Citation: Zuhal Küçükarslan Yüzbașı, Dae Won Yoon. On geometry of isophote curves in Galilean space[J]. AIMS Mathematics, 2021, 6(1): 66-76. doi: 10.3934/math.2021005
[1] | A. Artykbaev, Total angle about the vertex of a cone in Galilean space, Math. Notes, 43 (1988), 379-382. doi: 10.1007/BF01158845 |
[2] | M. Dede, C. Ekici and W. Goemans, Surfaces of revolution with vanishing curvature in Galilean 3-space, J. Math. Phys. Anal. Geo., 14 (2018), 141-152. |
[3] | F. Doğan and Y. Yaylı, On isophote curves and their characterizations, Turkish J. Math., 39 (2015), 650-664. |
[4] | F. Do?an and Y. Yayl?, Isophote curves on spacelike surfaces in Lorentz-Minkowski space E13, arXiv preprint arXiv: 1203.4388, 2012. |
[5] | A. Kazan and H. B. Karadag, Weighted Minimal and Weighted Flat Surfaces of Revolution in Galilean 3-Space with Density, Int. J. Anal. Appl., 16 (2018), 414-426. |
[6] | K. J. Kim and I. K. Lee, Computing isophotes of surface of revolution and canal surface, ComputAided Des., 35 (2003), 215-223. |
[7] | J. J. Koenderink and A. J. van Doorn, Photometric invariants related to solid shape, J. Modern Opt., 27 (1980), 981-996. |
[8] | E. Molnar, The projective interpretation of the eight 3-dimensional Homogeneous geometries, Beitr. Algebra Geom., 38 (1997), 261-288. |
[9] | B. J. Pavkovic and I. Kamenarovic, The equiform differential geometry of curves in the Galilean space G3, Glas. Mat., 22 (1987), 449-457. |
[10] | O. Röschel, Die Geometrie des Galileischen raumes, Habilitationsschrift, Leoben, 1984. |
[11] | Z. M. Sipus, Ruled Weingarten surfaces in Galilean space, Period. Math. Hungar, 56 (2008), 213-225. doi: 10.1007/s10998-008-6213-6 |
[12] | T. Şahin, Intrinsic equations for a generalized relaxed elastic line on an oriented surface in the Galilean space, Acta Math. Sci., 33 (2013), 701-711. |