This research presents a novel method for Mannheim curves in three-dimensional Galilean space $ G_3$. Using this method, the necessary and sufficient conditions, along with the established results, must be satisfied for a curve in $ G_3$ to qualify as a Mannheim curve. Furthermore, relevant examples and graphs are provided to demonstrate how Mannheim curves and their partners can correspond to Salkowski and anti-Salkowski curves. Finally, in $ G_3$, the Mannheim partner curves are described.
Citation: Mervat Elzawy, Safaa Mosa. A novel method for Mannheim curves in the Galilean $3-$space $G_3$[J]. AIMS Mathematics, 2024, 9(11): 31239-31251. doi: 10.3934/math.20241506
This research presents a novel method for Mannheim curves in three-dimensional Galilean space $ G_3$. Using this method, the necessary and sufficient conditions, along with the established results, must be satisfied for a curve in $ G_3$ to qualify as a Mannheim curve. Furthermore, relevant examples and graphs are provided to demonstrate how Mannheim curves and their partners can correspond to Salkowski and anti-Salkowski curves. Finally, in $ G_3$, the Mannheim partner curves are described.
[1] | A. T. Ali, Position vectors of curves in the Galilean space $G_3$, Matematički Vesnik, 64 (2012), 200–210. |
[2] | M. Akyigit, A. Z. Azak, M. Tosun, Admissible Mannheim curves in Pseudo-Galilean space $G_3^1$, Afr. Diaspora J. Math., 10 (2010), 58–65. |
[3] | J. Bertrand, Mémoire sur la théorie des courbes à double courbure, Journal de mathématiques pures et appliquées, 15 (1850), 332–350. |
[4] | A. Elsharkawy, A. M. Elshenhab, Mannheim curves and their prtner curves in Minkowski 3-Space $E_1^3$, Demonstr. Math., 55 (2022), 798–811. http://doi.org/10.1515/dema-2022-0163 doi: 10.1515/dema-2022-0163 |
[5] | M. Elzawy, S. Mosa, Characterizations of Frenet curves in Galilean 3-space, J. Math. Comput. Sci., 12 (2022), 179. http://doi.org/10.28919/jmcs/7458 doi: 10.28919/jmcs/7458 |
[6] | S. Ersoy, M. Akyigit, M. Tosun. A Note on admissible Mannheim curves in Galilean space $G_3$, Int. J. Math. Combin., 1 (2011), 88–93. |
[7] | M. A. Gungor, M. Tosun, A study on dual Mannheim partner curves, International Mathematical Forum, 5 (2010), 2319–2330. |
[8] | S. Honda, M. Takahashi, H. Yu, Bertrand and Mannheim curves of framed curves in the 4-dimensional Euclidean space, J. Geom., 114 (2023), 12. http://doi.org/10.1007/s00022-023-00673-7 doi: 10.1007/s00022-023-00673-7 |
[9] | M. K. Karacan, Weakened Mannheim curves, Int. J. Phys. Sci., 6 (2011), 4700–4705. |
[10] | M. K. Karacan, Y. Tuncer, Characterization of slant helix in Galilean and Pseudo-Galilean spaces, SAÜ Fen Edebiyat Dergisi, 12 (2010), 43–53. |
[11] | A. O. Ogrenmis, E. Ergut, M. Bektas, On the helices in the Galilean space $G_3$, Iran. J. Sci. Technol., 31 (2007), 177–181. http://doi.org/10.22099/ijsts.2007.2327 doi: 10.22099/ijsts.2007.2327 |
[12] | K. Orbay, E. Kasap, On Mannheim partner curves in $E^3$, J. Phys. Sci., 4 (2009), 261–264. |
[13] | S. Özkaldi, K. Ilarslan, Y. Yayli, On Mannheim partner curve in dual space, An. St. Univ. Ovidius Constant, 17 (2009), 131–142. |
[14] | H. Öztekin, M. Ergüt, Null Mannheim curves in the Minkowski 3-space $E_1^3$, Turk. J. Math., 35 (2011), 107–114. http://doi.org/10.3906/mat-0907-105 doi: 10.3906/mat-0907-105 |
[15] | S. Tarla, H. Oztekin, On generalized Mannheim curves in the equiform geometry of the Galilean 4-Space, Turk. J. Sci. Technol., 16 (2021), 197–204. |
[16] | A. Ucum, C. Camci, K. İlarslan, A new approach to Mannheim curve in Euclidean 3-Space, Tamkang J. Math., 54 (2023), 93–106. https://doi.org/10.5556/j.tkjm.54.2023.4085 doi: 10.5556/j.tkjm.54.2023.4085 |
[17] | H. Liu, F. Wang, Mannheim partner curves in 3-Space, J. Geom., 88 (2008), 120–126. http://doi.org/10.1007/s00022-007-1949-0 doi: 10.1007/s00022-007-1949-0 |