In modern air defense systems, safeguarding sensitive information is crucial to prevent unauthorized access and cyber-attacks. Here, we present an innovative image encryption approach, leveraging chaotic logistic maps and hyperchaotic Folded Towel Map sequence generation. The proposed image encryption is a multi-layered procedure intended to secure image transmission. It initiates with permutation, where a chaotic logistic map generates pseudo-random sequences to scramble pixel positions. Next, key mixing creates complexity, randomness, and nonlinearity using an invertible key matrix. Finally, the diffusion phase employs hyperchaotic maps to produce a new sequence XORed with the pixels through a bitwise operation, further encrypting the image. This three-stage process efficiently protects images from unauthorized access, ensuring secure transmission. The proposed method enhances security by leveraging non-linearity, sensitivity, and robust mixing, properties making it highly resistant to cryptographic attacks. The experimental results showed robust encryption performance as established by metrics such as an entropy value of 7.9991, a UACI of 33.21%, and an NPCR of 99.61%. The proposed encryption approach outperformed existing methods in securing image transmission and storage, offering a reliable solution for protecting air defense communication strategic data.
Citation: Shamsa Kanwal, Saba Inam, Fahima Hajjej, Ala Saleh Alluhaidan. Securing air defense visual information with hyperchaotic Folded Towel Map-Based encryption[J]. AIMS Mathematics, 2024, 9(11): 31217-31238. doi: 10.3934/math.20241505
In modern air defense systems, safeguarding sensitive information is crucial to prevent unauthorized access and cyber-attacks. Here, we present an innovative image encryption approach, leveraging chaotic logistic maps and hyperchaotic Folded Towel Map sequence generation. The proposed image encryption is a multi-layered procedure intended to secure image transmission. It initiates with permutation, where a chaotic logistic map generates pseudo-random sequences to scramble pixel positions. Next, key mixing creates complexity, randomness, and nonlinearity using an invertible key matrix. Finally, the diffusion phase employs hyperchaotic maps to produce a new sequence XORed with the pixels through a bitwise operation, further encrypting the image. This three-stage process efficiently protects images from unauthorized access, ensuring secure transmission. The proposed method enhances security by leveraging non-linearity, sensitivity, and robust mixing, properties making it highly resistant to cryptographic attacks. The experimental results showed robust encryption performance as established by metrics such as an entropy value of 7.9991, a UACI of 33.21%, and an NPCR of 99.61%. The proposed encryption approach outperformed existing methods in securing image transmission and storage, offering a reliable solution for protecting air defense communication strategic data.
[1] | O. F. Mohammad, M. S. M. Rahim, S. R. M. Zeebaree, F. Y. Ahmed, A survey and analysis of the image encryption methods, Int. J. Appl. Eng. Res., 12 (2017), 13265–13280. https://doi.org/10.1007/s13319-017-0148-5 doi: 10.1007/s13319-017-0148-5 |
[2] | M. Kumar, R. A. M. Lahcen, R. N. Mohapatra, C. Alwala, S. V. K. Kurella, Review of image encryption techniques, J. Comput. Inf. Sci. Eng., 14 (2020), 31–37. https://doi.org/10.9790/0661-2201013137 doi: 10.9790/0661-2201013137 |
[3] | M. Kaur, S. Singh, M. Kaur, Computational image encryption techniques: A comprehensive review, Math. Probl. Eng., 2021 (2021), 5012496. https://doi.org/10.1155/2021/5012496 doi: 10.1155/2021/5012496 |
[4] | A. Shafique, A. Mehmood, M. Elhadef, K. H. Khan, A lightweight noise-tolerant encryption scheme for secure communication: an unmanned aerial vehicle application, PLoS One, 17 (2022), e0273661. https://doi.org/10.1371/journal.pone.0273661 |
[5] | F. Masood, W. Boulila, J. Ahmad, A. Syam Sankar, S. Rubaiee, W. J. Buchanan, A novel privacy approach of digital aerial images based on Mersenne Twister method with DNA genetic encoding and chaos, Remote Sens., 12 (2020), 1893. https://doi.org/10.3390/rs12111893 doi: 10.3390/rs12111893 |
[6] | M. A. S. Al-Khasawneh, M. Faheem, E. A. Aldhahri, A. Alzahrani, A. A. Alarood, A Map Reduce based approach for secure batch satellite image encryption, IEEE Access, 11 (2023), 62865–62878. https://doi.org/10.1109/access.2023.3279719 doi: 10.1109/access.2023.3279719 |
[7] | D. Li, S. Zhou, C. He, The application of image encryption method based on chaotic mapping in the field of radar transmitter remote monitor system, Adv. Inf. Manag. Commun. Electron. Autom. Control Conf., 2019,577–580. https://doi.org/10.1109/imcec46724.2019.8983923 doi: 10.1109/imcec46724.2019.8983923 |
[8] | H. Liu, L. Teng, Y. Zhang, R. Si, P. Liu, Mutil-medical image encryption by a new spatiotemporal chaos model and DNA new computing for information security, Expert Syst. Appl., 235 (2024), 121090. https://doi.org/10.1016/j.eswa.2023.121090 doi: 10.1016/j.eswa.2023.121090 |
[9] | M. Usama, M. K. Khan, K. Alghathbar, C. Lee, Chaos-based secure satellite imagery cryptosystem, Comput. Math. Appl., 60 (2010), 326–337. https://doi.org/10.1016/j.camwa.2009.12.033 doi: 10.1016/j.camwa.2009.12.033 |
[10] | S. Kanwal, S. Inam, F. Hajjej, O. Cheikhrouhou, Z. Nawaz, A. Waqar, M. Khan, A new image encryption technique based on sine map, chaotic tent map, and circulant matrices, Sec. Commun. Networks, 2022 (2022), 4152683. https://doi.org/10.1155/2022/4152683 doi: 10.1155/2022/4152683 |
[11] | S. Kanwal, S. Inam, O. Cheikhrouhou, K. Mahnoor, A. Zaguia, H. Hamam, Analytic study of a novel color image encryption method based on the chaos system and color codes, Complexity, 2021 (2021), 5499538. https://doi.org/10.1155/2021/5499538 doi: 10.1155/2021/5499538 |
[12] | Y. Nagasree, C. Rupa, P. Akshitha, G. Srivastava, T. R. Gadekallu, K. Lakshmanna, Preserving privacy of classified authentic satellite lane imagery using proxy re-encryption and UAV technologies, Drones, 7 (2023), 53. https://doi.org/10.3390/drones7010053 doi: 10.3390/drones7010053 |
[13] | Y. Bentoutou, E. H. Bensikaddour, N. Taleb, N. Bounoua, An improved image encryption algorithm for satellite applications, Adv. Space Res., 66 (2020), 176–192. https://doi.org/10.1016/j.asr.2019.09.027 doi: 10.1016/j.asr.2019.09.027 |
[14] | Q. Lai, L. Yang, G. Hu, Z. H. Guan, H. H. C. Iu, Constructing multiscroll memristive neural network with local activity memristor and application in image encryption, IEEE Trans. Cybernetics, 54 (2024), 4039–4048. https://doi.org/10.1109/tcyb.2024.3377011 doi: 10.1109/tcyb.2024.3377011 |
[15] | Q. Lai, L. Yang, G. Chen, Design and performance analysis of discrete memristive hyperchaotic systems with stuffed cube attractors and ultraboosting behaviors, IEEE Trans. Ind. Electron., 71 (2024), 7819–7828. https://doi.org/10.1109/tie.2023.3299016 |
[16] | Q. Lai, G. Hu, A nonuniform pixel split encryption scheme integrated with compressive sensing and its application in IoMT, IEEE Trans. Ind. Informat., 20 (2024), 11262–11272. https://doi.org/10.1109/tii.2024.3403266 doi: 10.1109/tii.2024.3403266 |
[17] | Q. Lai, L. Yang, G. Chen, Two-dimensional discrete memristive oscillatory hyperchaotic maps with diverse dynamics, IEEE Trans. Ind. Electron. https://doi.org/10.1109/tie.2024.3417974 |
[18] | Belmouhoub, M. Djemai, J. P. Barbot, Cryptography by discrete-time hyperchaotic systems, In Proceedings of the IEEE Conference on Decision and Control, 2 (2004), 1902–1907. https://doi.org/10.1109/cdc.2003.1272893 doi: 10.1109/cdc.2003.1272893 |
[19] | H. Liu, A. Kadir, J. Liu, Colorpathological image encryption algorithm using arithmetic over Galois field and coupled hyperchaotic system, Opt. Lasers Eng., 122 (2019), 123–133. https://doi.org/10.1016/j.optlaseng.2019.05.027 doi: 10.1016/j.optlaseng.2019.05.027 |
[20] | S. Kanwal, S. Inam, M. Othman, A. Waqar, M. Ibrahim, F. Nawaz, et al., An effective color image encryption based on Henon map, tent chaotic map, and orthogonal matrices, Sensors, 22 (2022). https://doi.org/10.3390/s22124359 |
[21] | Q. Liang, C. Zhu, A new one-dimensional chaotic map for image encryption scheme based on random DNA coding, Opt. Laser Technol., 160 (2022), 109033. https://doi.org/10.1016/j.optlastec.2022.109033 doi: 10.1016/j.optlastec.2022.109033 |
[22] | S. Benaissi, N. Chikouche, R. Hamza, A novel image encryption algorithm based on hybrid chaotic maps using a key image, Optik, 272 (2022), 170316. https://doi.org/10.1016/j.ijleo.2022.170316 doi: 10.1016/j.ijleo.2022.170316 |
[23] | W. Alexan, M. ElBeltagy, A. Aboshousha, RGB image encryption through cellular automata, S-Box and the Lorenz system, Symmetry, 14 (2022), 443. https://doi.org/10.3390/sym14030443 |
[24] | M. SaberiKamarposhti, A. Ghorbani, M. Yadollahi, A comprehensive survey on image encryption: Taxonomy, challenges, and future directions, Chaos Solitons Fract., 178 (2024), 114361. https://doi.org/10.1016/j.chaos.2023.114361 |
[25] | C. Chen, K. Sun, Q. Xu, A color image encryption algorithm based on 2D-CIMM chaotic map, China Commun., 17 (2020), 12–20 https://doi.org/10.23919/jcc.2020.05.002 doi: 10.23919/jcc.2020.05.002 |
[26] | T. Li, D. Zhang, Hyperchaotic image encryption based on multiple bit permutation and diffusion, Entropy, 23 (2021), 510. https://doi.org/10.3390/e23050510 doi: 10.3390/e23050510 |
[27] | H. Liu, J. Liu, C. Ma, Constructing dynamic strong S-Box using 3D chaotic map and application to image encryption, Multimedia Tools Appl., 82 (2022), 23899–23914. https://doi.org/10.1007/s11042-022-12069-x doi: 10.1007/s11042-022-12069-x |
[28] | P. Liu, X. Wang, Y. Su, Image encryption via complementary embedding algorithm and new spatiotemporal chaotic system, IEEE Trans. Circuits Syst. Video Technol., 33 (2023), 2506–2519. https://doi.org/10.1109/TCSVT.2022.3222559 doi: 10.1109/TCSVT.2022.3222559 |