Citation: H. H. G. Hashem, A. M. A. El-Sayed, Maha A. Alenizi. Weak and pseudo-solutions of an arbitrary (fractional) orders differential equation in nonreflexive Banach space[J]. AIMS Mathematics, 2021, 6(1): 52-65. doi: 10.3934/math.2021004
[1] | A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Semin. Mat. Univ. Padova., 39 (1967), 349-369. |
[2] | R. P. Agarwal, V. Lupulescu, D. O'Regan, G. U. Rahman, Nonlinear fractional differential equations in nonreflexive Banach spaces and fractional calculus, Adv. Differ. Equ., 2015 (2015), 1-18. doi: 10.1186/s13662-014-0331-4 |
[3] | R. P. Agarwal, V. Lupulescu, D. O'Regan, G. U. Rahman, Weak solutions for fractional differential equations in nonreflexive Banach spaces via Riemann-Pettis integrals, Math. Nachr., 289 (2016), 395-409. doi: 10.1002/mana.201400010 |
[4] | W. Arendt, C. Batty, M. Hieber, F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monogr. Math., 96 (2001), Birkh?user, Basel. |
[5] | J. Banaś, M. Taoudi, Fixed points and solutions of operator equations for the weak topology in Banach algebras, Taiwanese J. Math, 18 (2014), 871-893. doi: 10.11650/tjm.18.2014.3860 |
[6] | M. Cichoń, Weak solutions of ordinary differential equations in Banach spaces, Discuss. Differ. Inc. Control Optimal., 15 (1995), 5-14. |
[7] | M. Cichoń, I. Kubiaczyk, Kneser's theorem for strong, weak and pseudo-solutions of ordinary differential equations in Banach spaces, Ann. Pol. Math., 52 (1995), 13-21. |
[8] | M. Cichoń, I. Kubiaczyk, A. Sikorska-Nowak, A. Yantir, Weak solutions for dynamic Cauchy problem in Banach spaces, Nonlinear Anal., 71 (2009), 2936-2943. doi: 10.1016/j.na.2009.01.175 |
[9] | E. Cramer, V. Lakshmiksntham, A. R. Mitchell, On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonlinear Anal. 2 (1978), 259-262. |
[10] | K. Deimling, Ordinary Differential equations in Banach Spaces, Lecture Notes Math., 596 (1977), Springer, Berlin. |
[11] | J. Diestel, J. J. Uhl, Jr, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., (1977). |
[12] | F. S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math. R. S. Roum., 21 (1977), 259-262. |
[13] | N. Dinculeanu, On Kolmogorov-Tamarkin and M. Riesz compactness criteria in function spaces over a locally compact group, J. Math. Anal. Appl., 89 (1982), 67-85. |
[14] | G. A. Edgar, Measurability in Banach space, Indiana Univ. Math. J. 26 (1977), 663-677. |
[15] | G. A. Edgar, Measurability in Banach space, II, Indiana Univ. Math. J. 28 (1979), 559-578. |
[16] | A. M. A. El-Sayed, E. O. Bin-Taher, Nonlocal and integral conditions problems for a multi-term fractional-order differential equation, Miskolc Math. Notes, 15 (2014), 439-446. |
[17] | R. F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86. |
[18] | E. Hille, R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. 31 (1957). |
[19] | H. Gou, B. Li, Existence of weak solutions for fractional integrodifferential equations with multipoint boundary conditions, Int. J. Differential Equations, 2018 (2018), Article ID 1203031. |
[20] | W. J. Knight, Solutions of differential equations in Banach spaces, Duke Math. J. 41 (1974), 437- 442. |
[21] | I. Kubiaczyk, S. Szufla, Kneser's theorem for weak solutions of ordinary differential equations in Banach spaces, Publ. Inst. Math. (Beograd), 32 (1982), 99-103. |
[22] | I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous mapping, Discuss. Math. Differ. Incl., 15 (1995), 15-20. |
[23] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, North-Holland, 2006. |
[24] | A. Kubica, P. Rybka, K. Ryszewska, Weak solutions of fractional differential equations in non cylindrical domains, Nonlinear Analysis: Real World Appl., 36 (2017), 154-182 doi: 10.1016/j.nonrwa.2017.01.005 |
[25] | A. R. Mitchell, Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear Equations Abstract Spaces, (1978), 387-404. |
[26] | D. O'Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Model., 27 (1998), 1-14. |
[27] | D. O'Regan, Weak solutions of ordinary differential equations in Banach spaces, Appl. Math. Lett. 12 (1999), 101-105. |
[28] | I. Podlubny, Fractional Differential equations, San Diego-NewYork-London, 1999. |
[29] | B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. |
[30] | B. Ross, K. S. Miller, An Introduction to Fractional Calculus and Fractional Differential Equations. John Wiley, New York, (1993). |
[31] | S. Szulfa, On the existence of solutions of differential equations in Banach spaces, Bull. Acad. polan. Sci. Ser. Sci. Math., 30 (1982), 507-514. |
[32] | H. A. H. Salem, A. M. A. El-Sayed, O. L. Moustafa, A note on the fractional calculus in Banach spaces, Studia Sci. Math. Hung., 42 (2005), 115-130. |
[33] | H. A. H. Salem, A. M. A. El-Sayed, Weak solution for fractional order integral equations in reflexive Banach spaces, Math. Slovaca., 55 (2005), 169-181. |
[34] | H. A. H. Salem, M. Cichoń, On solutions of fractional order boundary value problems with integral boundary conditions in Banach spaces, J. Function Spaces Appl., 2013 (2013), Article ID 428094. |