Research article

Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach space

  • Received: 19 July 2020 Accepted: 17 September 2020 Published: 28 September 2020
  • MSC : 34A12, 47G10, 28B05

  • In this paper, we establish some existence results of weak solutions and pseudo-solutions for the initial value problem of the arbitrary (fractional) orders differential equation $ \frac{dx}{dt}~ = ~ f(t, D^\gamma x(t)), ~\gamma \in (0, 1), ~~t~\in [0, T]=\mathbb{I}\\ x(0) = x_0. $ in nonreflexive Banach spaces $~E, ~$ where $~D^\gamma x(\cdot)~$ is a fractional %pseudo- derivative of the function $~x(\cdot):\mathbb{I} \rightarrow E~$ of order $~\gamma.~$ The function $~f(t, x):\mathbb{I}\times E \rightarrow E~$ will be assumed to be weakly sequentially continuous in $x~$ for each $~t\in \mathbb{I}~$ and Pettis integrable in $~t~$ on $~\mathbb{I}~$ for each $~x\in C[\mathbb{I}, E].~$ Also, a weak noncompactness type condition (expressed in terms of measure of noncompactness) will be imposed.

    Citation: H. H. G. Hashem, A. M. A. El-Sayed, Maha A. Alenizi. Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach space[J]. AIMS Mathematics, 2021, 6(1): 52-65. doi: 10.3934/math.2021004

    Related Papers:

  • In this paper, we establish some existence results of weak solutions and pseudo-solutions for the initial value problem of the arbitrary (fractional) orders differential equation $ \frac{dx}{dt}~ = ~ f(t, D^\gamma x(t)), ~\gamma \in (0, 1), ~~t~\in [0, T]=\mathbb{I}\\ x(0) = x_0. $ in nonreflexive Banach spaces $~E, ~$ where $~D^\gamma x(\cdot)~$ is a fractional %pseudo- derivative of the function $~x(\cdot):\mathbb{I} \rightarrow E~$ of order $~\gamma.~$ The function $~f(t, x):\mathbb{I}\times E \rightarrow E~$ will be assumed to be weakly sequentially continuous in $x~$ for each $~t\in \mathbb{I}~$ and Pettis integrable in $~t~$ on $~\mathbb{I}~$ for each $~x\in C[\mathbb{I}, E].~$ Also, a weak noncompactness type condition (expressed in terms of measure of noncompactness) will be imposed.


    加载中


    [1] A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Semin. Mat. Univ. Padova., 39 (1967), 349-369.
    [2] R. P. Agarwal, V. Lupulescu, D. O'Regan, G. U. Rahman, Nonlinear fractional differential equations in nonreflexive Banach spaces and fractional calculus, Adv. Differ. Equ., 2015 (2015), 1-18. doi: 10.1186/s13662-014-0331-4
    [3] R. P. Agarwal, V. Lupulescu, D. O'Regan, G. U. Rahman, Weak solutions for fractional differential equations in nonreflexive Banach spaces via Riemann-Pettis integrals, Math. Nachr., 289 (2016), 395-409. doi: 10.1002/mana.201400010
    [4] W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monogr. Math., 96 (2001), Birkh?user, Basel.
    [5] J. Banaś, M. Taoudi, Fixed points and solutions of operator equations for the weak topology in Banach algebras, Taiwanese J. Math, 18 (2014), 871-893. doi: 10.11650/tjm.18.2014.3860
    [6] M. Cichoń, Weak solutions of ordinary differential equations in Banach spaces, Discuss. Differ. Inc. Control Optimal., 15 (1995), 5-14.
    [7] M. Cichoń, I. Kubiaczyk, Kneser's theorem for strong, weak and pseudo-solutions of ordinary differential equations in Banach spaces, Ann. Pol. Math., 52 (1995), 13-21.
    [8] M. Cichoń, I. Kubiaczyk, A. Sikorska-Nowak, A. Yantir, Weak solutions for dynamic Cauchy problem in Banach spaces, Nonlinear Anal., 71 (2009), 2936-2943. doi: 10.1016/j.na.2009.01.175
    [9] E. Cramer, V. Lakshmiksntham, A. R. Mitchell, On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonlinear Anal. 2 (1978), 259-262.
    [10] K. Deimling, Ordinary Differential equations in Banach Spaces, Lecture Notes Math., 596 (1977), Springer, Berlin.
    [11] J. Diestel, J. J. Uhl, Jr, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., (1977).
    [12] F. S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math. R. S. Roum., 21 (1977), 259-262.
    [13] N. Dinculeanu, On Kolmogorov-Tamarkin and M. Riesz compactness criteria in function spaces over a locally compact group, J. Math. Anal. Appl., 89 (1982), 67-85.
    [14] G. A. Edgar, Measurability in Banach space, Indiana Univ. Math. J. 26 (1977), 663-677.
    [15] G. A. Edgar, Measurability in Banach space, II, Indiana Univ. Math. J. 28 (1979), 559-578.
    [16] A. M. A. El-Sayed, E. O. Bin-Taher, Nonlocal and integral conditions problems for a multi-term fractional-order differential equation, Miskolc Math. Notes, 15 (2014), 439-446.
    [17] R. F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86.
    [18] E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31 (1957).
    [19] H. Gou, B. Li, Existence of weak solutions for fractional integrodifferential equations with multipoint boundary conditions, Int. J. Differential Equations, 2018 (2018), Article ID 1203031.
    [20] W. J. Knight, Solutions of differential equations in Banach spaces, Duke Math. J. 41 (1974), 437- 442.
    [21] I. Kubiaczyk, S. Szufla, Kneser's theorem for weak solutions of ordinary differential equations in Banach spaces, Publ. Inst. Math. (Beograd), 32 (1982), 99-103.
    [22] I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous mapping, Discuss. Math. Differ. Incl., 15 (1995), 15-20.
    [23] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, North-Holland, 2006.
    [24] A. Kubica, P. Rybka, K. Ryszewska, Weak solutions of fractional differential equations in non cylindrical domains, Nonlinear Analysis: Real World Appl., 36 (2017), 154-182 doi: 10.1016/j.nonrwa.2017.01.005
    [25] A. R. Mitchell, Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear Equations Abstract Spaces, (1978), 387-404.
    [26] D. O'Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Model., 27 (1998), 1-14.
    [27] D. O'Regan, Weak solutions of ordinary differential equations in Banach spaces, Appl. Math. Lett. 12 (1999), 101-105.
    [28] I. Podlubny, Fractional Differential equations, San Diego-NewYork-London, 1999.
    [29] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.
    [30] B. Ross, K. S. Miller, An Introduction to Fractional Calculus and Fractional Differential Equations. John Wiley, New York, (1993).
    [31] S. Szulfa, On the existence of solutions of differential equations in Banach spaces, Bull. Acad. polan. Sci. Ser. Sci. Math., 30 (1982), 507-514.
    [32] H. A. H. Salem, A. M. A. El-Sayed, O. L. Moustafa, A note on the fractional calculus in Banach spaces, Studia Sci. Math. Hung., 42 (2005), 115-130.
    [33] H. A. H. Salem, A. M. A. El-Sayed, Weak solution for fractional order integral equations in reflexive Banach spaces, Math. Slovaca., 55 (2005), 169-181.
    [34] H. A. H. Salem, M. Cichoń, On solutions of fractional order boundary value problems with integral boundary conditions in Banach spaces, J. Function Spaces Appl., 2013 (2013), Article ID 428094.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2990) PDF downloads(166) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog