{2}}\right] \overline{\mathrm{d}}_{o}-\sqrt{k_{2}^{2}+k_{3}^{2}} \mathrm{~b}_{q} \tag{3.13}
\end{equation*}
$$

If we denote $\rho_{o}=\frac{\left(k_{3}^{\prime} k_{2}-k_{2}^{\prime} k_{3}\right)+k_{1}\left(k_{2}^{2}+k_{3}^{2}\right)}{k_{2}^{2}+k_{3}^{2}}$ and $\eta_{o}=\sqrt{k_{2}^{2}+k_{3}^{2}}$, Eqs (3.7), (3.10), and (3.13) give the desired equations. Here, ρ_{o} and η_{o} are called the curvatures of α according to the osculating q -frame.
Definition 3.3. Let $\left\{\overline{\mathrm{d}}_{o}, \mathrm{~b}_{q}, \mathrm{e}_{o}\right\}$ be the osculating q -frame along the space curve α. The curve α is called a_{q}-slant helix relative to the osculating q -frame if the vector field b_{q} makes a constant angle with a fixed direction, i.e., $\left\langle\mathrm{b}_{q}, \mathrm{u}\right\rangle=\cos \psi$, where u is a constant unit vector and ψ is a constant angle.

Theorem 3.4. Let $\left\{\overline{\mathrm{d}}_{o}, \mathrm{~b}_{q}, \mathrm{e}_{o}\right\}$ be the osculating q-frame along the space curve α. The curve α is a b_{q}-slant helix relative to the osculating q-frame if, and only if, the expression $\frac{\eta_{o}}{\rho_{o}}$ is constant (for $\eta_{o} \neq 0$ and $\rho_{o} \neq 0$).

Proof. Let α be a b_{q}-slant helix relative to the osculating q -frame. Then, $\left\langle\mathrm{b}_{q}, \mathrm{u}\right\rangle=\cos \psi=c \neq 0$, where u is a unit constant direction. So, it can be written as

$$
\mathrm{u}=\lambda_{1} \overline{\mathrm{~d}}_{o}+c \mathrm{~b}_{q}+\lambda_{2} \mathbf{e}_{o}, \quad\left(\lambda_{1}, \lambda_{2} \in \mathbb{R}\right)
$$

If we differentiate this equation, we obtain

$$
\mathrm{u}^{\prime}=\lambda_{1} \overline{\mathrm{a}}_{o}^{\prime}+\lambda_{1}^{\prime} \overline{\mathrm{d}}_{o}+c \mathrm{~b}_{q}^{\prime}+\lambda_{2}^{\prime} \mathrm{e}_{o}+\lambda_{2} \mathrm{e}_{o}^{\prime}
$$

If we use Eq (3.1), we find

$$
\left\{\begin{array}{l}
\lambda_{1}^{\prime}+\lambda_{2} \rho_{o}=0 \\
\lambda_{2} \eta_{o}=0 \\
\lambda_{2}^{\prime}-\lambda_{1} \rho_{o}+c \eta_{o}=0
\end{array}\right.
$$

Since $\eta_{o} \neq 0$ and $\rho_{o} \neq 0$, we have $\lambda_{2}=0$ and $\lambda_{1}=$ constant. Thus, we get $\frac{\eta_{o}}{\rho_{o}}=$ constant .
Conversely, let $\frac{\eta_{o}}{\rho_{o}}$ be constant. Choosing $\frac{\eta_{o}}{\rho_{o}}=\frac{\cos \psi}{\sin \psi}$ and taking $\mathrm{u}=\cos \psi \overline{\mathrm{d}}_{o}+\sin \psi \mathrm{b}_{q}$ gives $\mathrm{u}^{\prime}=0$ by using Eq (3.1). So, the vector u is constant. Also, by taking the inner product of both sides of $\mathrm{u}=\cos \psi \overline{\mathrm{d}}_{o}+\sin \psi \mathrm{b}_{q}$ with b_{q} yields to $\left\langle\mathrm{u}, \mathrm{b}_{q}\right\rangle=\sin \psi$. Then, the constant vector u and the vector b_{q} make a constant angle, i.e., the curve α is a b_{q}-slant helix.

Corollary 3.5. A space curve α with $\left(k_{2}(s), k_{3}(s)\right) \neq(0,0)$ is $a \mathrm{~b}_{q}$-slant helix if, and only if,

$$
\rho_{1}(s)=\frac{\left(k_{3}^{\prime} k_{2}-k_{2}^{\prime} k_{3}\right)+k_{1}\left(k_{2}^{2}+k_{3}^{2}\right)}{\left(k_{2}^{2}+k_{3}^{2}\right)^{3 / 2}}
$$

is a constant function.
Definition 3.6. Let α be a space curve in $\mathbb{E}^{3},\left\{\mathrm{t}, \mathrm{n}_{q}, \mathrm{~b}_{q}, \mathrm{k}\right\}$ be its q -frame, and $\overline{\mathrm{d}}_{n}$ be the unit normal q -vector field along the curve α. Then, the orthonormal frame $\left\{\overline{\mathrm{d}}_{n}, \mathrm{t}, \mathrm{e}_{n}\right\}$ is called the normal q -frame along α, where $\mathrm{e}_{n}=\overline{\mathrm{d}}_{n} \times \mathrm{t}$.
Theorem 3.7. Let $\left\{\overline{\mathrm{d}}_{n}, \mathrm{t}, \mathrm{e}_{n}\right\}$ be the normal q-frame along the curve α. Then, the derivative equations according to this frame can be obtained as

$$
\left\{\begin{array}{l}
\overline{\mathrm{d}}_{n}^{\prime}=-\rho_{n} \mathrm{e}_{n}, \tag{3.14}\\
\mathrm{t}^{\prime}=\eta_{n} \mathrm{e}_{n}, \\
\mathrm{e}_{n}^{\prime}=\rho_{n} \overline{\mathrm{~d}}_{n}-\eta_{n} \mathrm{t}
\end{array}\right.
$$

where $\rho_{n}=\frac{\left(k_{2}^{\prime} k_{1}-k_{1}^{\prime} k_{2}\right)+k_{3}\left(k_{1}^{2}+k_{2}^{2}\right)}{k_{1}^{2}+k_{2}^{2}}$ and $\eta_{n}=\sqrt{k_{1}^{2}+k_{2}^{2}}$ are the curvatures of α according to the normal q-frame.

Proof. Since $\overline{\mathrm{d}}_{n}$ is the unit normal q-vector field along α, from Eq (2.3), we have $\overline{\mathrm{d}}_{n} \in \operatorname{Sp}\left\{\mathrm{n}_{q}, \mathrm{~b}_{q}\right\}$. Hence, $\overline{\mathrm{d}}_{n} \perp \mathrm{t}$. Let $\mathrm{e}_{n}=\overline{\mathrm{d}}_{n} \times \mathrm{t}$. Then, we obtain the orthonormal frame $\left\{\overline{\mathrm{d}}_{n}, \mathrm{t}, \mathrm{e}_{n}\right\}$ along α. Since $\overline{\mathrm{d}}_{n}^{\prime} \in \operatorname{Sp}\left\{\overline{\mathrm{d}}_{n}, \mathrm{t}, \mathrm{e}_{n}\right\}$, it can be written as

$$
\begin{equation*}
\overline{\mathrm{d}}_{n}^{\prime}=a_{1} \overline{\mathrm{~d}}_{n}+a_{2} \mathrm{t}+a_{3} \mathrm{e}_{n} \tag{3.15}
\end{equation*}
$$

If we take the inner product of both sides of $\operatorname{Eq}(3.15)$ with $\overline{\mathrm{d}}_{n}$ and take into consideration $\left\|\overline{\mathrm{d}}_{n}\right\|=1$, we get $a_{1}=0$. So, we have

$$
\begin{equation*}
\overline{\mathrm{d}}_{n}^{\prime}=a_{2} \mathrm{t}+a_{3} \mathrm{e}_{n} . \tag{3.16}
\end{equation*}
$$

Taking the inner product of both sides of Eq (3.16) with t and e_{n}, respectively, yields $a_{2}=\left\langle\overline{\mathrm{d}}_{n}^{\prime}, \mathrm{t}\right\rangle$ and $a_{3}=\left\langle\overline{\mathrm{d}}_{n}^{\prime}, \mathrm{e}_{n}\right\rangle$. In Eq (2.3), if we take

$$
\begin{equation*}
\sin \phi=\frac{k_{2}}{\sqrt{k_{1}^{2}+k_{2}^{2}}}, \cos \phi=\frac{k_{1}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \tag{3.17}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\overline{\mathrm{d}}_{n}=-\sin \phi \mathrm{n}_{q}+\cos \phi \mathrm{b}_{q} \tag{3.18}
\end{equation*}
$$

Differentiating this equation with respect to s and using Eq (2.1) gives

$$
\overline{\mathrm{d}}_{n}^{\prime}=\left(k_{1} \sin \phi-k_{2} \cos \phi\right) \mathrm{t}-\left(\phi^{\prime}+k_{3}\right) \cos \phi \mathrm{n}_{q}-\left(\phi^{\prime}+k_{3}\right) \sin \phi \mathrm{b}_{q} .
$$

If we use Eq (3.17), we get $a_{2}=0$. So, we have

$$
\begin{equation*}
\overline{\mathrm{d}}_{n}^{\prime}=-\left(\phi^{\prime}+k_{3}\right)\left[\cos \phi \mathrm{n}_{q}+\sin \phi \mathrm{b}_{q}\right] . \tag{3.19}
\end{equation*}
$$

Also, using Eq (3.18) yields

$$
\begin{equation*}
\mathrm{e}_{n}=\cos \phi \mathrm{n}_{q}+\sin \phi \mathrm{b}_{q} \tag{3.20}
\end{equation*}
$$

Moreover, from Eqs (3.19) and (3.20), we have $a_{3}=-\left(\phi^{\prime}+k_{3}\right)$. By doing some calculations, we find

$$
a_{3}=-\left[\frac{\left(k_{2}^{\prime} k_{1}-k_{1}^{\prime} k_{2}\right)+k_{3}\left(k_{1}^{2}+k_{2}^{2}\right)}{k_{1}^{2}+k_{2}^{2}}\right] .
$$

If we use Eq (3.16), we have

$$
\begin{equation*}
\overline{\mathrm{d}}_{n}^{\prime}=-\left[\frac{\left(k_{2}^{\prime} k_{1}-k_{1}^{\prime} k_{2}\right)+k_{3}\left(k_{1}^{2}+k_{2}^{2}\right)}{k_{1}^{2}+k_{2}^{2}}\right] \mathrm{e}_{n} . \tag{3.21}
\end{equation*}
$$

Similarly, since $\mathrm{t}^{\prime} \in \operatorname{Sp}\left\{\overline{\mathrm{d}}_{n}, \mathrm{t}, \mathrm{e}_{n}\right\}$, we can write

$$
\begin{equation*}
\mathrm{t}^{\prime}=b_{1} \overline{\mathrm{~d}}_{n}+b_{2} \mathrm{t}+b_{3} \mathrm{e}_{n} . \tag{3.22}
\end{equation*}
$$

If we take the inner product of both sides of $\mathrm{Eq}(3.22)$ with $\overline{\mathrm{d}}_{n}$, we obtain $b_{1}=\left\langle\mathrm{t}^{\prime}, \overline{\mathrm{d}}_{n}\right\rangle$. Eqs (2.1), (3.17), and (3.18) give $b_{1}=0$. Also, since $\|t\|=1$, we have $b_{2}=0$. So, we get

$$
\begin{equation*}
\mathrm{t}^{\prime}=b_{3} \mathrm{e}_{n} \tag{3.23}
\end{equation*}
$$

Taking the inner product of both sides of Eq (3.23) with e_{n} and using Eqs (2.1), (3.17), and (3.20) yields $b_{3}=\sqrt{k_{1}^{2}+k_{2}^{2}}$ and

$$
\begin{equation*}
\mathrm{t}^{\prime}=\sqrt{k_{1}^{2}+k_{2}^{2}} \mathrm{e}_{n} \tag{3.24}
\end{equation*}
$$

Additionally, since $\mathrm{e}_{n}^{\prime} \in \operatorname{Sp}\left\{\overline{\mathrm{d}}_{n}, \mathrm{t}, \mathrm{e}_{n}\right\}$, we can write

$$
\begin{equation*}
\mathbf{e}_{n}^{\prime}=c_{1} \overline{\mathbf{d}}_{n}+c_{2} \mathrm{t}+c_{3} \mathbf{e}_{n} \tag{3.25}
\end{equation*}
$$

If we take the inner product of both sides of Eq (3.25) with $\overline{\mathrm{d}}_{n}$, we get $c_{1}=\left\langle\mathrm{e}_{n}^{\prime}, \overline{\mathrm{d}}_{n}\right\rangle$. Eqs (2.1) and (3.20) give us

$$
\begin{equation*}
\mathrm{e}_{n}^{\prime}=-\left(k_{1} \cos \phi+k_{2} \sin \phi\right) \mathrm{t}-\left(\phi^{\prime}+k_{3}\right) \sin \phi \mathrm{n}_{q}+\left(\phi^{\prime}+k_{3}\right) \cos \phi \mathrm{b}_{q} . \tag{3.26}
\end{equation*}
$$

If we use Eqs (3.18) and (3.26), we find

$$
c_{1}=\frac{\left(k_{2}^{\prime} k_{1}-k_{1}^{\prime} k_{2}\right)+k_{3}\left(k_{1}^{2}+k_{2}^{2}\right)}{k_{1}^{2}+k_{2}^{2}} .
$$

Also, using Eqs (3.17), (3.25), and (3.26) yields $c_{2}=-\sqrt{k_{1}^{2}+k_{2}^{2}}$. In addition, since $\left\|\boldsymbol{e}_{n}\right\|=1$, we have $c_{3}=0$. Thus, using Eq (3.25) gives

$$
\begin{equation*}
\mathrm{e}_{n}^{\prime}=\left[\frac{\left(k_{2}^{\prime} k_{1}-k_{1}^{\prime} k_{2}\right)+k_{3}\left(k_{1}^{2}+k_{2}^{2}\right)}{k_{1}^{2}+k_{2}^{2}}\right] \overline{\mathrm{d}}_{n}-\sqrt{k_{1}^{2}+k_{2}^{2}} \mathrm{t} . \tag{3.27}
\end{equation*}
$$

If we denote $\rho_{n}=\frac{\left(k_{2}^{\prime} k_{1}-k_{1}^{\prime} k_{2}\right)+k_{3}\left(k_{1}^{2}+k_{2}^{2}\right)}{k_{1}^{2}+k_{2}^{2}}$ and $\eta_{n}=\sqrt{k_{1}^{2}+k_{2}^{2}}$ and use Eqs (3.21), (3.24), and (3.27), we obtain the desired equations.
Theorem 3.8. Let $\left\{\overline{\mathrm{a}}_{n}, \mathrm{t}, \mathrm{e}_{n}\right\}$ be the normal q-frame along the space curve α. The curve α is a helix relative to the normal q-frame if, and only if, the expression $\frac{\eta_{n}}{\rho_{n}}$ is constant, for $\eta_{n} \neq 0$ and $\rho_{n} \neq 0$.
Proof. Let α be a helix relative to the normal q -frame. Then, $\langle\mathrm{t}, \mathrm{u}\rangle=\cos \psi=c \neq 0$, where u is a unit constant direction. So, we can write

$$
\mathrm{u}=\lambda_{1} \overline{\mathrm{~d}}_{n}+c \mathrm{t}+\lambda_{2} \mathrm{e}_{n}, \quad\left(\lambda_{1}, \lambda_{2} \in \mathbb{R}\right) .
$$

Differentiating this equation with respect to s and using Eq (3.14) gives

$$
\left\{\begin{array}{l}
\lambda_{1}^{\prime}+\lambda_{2} \rho_{n}=0 \\
\lambda_{2} \eta_{n}=0 \\
\lambda_{2}^{\prime}-\lambda_{1} \rho_{n}+c \eta_{n}=0
\end{array}\right.
$$

Since $\eta_{n} \neq 0$ and $\rho_{n} \neq 0$, we have $\lambda_{2}=0$ and $\lambda_{1}=$ constant. So, we obtain $\frac{\eta_{n}}{\rho_{n}}=$ constant.
Conversely, let $\frac{\eta_{n}}{\rho_{n}}$ be constant. If we choose $\frac{\eta_{n}}{\rho_{n}}=\frac{\cos \psi}{\sin \psi}$ and take $\mathrm{u}=\cos \psi \overline{\mathrm{d}}_{n}+\sin \psi \mathrm{t}$, we find $\mathrm{u}^{\prime}=0$ with the help of $\mathrm{Eq}^{\rho_{n}}$ (3.14). Then, the vector u is constant. Additionally, if we take the inner product of both sides of $u=\cos \psi \overline{\mathrm{d}}_{n}+\sin \psi \mathrm{t}$ with t , we get $\langle\mathrm{u}, \mathrm{t}\rangle=\sin \psi$. Consequently, the constant vector u and the tangent vector t make a constant angle, i.e., the curve α is a helix.

Example 3.9. Let us consider the curve $\alpha(t)=\left(3 t-t^{3}, 3 t^{2}, 3 t+t^{3}\right)$ in \mathbb{E}^{3}. The q-frame apparatus of the curve α is
$\mathrm{t}=\frac{1}{\sqrt{2}\left(1+t^{2}\right)}\left(1-t^{2}, 2 t, 1+t^{2}\right), \quad \mathrm{n}_{q}=\frac{1}{1+t^{2}}\left(2 t, t^{2}-1,0\right), \quad \mathrm{b}_{q}=\frac{1}{\sqrt{2}\left(1+t^{2}\right)}\left(1-t^{2}, 2 t,-1-t^{2}\right)$,

$$
k_{1}=-\frac{\sqrt{2}}{1+t^{2}}, \quad k_{2}=0, \quad k_{3}=\frac{\sqrt{2}}{1+t^{2}},
$$

with the projection vector $\mathrm{k}=(0,0,1)$. Also, the normal q -frame apparatus of the curve α is

$$
\begin{gathered}
\overline{\mathrm{d}}_{n}=\frac{1}{\sqrt{2}\left(1+t^{2}\right)}\left(t^{2}-1,-2 t, 1+t^{2}\right), \quad \mathrm{t}=\frac{1}{\sqrt{2}\left(1+t^{2}\right)}\left(1-t^{2}, 2 t, 1+t^{2}\right), \quad \mathrm{e}_{n}=\frac{1}{1+t^{2}}\left(-2 t, 1-t^{2}, 0\right), \\
\rho_{n}=\eta_{n}=\frac{\sqrt{2}}{1+t^{2}} .
\end{gathered}
$$

Since the expression $\frac{\eta_{n}}{\rho_{n}}$ is constant, the curve α is a helix relative to the normal q -frame.
Corollary 3.10. A space curve α with $\left(k_{1}(s), k_{2}(s)\right) \neq(0,0)$ is a helix if, and only if,

$$
\rho_{2}(s)=\frac{\left(k_{2}^{\prime} k_{1}-k_{1}^{\prime} k_{2}\right)+k_{3}\left(k_{1}^{2}+k_{2}^{2}\right)}{\left(k_{1}^{2}+k_{2}^{2}\right)^{3 / 2}}
$$

is a constant function.
Definition 3.11. Let α be a space curve in $\mathbb{E}^{3},\left\{\mathrm{t}, \mathrm{n}_{q}, \mathrm{~b}_{q}, \mathrm{k}\right\}$ be its q -frame, and $\overline{\mathrm{d}}_{r}$ be the unit rectifying q vector field along the curve α. Then, the orthonormal frame $\left\{\overline{\mathrm{d}}_{r}, \mathrm{n}_{q}, \mathrm{e}_{r}\right\}$ is called the rectifying q -frame along α, where $\mathrm{e}_{r}=\overline{\mathrm{d}}_{r} \times \mathrm{n}_{q}$.
Theorem 3.12. Let $\left\{\overline{\mathrm{d}}_{r}, \mathrm{n}_{q}, \mathrm{e}_{r}\right\}$ be the rectifying q-frame along the curve α. Then, the derivative equations according to this frame can be calculated as

$$
\left\{\begin{array}{l}
\overline{\mathrm{d}}_{r}^{\prime}=-\rho_{r} \mathbf{e}_{r}, \\
\mathrm{n}_{q}^{\prime}=\eta_{r} \mathbf{e}_{r}, \\
\mathrm{e}_{r}^{\prime}=\rho_{r} \overline{\mathbf{d}}_{r}-\eta_{r} \mathbf{n}_{q},
\end{array}\right.
$$

where $\rho_{r}=\frac{\left(k_{3}^{\prime} k_{1}-k_{1}^{k} k_{3}\right)-k_{2}\left(k_{1}^{2}+k_{3}^{2}\right)}{k_{1}^{2}+k_{3}^{2}}$ and $\eta_{r}=\sqrt{k_{1}^{2}+k_{3}^{2}}$ are the curvatures of α according to the rectifying q-frame.
Proof. Since $\overline{\mathrm{d}}_{r}$ is the unit rectifying q -vector field along α, we have $\overline{\mathrm{d}}_{r} \in \operatorname{Sp}\left\{\mathrm{t}, \mathrm{b}_{q}\right\}$. So, $\overline{\mathrm{d}}_{r} \perp \mathrm{n}_{q}$ and $\left\{\overline{\mathrm{d}}_{r}, \mathrm{n}_{q}, \mathrm{e}_{r}\right\}$ is an orthonormal frame along α, where $\mathrm{e}_{r}=\overline{\mathrm{d}}_{r} \times \mathrm{n}_{q}$. Since $\overline{\mathrm{d}}_{r}^{\prime} \in \operatorname{Sp}\left\{\overline{\mathrm{d}}_{r}, \mathrm{n}_{q}, \mathrm{e}_{r}\right\}$, we can write

$$
\begin{equation*}
\overline{\mathrm{d}}_{r}^{\prime}=a_{1} \overline{\mathrm{~d}}_{r}+a_{2} \mathrm{n}_{q}+a_{3} \mathbf{e}_{r} . \tag{3.28}
\end{equation*}
$$

If we take the inner product of both sides of Eq (3.28) with $\overline{\mathrm{d}}_{r}$ and consider $\left\|\overline{\mathrm{d}}_{r}\right\|=1$, we have $a_{1}=0$. So, it can be written as

$$
\begin{equation*}
\overline{\mathrm{d}}_{r}^{\prime}=a_{2} \mathrm{n}_{q}+a_{3} \mathrm{e}_{r} . \tag{3.29}
\end{equation*}
$$

Taking the inner product of both sides of Eq (3.29) with n_{q} and e_{r}, respectively, yields $a_{2}=\left\langle\overline{\mathrm{d}}_{r}^{\prime}, \mathrm{n}_{q}\right\rangle$ and $a_{3}=\left\langle\overline{\mathrm{d}}_{r}^{\prime}, \mathbf{e}_{r}\right\rangle$. In Eq (2.4), denoting

$$
\begin{equation*}
\sin \phi=\frac{k_{3}}{\sqrt{k_{1}^{2}+k_{3}^{2}}}, \cos \phi=\frac{k_{1}}{\sqrt{k_{1}^{2}+k_{3}^{2}}} \tag{3.30}
\end{equation*}
$$

gives

$$
\begin{equation*}
\overline{\mathrm{d}}_{r}=\sin \phi \mathrm{t}+\cos \phi \mathrm{b}_{q} . \tag{3.31}
\end{equation*}
$$

If we differentiate Eq (3.31) with respect to s and use Eq (2.1), we obtain

$$
\overline{\mathrm{d}}_{r}^{\prime}=\left(\phi^{\prime}-k_{2}\right) \cos \phi \mathrm{t}+\left(k_{1} \sin \phi-k_{3} \cos \phi\right) \mathrm{n}_{q}-\left(\phi^{\prime}-k_{2}\right) \sin \phi \mathrm{b}_{q} .
$$

So, from Eq (3.30), we get $a_{2}=0$ and

$$
\begin{equation*}
\overline{\mathrm{d}}_{r}^{\prime}=\left(\phi^{\prime}-k_{2}\right)\left[\cos \phi \mathrm{t}-\sin \phi \mathrm{b}_{q}\right] . \tag{3.32}
\end{equation*}
$$

Moreover, from Eq (3.31), we have

$$
\begin{equation*}
\mathrm{e}_{r}=-\cos \phi \mathrm{t}+\sin \phi \mathrm{b}_{q} . \tag{3.33}
\end{equation*}
$$

Also, if we use Eqs (3.32) and (3.33), we obtain $a_{3}=-\left(\phi^{\prime}-k_{2}\right)$. Doing some calculations yields

$$
a_{3}=-\left[\frac{\left(k_{3}^{\prime} k_{1}-k_{1}^{\prime} k_{3}\right)-k_{2}\left(k_{1}^{2}+k_{3}^{2}\right)}{k_{1}^{2}+k_{3}^{2}}\right]
$$

and from Eq (3.29), it follows that

$$
\begin{equation*}
\overline{\mathrm{d}}_{r}^{\prime}=-\left[\frac{\left(k_{3}^{\prime} k_{1}-k_{1}^{\prime} k_{3}\right)-k_{2}\left(k_{1}^{2}+k_{3}^{2}\right)}{k_{1}^{2}+k_{3}^{2}}\right] \mathbf{e}_{r} . \tag{3.34}
\end{equation*}
$$

Similarly, since $\mathrm{n}_{q}^{\prime} \in \operatorname{Sp}\left\{\overline{\mathrm{d}}_{r}, \mathrm{n}_{q}, \mathbf{e}_{r}\right\}$, we can write

$$
\begin{equation*}
\mathrm{n}_{q}^{\prime}=b_{1} \overline{\mathrm{~d}}_{r}+b_{2} \mathrm{n}_{q}+b_{3} \mathrm{e}_{r} . \tag{3.35}
\end{equation*}
$$

If we take the inner product of both sides of Eq (3.35) with $\overline{\mathrm{d}}_{r}$, we get $b_{1}=\left\langle\mathrm{n}_{q}^{\prime}, \overline{\mathbf{d}}_{r}\right\rangle$. Using Eqs (2.1), (3.30), and (3.31) yields $b_{1}=0$. Also, since $\left\|\mathrm{n}_{q}\right\|=1$, we have $b_{2}=0$. Then, we get

$$
\begin{equation*}
\mathrm{n}_{q}^{\prime}=b_{3} \mathrm{e}_{r} . \tag{3.36}
\end{equation*}
$$

Taking the inner product of both sides of Eq (3.36) with e_{r} gives $b_{3}=\left\langle\mathrm{n}_{q}^{\prime}, \mathrm{e}_{r}\right\rangle$. If we use Eqs (2.1), (3.30), and (3.33), we obtain $b_{3}=\sqrt{k_{1}^{2}+k_{3}^{2}}$. So, we have

$$
\begin{equation*}
\mathrm{n}_{q}^{\prime}=\sqrt{k_{1}^{2}+k_{3}^{2}} \mathbf{e}_{r} . \tag{3.37}
\end{equation*}
$$

Moreover, since $\mathrm{e}_{r}^{\prime} \in \operatorname{Sp}\left\{\overline{\mathrm{d}}_{r}, \mathrm{n}_{q}, \mathrm{e}_{r}\right\}$, it can be written as

$$
\begin{equation*}
\mathbf{e}_{r}^{\prime}=c_{1} \overline{\mathbf{d}}_{r}+c_{2} \mathbf{n}_{q}+c_{3} \mathbf{e}_{r} . \tag{3.38}
\end{equation*}
$$

If we take the inner product of both sides of Eq (3.38) with $\overline{\mathbf{d}}_{r}$, we have $c_{1}=\left\langle\mathrm{e}_{r}^{\prime}, \overline{\mathrm{d}}_{r}\right\rangle$. From Eqs (2.1) and (3.33), we have

$$
\begin{equation*}
\mathrm{e}_{r}^{\prime}=\left(\phi^{\prime}-k_{2}\right) \sin \phi \mathrm{t}-\left(k_{1} \cos \phi+k_{3} \sin \phi\right) \mathrm{n}_{q}+\left(\phi^{\prime}-k_{2}\right) \cos \phi \mathrm{b}_{q} . \tag{3.39}
\end{equation*}
$$

If we use Eqs (3.31) and (3.39), we obtain

$$
c_{1}=\frac{\left(k_{3}^{\prime} k_{1}-k_{1}^{\prime} k_{3}\right)-k_{2}\left(k_{1}^{2}+k_{3}^{2}\right)}{k_{1}^{2}+k_{3}^{2}} .
$$

From Eqs (3.30), (3.38), and (3.39), we find $c_{2}=-\sqrt{k_{1}^{2}+k_{3}^{2}}$. Also, we get $c_{3}=0$, since $\left\|\mathbf{e}_{r}\right\|=1$. So, Eq (3.38) yields

$$
\begin{equation*}
\mathrm{e}_{r}^{\prime}=\left[\frac{\left(k_{3}^{\prime} k_{1}-k_{1}^{\prime} k_{3}\right)-k_{2}\left(k_{1}^{2}+k_{3}^{2}\right)}{k_{1}^{2}+k_{3}^{2}}\right] \overline{\mathrm{d}}_{r}-\sqrt{k_{1}^{2}+k_{3}^{2}} \mathrm{n}_{q} . \tag{3.40}
\end{equation*}
$$

Thus, if we denote

$$
\rho_{r}=\frac{\left(k_{3}^{\prime} k_{1}-k_{1}^{\prime} k_{3}\right)-k_{2}\left(k_{1}^{2}+k_{3}^{2}\right)}{k_{1}^{2}+k_{3}^{2}}
$$

and

$$
\eta_{r}=\sqrt{k_{1}^{2}+k_{3}^{2}},
$$

we obtain the desired equations from Eqs (3.34), (3.37), and (3.40).
Definition 3.13. Let $\left\{\overline{\mathrm{d}}_{r}, \mathrm{n}_{q}, \mathrm{e}_{r}\right\}$ be the rectifying q -frame along the space curve α. The curve α is called an n_{q}-slant helix relative to the rectifying q -frame if the vector field n_{q} makes a constant angle with a fixed direction, i.e., $\left\langle\mathrm{n}_{q}, \mathrm{u}\right\rangle=\cos \psi$, where u is a constant unit vector and ψ is a constant angle.

Theorem 3.14. Let $\left\{\overline{\mathrm{d}}_{r}, \mathrm{n}_{q}, \mathrm{e}_{r}\right\}$ be the rectifying q-frame along the space curve α. The curve α is an n_{q}-slant helix relative to the rectifying q-frame if, and only if, the expression $\frac{\eta_{r}}{\rho_{r}}$ is constant (for $\eta_{r} \neq 0$ and $\rho_{r} \neq 0$).

Proof. The proof of the theorem can be done in a similar way to the proof of Theorem 3.4.
Corollary 3.15. A space curve α with $\left(k_{1}(s), k_{3}(s)\right) \neq(0,0)$ is an n_{q}-slant helix if, and only if,

$$
\rho_{3}(s)=\frac{\left(k_{3}^{\prime} k_{1}-k_{1}^{\prime} k_{3}\right)-k_{2}\left(k_{1}^{2}+k_{3}^{2}\right)}{\left(k_{1}^{2}+k_{3}^{2}\right)^{3 / 2}}
$$

is a constant function.

4. Some integral curves with Darboux q-vector fields

In this section, let us define some new integral curves associated with a space curve using the osculating, the normal, and the rectifying q -frame vector fields.

Definition 4.1. Let α be a space curve in $\mathbb{E}^{3},\left\{\mathrm{t}, \mathrm{n}_{q}, \mathrm{~b}_{q}, \mathrm{k}\right\}$ be the q -frame along α, and $\overline{\mathrm{d}}_{o}$ be the unit osculating q -frame vector field of α. The integral curve of the vector field $\overline{\mathrm{d}}_{o}$ is called the $\overline{\mathrm{d}}_{o}$-direction curve of α. Namely, if $\gamma(s)$ is the $\overline{\mathrm{d}}_{o}$-direction curve of α, then $\gamma(s)=\int \overline{\mathrm{d}}_{o}(s)$ or $\overline{\mathrm{d}}_{o}(s)=\gamma^{\prime}(s)$.

Now, let us find the Frenet apparatus $\left\{\mathrm{t}_{\gamma}, \mathrm{n}_{\gamma}, \mathrm{b}_{\gamma}, \kappa_{\gamma}, \tau_{\gamma}\right\}$ of γ. Since γ is the $\overline{\mathrm{d}}_{o}$-direction curve of α, it can be written $\gamma^{\prime}=\overline{\mathrm{d}}_{o}$. So, the tangent vector t_{γ} of γ is

$$
\mathrm{t}_{\gamma}=\overline{\mathrm{d}}_{o}=\frac{1}{\sqrt{k_{2}^{2}+k_{3}^{2}}}\left(k_{3} \mathrm{t}-k_{2} \mathrm{n}_{q}\right)
$$

If we differentiate this equation with respect to s and use Eq (2.1), we obtain

$$
\begin{equation*}
\overline{\mathrm{d}}_{o}^{\prime}=\frac{\left(k_{3}^{\prime} k_{2}-k_{2}^{\prime} k_{3}\right)+k_{1}\left(k_{2}^{2}+k_{3}^{2}\right)}{\left(k_{2}^{2}+k_{3}^{2}\right)^{3 / 2}}\left(k_{2} \mathrm{t}+k_{3} \mathrm{n}_{q}\right) . \tag{4.1}
\end{equation*}
$$

Since $\rho_{o}=\frac{\left(k_{3}^{\prime} k_{2}-k_{2}^{\prime} k_{3}\right)+k_{1}\left(k_{2}^{2}+k_{3}^{2}\right)}{k_{2}^{2}+k_{3}^{2}}, \operatorname{Eq}$ (4.1) can be rewritten as

$$
\overline{\mathrm{d}}_{o}^{\prime}=-\rho_{o} \frac{\mathbf{b}_{q}^{\prime}}{\left\|\mathbf{b}_{q}^{\prime}\right\|}
$$

So, we have $\left\|\overline{\mathrm{d}}_{o}^{\prime}\right\|=\varepsilon \rho_{o}$, where $\varepsilon= \pm 1$. Since $\mathrm{n}_{\gamma}=\frac{\overrightarrow{\mathrm{d}}_{o}^{\prime}}{\| \overrightarrow{\sigma_{o}^{\prime} \|}}$, we get

$$
\mathrm{n}_{\gamma}=-\varepsilon \frac{\mathrm{b}_{q}^{\prime}}{\left\|\mathrm{b}_{q}^{\prime}\right\|}
$$

Additionally, since $\mathrm{b}_{\gamma}=\mathrm{t}_{\gamma} \times \mathrm{n}_{\gamma}$, the binormal vector is obtained as $\mathrm{b}_{\gamma}=\varepsilon \mathrm{b}_{q}$. Moreover, the curvature and the torsion of γ can be found as

$$
\kappa_{\gamma}=\left\|\mathrm{t}_{\gamma}^{\prime}\right\|=\varepsilon \rho_{o}, \quad \tau_{\gamma}=-\left\langle\mathrm{b}_{\gamma}^{\prime}, \mathrm{n}_{\gamma}\right\rangle=\eta_{o} .
$$

Then, the following corollary can be given.
Corollary 4.2. Let γ be the $\overline{\mathrm{d}}_{o}$-direction curve of a space curve α. Then, the Frenet apparatus $\left\{\mathrm{t}_{\gamma}, \mathrm{n}_{\gamma}, \mathrm{b}_{\gamma}, \kappa_{\gamma}, \tau_{\gamma}\right\}$ of γ can be obtained as

$$
\mathrm{t}_{\gamma}=\overline{\mathrm{d}}_{o}, \quad \mathrm{n}_{\gamma}=-\varepsilon \frac{\mathrm{b}_{q}^{\prime}}{\left\|\mathrm{b}_{q}^{\prime}\right\|}, \quad \mathrm{b}_{\gamma}=\varepsilon \mathrm{b}_{q}, \quad \kappa_{\gamma}=\varepsilon \rho_{o}, \quad \tau_{\gamma}=\eta_{o},
$$

where $\varepsilon= \pm 1$.
Corollary 4.3. γ is a general helix if, and only if, α is a b_{q}-slant helix.
Definition 4.4. Let α be a space curve in $\mathbb{E}^{3},\left\{\mathrm{t}, \mathrm{n}_{q}, \mathrm{~b}_{q}, \mathrm{k}\right\}$ be the q -frame along α, and $\overline{\mathrm{d}}_{n}$ be the unit normal q-frame vector field of α. The integral curve of the vector field $\overline{\mathrm{d}}_{n}$ is called the $\overline{\mathrm{d}}_{n}$-direction curve of α. Namely, if $\zeta(s)$ is the $\overline{\mathrm{d}}_{n}$-direction curve of α, then $\zeta(s)=\int \overline{\mathrm{d}}_{n}(s)$ or $\overline{\mathrm{d}}_{n}(s)=\zeta^{\prime}(s)$.

Similarly, let us obtain the Frenet apparatus $\left\{\mathrm{t}_{\zeta}, \mathrm{n}_{\zeta}, \mathrm{b}_{\zeta}, \kappa_{\zeta}, \tau_{\zeta}\right\}$ of the curve ζ. Taking into account the definition of the $\overline{\mathrm{d}}_{n}$-direction curve gives

$$
\mathrm{t}_{\zeta}=\overline{\mathrm{d}}_{n}=\frac{1}{\sqrt{k_{1}^{2}+k_{2}^{2}}}\left(-k_{2} \mathrm{n}_{q}+k_{1} \mathrm{~b}_{q}\right)
$$

Differentiating this equation with respect to s and applying Eq (2.1) yields

$$
\begin{equation*}
\overline{\mathrm{d}}_{n}^{\prime}=\frac{\left(k_{1}^{\prime} k_{2}-k_{2}^{\prime} k_{1}\right)-k_{3}\left(k_{1}^{2}+k_{2}^{2}\right)}{\left(k_{1}^{2}+k_{2}^{2}\right)^{3 / 2}}\left(k_{1} \mathrm{n}_{q}+k_{2} \mathbf{b}_{q}\right) . \tag{4.2}
\end{equation*}
$$

Since $\rho_{n}=\frac{\left(k_{2}^{\prime} k_{1}-k_{1}^{\prime} k_{2}\right)+k_{3}\left(k_{1}^{2}+k_{2}^{2}\right)}{k_{1}^{2}+k_{2}^{2}}, \mathrm{Eq}$ (4.2) can be rewritten as

$$
\overline{\mathrm{d}}_{n}^{\prime}=-\rho_{n} \frac{\mathrm{t}^{\prime}}{\left\|\mathrm{t}^{\prime}\right\|}
$$

Then, we get $\left\|\overline{\mathrm{d}}_{n}^{\prime}\right\|=\varepsilon \rho_{n}$, where $\varepsilon= \pm 1$. Thus, since $\mathrm{n}_{\zeta}=\frac{\overline{\mathrm{d}}_{n}^{\prime}}{\left\|\overline{\mathrm{a}}_{n}^{\prime}\right\|}$, we obtain

$$
\mathrm{n}_{\zeta}=-\varepsilon \frac{\mathrm{t}^{\prime}}{\left\|\mathrm{t}^{\prime}\right\|}
$$

Also, the binormal vector b_{ζ} is given by $\mathrm{b}_{\zeta}=\varepsilon \mathrm{t}$. Besides, the curvatures of the $\overline{\mathrm{d}}_{n}$-direction curve ζ can be obtained as

$$
\kappa_{\zeta}=\left\|\mathrm{t}_{\zeta}^{\prime}\right\|=\varepsilon \rho_{n}, \quad \tau_{\zeta}=-\left\langle\mathrm{b}_{\zeta}^{\prime}, \mathrm{n}_{\zeta}\right\rangle=\eta_{n} .
$$

Then, we can give the following corollary.
Corollary 4.5. Let ζ be the $\overline{\mathrm{d}}_{n}$-direction curve of a space curve α. Then, the Frenet apparatus $\left\{\mathrm{t}_{\zeta}, \mathrm{n}_{\zeta}, \mathrm{b}_{\zeta}, \kappa_{\zeta}, \tau_{\zeta}\right\}$ of ζ can be found as

$$
\mathrm{t}_{\zeta}=\overline{\mathrm{d}}_{n}, \quad \mathrm{n}_{\zeta}=-\varepsilon \frac{\mathrm{t}^{\prime}}{\left\|\mathrm{t}^{\prime}\right\|}, \quad \mathrm{b}_{\zeta}=\varepsilon \mathrm{t}, \quad \kappa_{\zeta}=\varepsilon \rho_{n}, \quad \tau_{\zeta}=\eta_{n}
$$

where $\varepsilon= \pm 1$.
Corollary 4.6. ζ is a general helix if, and only if, α is a general helix.
Definition 4.7. Let α be a space curve in $\mathbb{E}^{3},\left\{\mathrm{t}, \mathrm{n}_{q}, \mathrm{~b}_{q}, \mathrm{k}\right\}$ be the q -frame along α, and $\overline{\mathrm{d}}_{r}$ be the unit rectifying q-frame vector field of $\frac{\alpha}{}$. The integral curve of the vector field $\overline{\mathrm{d}}_{r}$ is called the $\overline{\mathrm{d}}_{r}$-direction curve of α. Namely, if $\varphi(s)$ is the $\overline{\mathrm{d}}_{r}$-direction curve of α, then $\varphi(s)=\int \overline{\mathrm{d}}_{r}(s)$ or $\overline{\mathrm{d}}_{r}(s)=\varphi^{\prime}(s)$.

In a similar way, let us calculate the Frenet apparatus $\left\{\mathrm{t}_{\varphi}, \mathrm{n}_{\varphi}, \mathrm{b}_{\varphi}, \kappa_{\varphi}, \tau_{\varphi}\right\}$ of φ. From the definition of the $\overline{\mathbf{d}}_{r}$-direction curve, we have

$$
\mathrm{t}_{\varphi}=\overline{\mathrm{d}}_{r}=\frac{1}{\sqrt{k_{1}^{2}+k_{3}^{2}}}\left(k_{3} \mathrm{t}+k_{1} \mathbf{b}_{q}\right) .
$$

If we differentiate this equation with respect to s, we find

$$
\begin{equation*}
\overline{\mathrm{d}}_{r}^{\prime}=\frac{\left(k_{3}^{\prime} k_{1}-k_{1}^{\prime} k_{3}\right)-k_{2}\left(k_{1}^{2}+k_{3}^{2}\right)}{\left(k_{1}^{2}+k_{3}^{2}\right)^{3 / 2}}\left(k_{1} \mathrm{t}-k_{3} \mathbf{b}_{q}\right) . \tag{4.3}
\end{equation*}
$$

Since $\rho_{r}=\frac{\left(k_{3}^{\prime} k_{1}-k_{1}^{\prime} k_{3}\right)-k_{2}\left(k_{1}^{2}+k_{3}^{2}\right)}{k_{1}^{2}+k_{3}^{2}}$, from Eq (4.3) we obtain

$$
\overline{\mathrm{d}}_{r}^{\prime}=-\rho_{r} \frac{\mathrm{n}_{q}^{\prime}}{\left\|\mathrm{n}_{q}^{\prime}\right\|}
$$

Then, we have $\left\|\overline{\mathrm{d}}_{r}^{\prime}\right\|=\varepsilon \rho_{r}$, where $\varepsilon= \pm 1$. Since $\mathrm{n}_{\varphi}=\frac{\overline{\mathrm{a}}_{r}^{\prime}}{\left\|\bar{d}_{r}\right\|}$, we get

$$
\mathrm{n}_{\varphi}=-\varepsilon \frac{\mathrm{n}_{q}^{\prime}}{\left\|\mathrm{n}_{q}^{\prime}\right\|}
$$

Also, the binormal vector b_{φ} of the curve φ is found as $\mathrm{b}_{\varphi}=\varepsilon \mathrm{n}_{q}$. In addition, the curvature and the torsion of the $\overline{\mathrm{d}}_{r}$-direction curve φ can be obtained as

$$
\kappa_{\varphi}=\left\|\mid \mathrm{t}_{\varphi}^{\prime}\right\|=\varepsilon \rho_{r}, \quad \tau_{\varphi}=-\left\langle\mathrm{b}_{\varphi}^{\prime}, \mathrm{n}_{\varphi}\right\rangle=\eta_{r} .
$$

Then, the following corollary can be given.
Corollary 4.8. Let φ be the $\overline{\mathrm{d}}_{r}$-direction curve of a space curve α. Then, the Frenet apparatus $\left\{\mathrm{t}_{\varphi}, \mathrm{n}_{\varphi}, \mathrm{b}_{\varphi}, \kappa_{\varphi}, \tau_{\varphi}\right\}$ of φ can be obtained as

$$
\mathrm{t}_{\varphi}=\overline{\mathrm{d}}_{r}, \quad \mathrm{n}_{\varphi}=-\varepsilon \frac{\mathrm{n}_{q}^{\prime}}{\left\|\mathrm{n}_{q}^{\prime}\right\|}, \quad \mathrm{b}_{\varphi}=\varepsilon \mathrm{n}_{q}, \quad \kappa_{\varphi}=\varepsilon \rho_{r}, \quad \tau_{\varphi}=\eta_{r},
$$

where $\varepsilon= \pm 1$.
Corollary 4.9. φ is a general helix if, and only if, α is an n_{q}-slant helix.

5. Conclusions

In this study, we obtained the derivative equations of the osculating q -frame, the normal q -frame, and the rectifying q -frame which have been defined along a space curve by using the Darboux vector field of the q-frame in Euclidean 3-space. Then, we defined some new slant helices and new integral curves and gave their characterizations.

Use of AI tools declaration

The author declares she has not used Artificial Intelligence (AI) tools in the creation of this article.

Conflict of interest

The author declares no conflicts of interest.

References

1. A. Alkan, H. Kocayiğit, T. A. Aydın, New moving frames for the curves lying on a surface, in press, Sigma J. Eng. Nat. Sci., 42 (2024). http://dx.doi.org/10.14744/sigma.2023.00049
2. R. L. Bishop, There is more than one way to frame a curve, Am. Math. Mon., 82 (1975), 246-251. http://dx.doi.org/10.2307/2319846
3. J. H. Choi, Y. H. Kim, Associated curves of a Frenet curve and their applications, Appl. Math. Comput., 218 (2012), 9116-9124. http://dx.doi.org/10.1016/j.amc.2012.02.064
4. M. Dede, C. Ekici, H. Tozak, Directional tubular surfaces, Int. J. Algebr., 9 (2015), 527-535. http://dx.doi.org/10.12988/IJA.2015.51274
5. M. Dede, A new representation of tubular surfaces, Houston J. Math., 45 (2019), 707-720.
6. M. Dede, Why Flc-frame is better than Frenet frame on polynomial space curves? Math. Sci. Appl. E-Notes, 10 (2022), 190-198.
7. N. Echabbi, A. O. Chahdi, Direction curves associated with Darboux vectors fields and their characterizations, Int. J. Math. Math. Sci., 2021 (2021), 3814032. http://dx.doi.org/10.1155/2021/3814032
8. İ. A. Güven, Some integral curves with a new frame, Open Math., 18 (2020), 1332-1341. http://dx.doi.org/10.1515/math-2020-0078
9. S. Hananoi, I. Noriaki, S. Izumiya, Spherical Darboux images of curves on surfaces, Beitr. Algebr. Geom., 56 (2015), 575-585. http://dx.doi.org/10.1007/s13366-015-0240-z
10. B. Jüttler, C. Mäurer, Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling, Comput.-Aided Design, 31 (1999), 73-83. http://dx.doi.org/10.1016/S0010-4485(98)00081-5
11. T. Körpınar, M. T. Sarıaydın, E. Turhan, Associated curves according to Bishop frame in Euclidean 3-space, Adv. Model. Optim., 15 (2013), 713-717.
12. N. Macit, M. Düldül, Some new associated curves of a Frenet curve in E^{3} and E^{4}, Turkish J. Math., 38 (2014), 1023-1037. http://dx.doi.org/10.3906/mat-1401-85
13. M. Önder, Helices associated to helical curves, relatively normal-slant helices and isophote curves, arXiv:2201.09684, 2022. Available from: https://arxiv.org/abs/2201.09684.
14. P. D. Scofield, Curves of constant precession, Am. Math. Mon., 102 (1995), 531-537. http://dx.doi.org/10.2307/2974768
15. B. Uzunoğlu, İ. Gök, Y. Yaylı, A new approach on curves of constant precession, Appl. Math. Comput., 275 (2016), 317-323. http://dx.doi.org/10.1016/j.amc.2015.11.083
16. S. Yılmaz, Characterizations of some associated and special curves to type-2 Bishop frame in E^{3}, Kırklareli Univ. J. Eng. Sci., 1 (2015), 66-77.
© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0)
