

AIMS Mathematics, 9(11): 31239–31251. DOI: 10.3934/[math.20241506](https://dx.doi.org/ 10.3934/math.20241506) Received: 04 August 2024 Revised: 14 October 2024 Accepted: 28 October 2024 Published: 04 November 2024

https://[www.aimspress.com](https://www.aimspress.com/journal/Math)/journal/Math

Research article

A novel method for Mannheim curves in the Galilean 3−space *G*³

Mervat Elzawy^{1,2,*} and Safaa Mosa^{3,4}

- ¹ Mathematics Department, Faculty of Science, Tanta University, Tanta, Egypt
- ² Mathematics Department, College of Science, Taibah University, Medina, Kingdom of Saudi Arabia
- ³ Mathematics Department, College of Science, University of Bisha, Bisha, Saudi Arabia
- ⁴ Mathematics Department, Faculty of Science, Damanhour University, Damanhour, Egypt

* Correspondence: Email: mervatelzawy@science.tanta.edu.eg, mrzawy@ taibahu.edu.sa.

Abstract: This research presents a novel method for Mannheim curves in three-dimensional Galilean space G_3 . Using this method, the necessary and sufficient conditions, along with the established results, must be satisfied for a curve in G_3 to qualify as a Mannheim curve. Furthermore, relevant examples and graphs are provided to demonstrate how Mannheim curves and their partners can correspond to Salkowski and anti-Salkowski curves. Finally, in *G*3, the Mannheim partner curves are described.

Keywords: Mannheim curves; slant helices; Salkowski curves; Curves of Anti-Salkowski; Galilean Space

Mathematics Subject Classification: 51A05, 53A35

1. Introduction

In the Galilean 3-space G_3 , Ogreenmis et al. [\[11\]](#page-12-0) proposed that if both curvatures, κ and τ are positive constants along the curve β , then the curve β is considered a circular helix with respect to the Frenet frame $t(s)$, $n(s)$, and $b(s)$.

Furthermore, concerning the Frenet frame, a curve β is characterized as a general helix if the ratio $\frac{k}{\tau}$ remains constant, and the converse is also true.

Additionally, the concept of a slant helix was introduced by Karacan and Tuncer [\[10\]](#page-12-1). If a constant vector field *W* exists in G_3 and the function $\langle W, n(s) \rangle_{G_3}$ is constant, then a curve β is called a slant helix.
Moreover, if one of the two functions Moreover, if one of the two functions,

$$
\pm \frac{\kappa^2}{\tau^3} \frac{d}{ds} \left(\frac{\tau}{\kappa} \right)
$$

is constant everywhere and τ does not vanish, then the curve is identified as a slant helix in G_3 , and the converse is also true.

Bertrand explored curves in Euclidean 3-space whose principal normal is the principal normal of another curve in the classical differential geometry of curves. He demonstrated that a linear relationship with constant coefficients between the first and second curvatures of the original curve is a necessary and sufficient condition for the existence of such a second curve [\[3\]](#page-12-2), i.e., κ and τ satisfy the equation $c_1 \kappa + c_2 \tau = 1$, where c_1 and c_2 belong to R. A related curve is called a Mannheim curve, in which the binormal vector field of one curve is the principal normal vector field of another. Liu and Wang [\[17\]](#page-12-3) examined Mannheim partner curves in both Minkowski and Euclidean 3-space. Since these works, many studies on Mannheim curves in Euclidean 3-space, Minkowski 3-space, dual 3-space, and Galilean spaces have been published [\[2,](#page-12-4) [4,](#page-12-5) [7](#page-12-6)[–9,](#page-12-7) [12–](#page-12-8)[15\]](#page-12-9).

Let $\gamma(s)$ be an admissible Mannheim curve, and take $\tilde{\gamma(s)}$ as the admissible Mannheim companion curve of $\gamma(s)$ through the Galilean 3–space G_3 . In scholarly works, $\widetilde{\gamma(s)}$ is expressed as

$$
\widetilde{\gamma}(\widetilde{s}) = \widetilde{\gamma}\Big(g(s)\Big) = \gamma(s) + \lambda(s)\ \mathbf{n}(s),\tag{1.1}
$$

in which case the function $g(s)$ is differentiable, and $\mathbf{n}(s)$ is the major normal line of $\gamma(s)$ [\[16\]](#page-12-10). In relation [\(1.1\)](#page-1-0), the vector \longrightarrow $\widetilde{\gamma}$ *γ* does not have to be linearly dependent with the **n**(*s*) vector.

Hence, the Mannheim mate curve, $\widetilde{\gamma}$, is assumed to be produced by

$$
\widetilde{\gamma}(\widetilde{s}) = \widetilde{\gamma}\big(g(s)\big) = \gamma(s) + \lambda_1(s)\ \mathbf{t}(s) + \lambda_2(s)\ \mathbf{n}(s) + \lambda_3(s)\ \mathbf{b}(s),\tag{1.2}
$$

where the Frenet frame of $\gamma(s)$ is represented by $\mathbf{t}(s)$, $\mathbf{n}(s)$, and $\mathbf{b}(s)$. During this situation, if we accept $\lambda_1(s) = \lambda_3(s) = 0$, we receive the instance that is referenced inside the written works. Therefore, in our article we took $\lambda_1 \neq 0$, and $\lambda_3 \neq 0$ to provide the Mannheim generalized curve in G_3 .

Throughout this work, we establish the circumstances that must be satisfied for a G_3 curve to qualify as a Mannheim curve and give instances that correspond to this new way of defining Mannheim curves. Finally, we describe Mannheim mate curves within *G*3.

2. Galilean 3−space curves

We will provide a few definitions in this section that will be used in our paper. For more fundamental concepts, see $[1, 5, 6]$ $[1, 5, 6]$ $[1, 5, 6]$ $[1, 5, 6]$ $[1, 5, 6]$.

Galilean space in three dimensions, G_3 , is defined as the Cayley-Klein space, where the characteristic protective metric has the signature $(0, 0, +, +)$. In Galilean space, the absolute is represented by a triple (V, E, J) . *V* indicates the ideal plane, *E* defines a line in *V*, and *J* represents an elliptic point of involution $(0:0: r_2: r_3) \to (0:0: r_3: -r_2)$.

A plane is called Euclidean if it contains *E*, otherwise it is called isotropic. A vector $r = (r_1, r_2, r_3)$ is described as not being isotropic if $r_1 \neq 0$. The form of all unit non-isotropic vectors is $r = (1, r_2, r_3)$. Regarding the isotropic vectors, r_1 is equal to zero.

Allow $\vec{\eta} = (\eta_1, \eta_2, \eta_3)$ and $\stackrel{\cdot\cdot}{\rightarrow}$ $\xi = (\xi_1, \xi_2, \xi_3)$ to be two vectors in Galilean 3–space G_3 . In G_3 , a dot product is described as

$$
\langle \overrightarrow{\eta}, \overrightarrow{\xi} \rangle_{G_3} = \begin{cases} \eta_1 \xi_1 & \text{if } \eta_1 \neq 0 \text{ or } \xi_1 \neq 0; \\ \eta_2 \xi_2 + \eta_3 \xi_3 & \text{if } \eta_1 = 0 \text{ and } \xi_1 = 0. \end{cases}
$$

The vector −→ $\vec{\zeta} = (\zeta_1, \zeta_2, \zeta_3)$, in *G*₃, has the following norm: $\|\vec{\zeta}\| = \sqrt{\zeta}$ The vector $\zeta = (\zeta_1, \zeta_2, \zeta_3)$, in σ_3 , has the follows.
The Galilean vector product can be defined as −→ \overline{a} , −→ $\zeta >$.

$$
\overrightarrow{\eta} \times \overrightarrow{\xi} = \begin{vmatrix} 0 & e_2 & e_3 \\ \eta_1 & \eta_2 & \eta_3 \\ \xi_1 & \xi_2 & \xi_3 \end{vmatrix}.
$$

In a coordinate form, assume that $\beta: I \to G_3$ is a curve in Galilean space G_3 given by

$$
\beta(t) = (u(t), v(t), w(t)),
$$

such that $u(t)$, $v(t)$, and $w(t) \in C^3$, $t \in I$. In the case of $u'(t) \neq 0$, then β is known as an admissible curve curve.

Assuming that the curve β is admissible in G_3 , and that the parameter *s* is the arc length, which is derived by

$$
\beta(s) = \Big(s, v(s), w(s)\Big),
$$

 $\kappa(s)$, and $\tau(s)$, the first and second curvature functions, respectively, are given by

$$
\kappa(s) = ||\beta^{''}(s)|| = \sqrt{v^{''2}(s) + w^{''2}(s)},
$$

and

$$
\tau(s) = \frac{det(\beta'(s), \beta''(s), \beta'''(s))}{\kappa^2(s)},
$$

respectively. The Frenet frame associated with $\beta(s)$ is written as

$$
\mathbf{t}(s) = \beta'(s) = (1, v'(s), w'(s)),
$$

\n
$$
\mathbf{n}(s) = \frac{\beta''(s)}{\kappa(s)} = \frac{1}{\kappa(s)} (0, v''(s), w''(s)),
$$

\n
$$
\mathbf{b}(s) = \frac{1}{\kappa(s)} (0, -w''(s), v''(s)),
$$

so that the velocity vector, principal normal vector, and binormal vector of the curve β are represented, respectively, by the symbols $t(s)$, $n(s)$, and $b(s)$.

Regarding $\beta(s)$, the Frenet equations are written as

$$
\frac{d}{ds}\begin{bmatrix} \mathbf{t}(s) \\ \mathbf{n}(s) \\ \mathbf{b}(s) \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ 0 & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} \mathbf{t}(s) \\ \mathbf{n}(s) \\ \mathbf{b}(s) \end{bmatrix}.
$$

3. A new method for Mannheim curves within Galilean space G_3

Definition 3.1. An admissible curve $\gamma : I \subset \mathbb{R} \to G_3$ with non-vanishing curvatures is claimed to be a *Mannheim curve if there exists a curve* $\widetilde{\gamma}$: $\widetilde{I} \subset \mathbb{R} \to G_3$ *in such a way that the principle normal vector field of* γ (*s*) *coincides with the bi-normal vector field of* $\widetilde{\gamma}$ (*s*) *at* $s \in I$ *and* $\widetilde{s} \in \widetilde{I}$. γ (*s*) *will be referred to as a Mannheim curve,* $\widetilde{\gamma(s)}$ *as a Mannheim partner, and the pair* (γ , $\widetilde{\gamma}$) *as a pair of Mannheim's.*

Let γ : *I* \rightarrow *G*₃, *I* $\subset \mathbb{R}$ be an admissible Mannheim curve in *G*₃ with the Frenet frame ${\bf f}(s)$, ${\bf n}(s)$, ${\bf b}(s)$ } and non-vanishing curvatures $\kappa(s)$ and $\tau(s)$. Furthermore, assuming the Frenet frame ${\{\tilde{t},\tilde{n},\tilde{b}\}}$, let $\tilde{\gamma}: \tilde{I} \to G_3, \tilde{I} \subset \mathbb{R}$ be an admissible Mannheim partner curve for γ using non-vanishing curvatures $\widetilde{k}(s)$ and $\widetilde{\tau}(s)$.

Then, $\widetilde{\gamma}$ can be formulated as

$$
\widetilde{\gamma}(\widetilde{s}) = \widetilde{\gamma}\Big(g(s)\Big) = \gamma(s) + \lambda_1(s)\ \mathbf{t}(s) + \lambda_2(s)\ \mathbf{n}(s) + \lambda_3(s)\ \mathbf{b}(s),
$$

where the functions $\lambda_1(s)$, $\lambda_2(s)$, and $\lambda_3(s)$ exhibit differentiability on *I*.

Theorem 3.1. Assume that $\gamma : I \to G_3$, $I \subset \mathbb{R}$ is an admissible Mannheim curve within G_3 whose *curvatures* $κ(s)$, $τ(s)$ *do not vanish. If there are differentiable functions* $λ_1$, $λ_2$, *and* $λ_3$ *that satisfy the given conditions:*

$$
\lambda'_2 + \kappa \lambda_1 = \tau \lambda_3, \quad \left(1 + \lambda'_1\right) \kappa = \left(\lambda'_3 + \tau \lambda_2\right) \tau, \quad \lambda'_3 + \tau \lambda_2 \neq 0. \tag{3.1}
$$

Hence, curve γ *is a Mannheim curve with* $\widetilde{\gamma}$ *as its Mannheim partner; in addition, the converse is*
0 true *also true.*

Proof. Consider that γ is an admissible Mannheim curve with non-zero curvatures κ , τ , using arc length *s* as the parameter, and $\tilde{\gamma}$ represents the Mannheim partner of γ , where the parameter is the arc length \widetilde{s} . Then, the curve $\widetilde{\gamma}$ can be represented as

$$
\widetilde{\gamma}(\widetilde{s}) = \widetilde{\gamma}\big(g(s)\big) = \gamma(s) + \lambda_1(s)\ \mathbf{t}(s) + \lambda_2(s)\ \mathbf{n}(s) + \lambda_3(s)\ \mathbf{b}(s),\tag{3.2}
$$

for $s \in I$, such that $\lambda_1(s)$, $\lambda_2(s)$, and $\lambda_3(s)$ are differentiable functions on *I*. By using *s* to differentiate Eq [\(3.2\)](#page-3-0), we arrive at

$$
g'(s)\widetilde{t(s)} = (1 + \lambda'_1(s))\mathbf{t}(s) + (\kappa(s)\lambda_1(s) - \tau(s)\lambda_3(s) + \lambda'_2(s))\mathbf{n}(s) + (\tau(s)\lambda_2(s) + \lambda'_3(s))\mathbf{b}(s).
$$
 (3.3)

Taking the scalar product of Eq (3.3) with $\mathbf{n}(s)$, we get

$$
\kappa(s)\lambda_1(s) - \tau(s)\lambda_3(s) + \lambda_2'(s) = 0.
$$
\n(3.4)

Substituting from [\(3.4\)](#page-3-2) into [\(3.3\)](#page-3-1), implies

$$
g'(s)\,\widetilde{t(s)} = \left(1 + \lambda'_1(s)\right)\mathbf{t}(s) + \left(\tau(s)\lambda_2(s) + \lambda'_3(s)\right)\mathbf{b}(s). \tag{3.5}
$$

Taking the scalar product of Eq [\(3.5\)](#page-3-3) with itself yields

$$
(g'(s))^{2} = (1 + \lambda'_{1}(s))^{2} + (\tau(s)\lambda_{2}(s) + \lambda'_{3}(s))^{2}.
$$
 (3.6)

If we take

$$
\alpha(s) = \frac{1 + \lambda'_1(s)}{g'(s)}, \quad \text{and} \quad \theta(s) = \frac{\tau(s)\lambda_2(s) + \lambda'_3(s)}{g'(s)},
$$

we have

$$
\widetilde{t(s)} = \alpha(s) \mathbf{t}(s) + \theta(s) \mathbf{b}(s).
$$
\n(3.7)

When we differentiate Eq [\(3.7\)](#page-3-4) in relation to *s*, we obtain

$$
\widetilde{\kappa(s)}\,\widetilde{n(s)}\,g'(s)=\alpha'(s)\,\mathbf{t}(s)+\left(\kappa(s)\,\alpha(s)-\tau(s)\,\theta(s)\right)\mathbf{n}(s)+\theta'(s)\,\mathbf{b}(s). \tag{3.8}
$$

Using the scalar product of Eq [\(3.8\)](#page-3-5) and $\mathbf{n}(s)$, we get $\kappa(s)$ $\alpha(s) - \tau(s) \theta(s) = 0$, and therefore

$$
(1 + \lambda'_1(s))\kappa(s) = (\tau(s)\lambda_2(s) + \lambda'_3(s))\tau(s),
$$
\n(3.9)

such that $\tau(s)\lambda_2(s) + \lambda'_2$
In contrast, consider $'_{3}(s) \neq 0.$

In contrast, consider γ to be a curve with the non-vanishing curvatures κ and τ and conditions [\(3.1\)](#page-3-6) hold for differentiable functions λ_1 , λ_2 , and λ_3 .

Then, we can create an additional curve, $\tilde{\gamma}$, as follows

$$
\widetilde{\gamma(s)} = \widetilde{\gamma}(g(s)) = \gamma(s) + \lambda_1(s) \mathbf{t}(s) + \lambda_2(s) \mathbf{n}(s) + \lambda_3(s) \mathbf{b}(s).
$$
 (3.10)

Differentiating Eq [\(3.10\)](#page-4-0) with respect to *s* yields

$$
g'(s)\widetilde{t(s)} = \left(1 + \lambda'_1(s)\right)\mathbf{t}(s) + \left(\tau(s)\lambda_2(s) + \lambda'_3(s)\right)\mathbf{b}(s),\tag{3.11}
$$

which gives that

$$
g'(s) = \left(\langle \widetilde{\tau}(s), \widetilde{\tau}(s) \rangle_{G_3} \right)^{\frac{1}{2}} = \frac{q_1}{\kappa} \left(\tau(s) \lambda_2(s) + \lambda_3'(s) \right) \sqrt{\kappa^2 + \tau^2}, \tag{3.12}
$$

where $q_1 = sgn(\tau(s)\lambda_2(s) + \lambda_3'$
Substituting into Eq. (3.11) $\binom{1}{3}(s)$.

Substituting into Eq [\(3.11\)](#page-4-1), we have

$$
\widetilde{t(s)} = \frac{q_1}{\sqrt{\kappa^2 + \tau^2}} \Big(\tau(s) \mathbf{t}(s) + \kappa(s) \mathbf{b}(s) \Big),\tag{3.13}
$$

and hence $\langle \tilde{t(s)}, \tilde{t(s)} \rangle_{G_3} = 1$.

Taking

$$
\alpha_1(s) = \frac{q_1 \tau(s)}{\sqrt{\kappa^2 + \tau^2}}
$$
, and $\alpha_2(s) = \frac{q_1 \kappa(s)}{\sqrt{\kappa^2 + \tau^2}}$,

then

$$
\tilde{t(s)} = \alpha_1(s) \mathbf{t}(s) + \alpha_2(s) \mathbf{b}(s).
$$
\n(3.14)

Equation [\(3.14\)](#page-4-2) can be differentiated with respect to *s* to yield

$$
\frac{d\widetilde{t}}{d\widetilde{s}} = \frac{1}{g'(s)} \big(\alpha'_1 \mathbf{t}(s) + \alpha'_2 \mathbf{b}(s) \big),
$$

and then

$$
\widetilde{\kappa} = \sqrt{<\frac{d\widetilde{t}}{d\widetilde{s}},\frac{d\widetilde{t}}{d\widetilde{s}}} > = \frac{\sqrt{\alpha_1'^2(s) + \alpha_2'^2(s)}}{g'(s)} = \frac{q_2(\kappa\tau' - \tau\kappa')}{g'(s)(\kappa^2 + \tau^2)} = \frac{q_2\,\kappa^2\left(\frac{\tau}{\kappa}\right)'}{g'(s)(\kappa^2 + \tau^2)},\tag{3.15}
$$

such that $q_2 = sgn(\kappa \tau' - \tau \kappa')$. Then, we may determine $\tilde{n(s)}$ as follows:

$$
\widetilde{n}(\widetilde{s}) = \frac{q_1}{q_2 \sqrt{\kappa^2 + \tau^2}} \Big(\kappa \, \mathbf{t}(s) - \tau \, \mathbf{b}(s) \Big),\tag{3.16}
$$

and $\langle \overline{n}(\overline{s}), \overline{n}(\overline{s}) \rangle_{G_3} = 1$. Also, $\overline{b}(\overline{s})$ can be defined as

$$
\widetilde{b}(\widetilde{s}) = \widetilde{t}(\widetilde{s}) \times \widetilde{n}(\widetilde{s}) = \frac{1}{q_2} \mathbf{n}(s),\tag{3.17}
$$

and $\langle \overline{b}(\overline{s}), \overline{b}(\overline{s}) \rangle_{G_3} = 1$. Finally, we get

$$
\widetilde{\tau}(\widetilde{s}) = - \langle \widetilde{b}'(\widetilde{s}), \widetilde{n}(\widetilde{s}) \rangle = \frac{q_1 \tau^2}{\sqrt{\kappa^2 + \tau^2}} \neq 0. \tag{3.18}
$$

Therefore, $\tilde{\gamma}$ is a Mannheim partner curve of γ . Then γ is a Mannheim curve. \Box

In Theorem [\(3.1\)](#page-3-7), if we set $\lambda_1(s) = \lambda_3(s) = 0$, using the Mannheim mate curve $\tilde{\gamma}$, which is expressed as

$$
\widetilde{\gamma}(s) = \gamma(s) + \lambda_2(s) \mathbf{n}(s),
$$

we may derive the criteria of classical Mannheim curves seen in the literature.

Corollary 3.2. Assume that the admissible curve $\gamma : I \to G_3$, $I \subset \mathbb{R}$ has non-vanishing curvatures κ *and* τ . After that, the curve γ *is a Mannheim curve, and its Mannheim partner* $\widetilde{\gamma}$ *is defined as*

$$
\widetilde{\gamma}(s) = \gamma(s) + \lambda_2(s) \mathbf{n}(s),
$$

if $\lambda_2(s)$ *exists and it fulfills* $\kappa = \lambda_2 \tau^2$ *, and the opposite is again valid.*

Corollary 3.3. *Let* ^γ(*s*) *constitute an admissible Mannheim curve through G*³ *using s as the parameter for arc length, and let* $\widetilde{\gamma(s)}$ *be an admissible Mannheim partner curve of* γ *. Assume* $\gamma(s)$ *is a generalized helix, then* $\widetilde{\gamma(s)}$ *represents a straight line.*

Proof. Assume $\gamma : I \to G_3, I \subset \mathbb{R}$ is an admissible Mannheim general helix that has non-vanishing curvatures κ and τ . Following that, the ratio $\frac{\tau}{\kappa}$ is constant, which gives from Eq [\(3.15\)](#page-4-3) that $\widetilde{\kappa} = 0$. Then, $\widetilde{\gamma(s)}$ defines a line.

Corollary 3.4. *Take* γ : $I \subset \mathbb{R} \to G_3$ *to be an admissible Mannheim curve with non-vanishing curvatures* κ *and* τ *, and let curve* $\tilde{\gamma}$ *be the Mannheim partner curve of* γ *having* $\tilde{\kappa}$ *and* $\tilde{\tau}$ *non-zero curvatures. Thus, given that g'(s) has a non-zero value,* $\tilde{\gamma}$ *indicates a general helix if the slant helix is*
represented by *x*. In addition, the opposite also holds *represented by* γ*. In addition, the opposite also holds.*

Proof. Consider $\gamma : I \subset \mathbb{R} \to G_3$ as an admissible Mannheim curve with κ ; and τ non-vanishing curvatures and let $\tilde{\gamma}$ be the Mannheim partner curve of γ having non-zero curvatures $\tilde{\kappa}$ and $\tilde{\tau}$. And, following that, from Eqs (3.15) and, (3.18) , we obtain

$$
\frac{\widetilde{\kappa}}{\widetilde{\tau}} = \frac{q_2 \kappa^2 \left(\frac{\tau}{\kappa}\right)'}{q_1 g'(s) \tau^3 \sqrt{\left(\frac{\tau}{\kappa}\right)^2 + 1}}
$$

If $g'(s)$ is a non-zero constant, then $\tilde{\gamma}$ can only be considered a general helix in the event that γ is a not helix slant helix. \Box

In the next part, we introduce special cases for the Mannheim curve in G_3 and its Mannheim partner curve.

Case 3.5. Assuming that $\gamma : I \to G_3$, $I \subset \mathbb{R}$ is an admissible Mannheim curve with non-zero curvatures $\kappa(s)$ *and* $\tau(s)$ *, then the requirements of Theorem* [\(3.1\)](#page-3-7) *have been met. Suppose that* $\lambda_2 = \lambda \in \mathbb{R}$ *. Next, we are able to acquire*

$$
\kappa(s)\lambda_1(s) = \tau(s)\lambda_3(s)
$$
 and $(1 + \lambda'_1(s))\kappa(s) = (\lambda'_3(s) + \lambda \tau(s))\tau(s)$,

 \mathcal{L}

which gives that

$$
\lambda_3(s) = \frac{\lambda \tau^2(s) - \kappa(s)}{\kappa(s) \left(\frac{\tau}{\kappa}\right)'} \quad \text{and} \quad \lambda_1(s) = \frac{\tau(s) \left[\lambda \tau^2(s) - \kappa(s)\right]}{\kappa^2(s) \left(\frac{\tau}{\kappa}\right)'}.
$$

Therefore, we get the Mannheim partner curve $\widetilde{\gamma}$ *as*

$$
\widetilde{\gamma(s)} = \gamma(s) + \frac{\tau(s) \left[\lambda \tau^2(s) - \kappa(s) \right]}{\kappa^2(s) \left(\frac{\tau}{\kappa} \right)} \mathbf{t}(s) + \lambda \mathbf{n}(s) + \frac{\lambda \tau^2(s) - \kappa(s)}{\kappa(s) \left(\frac{\tau}{\kappa} \right)} \mathbf{b}(s).
$$

The following illustration displays the Mannheim curve as an example of the Salkowski curve.

Example 3.6. *Consider the Salkowski curve in G*³ *given by*

$$
\gamma(s) = \left(s, \frac{1}{4} \left(3 - 4s\right) \cos(2\sqrt{s}) + 6\sqrt{s} \sin(2\sqrt{s})\right), \frac{1}{4} \left((3 - 4s)\sin(2\sqrt{s}) - 6\sqrt{s} \cos(2\sqrt{s})\right)\right),
$$

 $along with curvatures \kappa(s) = 1 \text{ and } \tau(s) = \frac{1}{\sqrt{s}} \text{ and the Frenet frame}$

$$
\mathbf{t}(s) = \left(1, \sqrt{s}\sin(2\sqrt{s}) + \frac{1}{2} \left(\cos(2\sqrt{s})\right), -\sqrt{s}\cos(2\sqrt{s}) + \frac{1}{2} \left(\sin(2\sqrt{s})\right)\right), \n\mathbf{n}(s) = \left(0, \cos(2\sqrt{s}), \sin(2\sqrt{s})\right), \n\mathbf{b}(s) = \left(0, -\sin(2\sqrt{s}), \cos(2\sqrt{s})\right).
$$

If we set $\lambda = 0$ *in case* [\(3.5\)](#page-6-0)*, the Mannheim partner curve* $\widetilde{\gamma(s)}$ *may be derived as*

$$
\widetilde{\gamma(s)} = \left(3s, \ \frac{3}{4}\left(\cos(2\sqrt{s}) + 2\sqrt{s}\sin(2\sqrt{s})\right), \ \frac{3}{4}\left(\sin(2\sqrt{s}) - 2\sqrt{s}\cos(2\sqrt{s})\right)\right),\tag{3.19}
$$

along with curvatures

$$
\widetilde{\kappa} = \frac{\sqrt{s(s+1)}}{6 \ s \ (s+1)^2}, \ and \ \widetilde{\tau} = \frac{\sqrt{s(s+1)}}{s \ (s+1)},
$$

and it is possible to acquire the Frenet frame as follows

$$
\widetilde{t(s)} = \left(\frac{1}{\sqrt{s+1}}, \frac{1}{2\sqrt{s+1}}cos(2\sqrt{s}), \frac{1}{2\sqrt{s+1}}sin(2\sqrt{s})\right),
$$
\n
$$
\widetilde{t(s)} = \left(\frac{-\sqrt{s}}{-\sqrt{s}} - \sqrt{s+1}sin(2\sqrt{s}) - \sqrt{s} - cos(2\sqrt{s}) - \sqrt{s+1}cos(2\sqrt{s}) - \sqrt{s} - sin(2\sqrt{s})\right)
$$

$$
\widetilde{n(s)} = \left(\frac{-\sqrt{s}}{\sqrt{s+1}}, -\sqrt{s+1} \sin(2\sqrt{s}) - \frac{\sqrt{s}}{2\sqrt{s+1}}cos(2\sqrt{s}), \sqrt{s+1}cos(2\sqrt{s}) - \frac{\sqrt{s}}{2\sqrt{s+1}}sin(2\sqrt{s})\right),
$$

$$
\widetilde{b(s)} = \bigg(0, -\cos(2\sqrt{s}), -\sin(2\sqrt{s})\bigg).
$$

We can easily obtain n(s) = $-b(\overline{s})$ *, implying that the Mannheim curve* $\gamma(s)$ *possesses a Mannheim*
ther curve $\widetilde{\gamma(s)}$ *And* $\widetilde{\gamma(s)}$ *is not a general helix (Figure 1) partner curve* $\widetilde{\gamma(s)}$ *. And,* $\widetilde{\gamma(s)}$ *is not a general helix (Figure 1).*

Figure 1. Curves $\gamma(s)$ and $\widetilde{\gamma(s)}$ diagram of Example 3.6.

In the next part, we present a Mannheim Curve as an illustration of the anti-Salkowski curve inside *G*3.

Example 3.7. *Define* $\gamma(s)$ *to be an anti-Salkowski curve in* G_3 *, which is given by*

$$
\gamma(s) = \left(s, \ \frac{16}{289} \left[8 \sin(s) \sinh\left(\frac{s}{4}\right) - 15 \cos(s) \cosh\left(\frac{s}{4}\right)\right], -\frac{16}{289} \left[8 \cos(s) \sinh\left(\frac{s}{4}\right) + 15 \sin(s) \cosh\left(\frac{s}{4}\right)\right]\right)
$$

with curvatures $\kappa(s) = cosh\left(\frac{s}{4}\right)$ $\left(\frac{s}{4}\right)$ and $\tau(s) = 1$, and the Frenet frame in the manner described below:

$$
\mathbf{t}(s) = \left(1, \frac{16}{17} \left[sin(s) \cosh(\frac{s}{4}) + \frac{1}{4} \cos(s) \sinh(\frac{s}{4})\right], -\frac{16}{17} \left[\cos(s) \cosh(\frac{s}{4}) - \frac{1}{4} \sin(s) \sinh(\frac{s}{4})\right]\right),
$$

\n
$$
\mathbf{n}(s) = \left(0, \cos(s), \sin(s)\right),
$$

\n
$$
\mathbf{b}(s) = \left(0, -\sin(s), \cos(s)\right).
$$

Taking $\lambda = 0$ *in case* [\(3.5\)](#page-6-0), the Mannheim partner curve $\widetilde{\gamma(s)}$ is then obtained in the following
practical *manner:*

$$
\widetilde{\gamma}(\widetilde{s}) = \left(s + 4 \coth\left(\frac{s}{4}\right), \frac{128}{289} \sin(s) \sinh\left(\frac{s}{4}\right) + \frac{32}{289} \cos(s) \cosh\left(\frac{s}{4}\right) - \frac{4}{17} \sin(s) \cosh\left(\frac{s}{4}\right) \coth\left(\frac{s}{4}\right),
$$

\n
$$
- \frac{128}{289} \cos(s) \sinh\left(\frac{s}{4}\right) + \frac{32}{289} \sin(s) \cosh\left(\frac{s}{4}\right) + \frac{4}{17} \cos(s) \cosh\left(\frac{s}{4}\right) \coth\left(\frac{s}{4}\right),
$$

\nwith curvatures $\widetilde{\kappa} = \frac{-sgn\left(\frac{1}{4} \sinh\left(\frac{s}{4}\right)\right) \tanh\left(\frac{s}{4}\right)}{4\left(1 - \csosh^2\left(\frac{s}{4}\right)\right) \left(1 + \cosh^2\left(\frac{s}{4}\right)\right)^{\frac{3}{2}}}$ and $\widetilde{\tau} = \frac{sgn\left(1 - \cosech^2\left(\frac{s}{4}\right)\right)}{\sqrt{1 + \cosh^2\left(\frac{s}{4}\right)}}$, and the Frenet frame obtained

as

$$
\widetilde{t(s)}=\frac{sgn\big(1-cosech^2(\frac{s}{4})\big)}{\sqrt{1+ cosh^2(\frac{s}{4})}}\bigg(1,\ \frac{1}{17}\big[-sin(s) cosh\big(\frac{s}{4}\big)+4cos(s) sinh\big(\frac{s}{4}\big)\big],\ \frac{1}{17}\big[cos(s) cosh\big(\frac{s}{4}\big)+4sin(s) sinh\big(\frac{s}{4}\big)\big]\bigg),
$$

$$
\widetilde{n(s)} = \frac{sgn\left(1 - cosech^2(\frac{s}{4})\right)}{sgn\left(\frac{1}{4}\sinh(\frac{s}{4})\right)\sqrt{1 + cosh^2(\frac{s}{4})}} \left(cosh\left(\frac{s}{4}\right), cosh\left(\frac{s}{4}\right) \left[\frac{16}{17}\sin(s) cosh\left(\frac{s}{4}\right) + \frac{4}{17}\cos(s) sinh\left(\frac{s}{4}\right) \right] + sin(s),\n\right)
$$
\n
$$
cosh\left(\frac{s}{4}\right)\left[-\frac{16}{17}\cos(s) cosh\left(\frac{s}{4}\right) + \frac{4}{17}\sin(s) sinh\left(\frac{s}{4}\right) \right] - cos(s)\right),
$$

$$
\widetilde{b(s)} = \frac{1}{sgn\left(\frac{1}{4}\sinh\left(\frac{s}{4}\right)\right)} \bigg(0, \cos(s), \sin(s)\bigg).
$$

It is simple to obtain $n(s) = sgn(\frac{1}{4})$ $rac{1}{4}$ sinh $(\frac{s}{4})$ $\left(\frac{s}{4}\right)\left(\overline{b}(\overline{s})\right)$, indicating that $\gamma(s)$ is a Mannheim curve and that $\widetilde{\gamma(s)}$ is not a general helix (Figure 2) ^eγ(e*s*) *is its Mannheim partner curve. Again,* ^eγ(e*s*) *is not a general helix (Figure 2).*

Figure 2. Diagram of curves $\gamma(s)$ and $\tilde{\gamma(s)}$ in Example 3.7.

Example 3.8. *Consider the curve in G*³ *defined by* $\gamma(s) = \left(s, -\right)$ $\sqrt{\pi}$ *s* FresnelS $\left(\frac{s}{\sqrt{\pi}}\right) - 2cos\left(\frac{s^2}{2}\right)$ π, τη καταστική στραγματική στραγματική στραγματική στραγματική στραγματική στραγματική στραγματική στραγματικ
Προσπαθεί το προσπαθεί στραγματικό στραγματικό στραγματικό στραγματικό στραγματικό στραγματικό στραγματικό στρ $\frac{s^2}{2}$, $\sqrt{\pi}$ *s* FresnelC $\left(\frac{s}{\sqrt{\pi}}\right)$ – 2*sin* $\left(\frac{s^2}{2}\right)$ $\binom{s^2}{2}$, with the curvatures $\kappa(s) =$ s^2 *and* $\tau(s) = s$, *where FresnelS* (*x*) = $\int \sin\left(\frac{\pi x^2}{2}\right)$ $\int \frac{dx^2}{2} dx$ and FresnelC(x) = $\int cos(\frac{\pi x^2}{2})$ $\left(\frac{x^2}{2}\right)$ dx, and the Frenet *frame is obtained as*

$$
\mathbf{t}(s) = \left(1, \ s \sin\left(\frac{s^2}{2}\right) - \int \sin\left(\frac{s^2}{2}\right) ds, \ -s \cos\left(\frac{s^2}{2}\right) + \int \cos\left(\frac{s^2}{2}\right) ds\right),
$$

\n
$$
\mathbf{n}(s) = \left(0, \ \cos\left(\frac{s^2}{2}\right), \ \sin\left(\frac{s^2}{2}\right)\right),
$$

\n
$$
\mathbf{b}(s) = \left(0, \ -\sin\left(\frac{s^2}{2}\right), \ \cos\left(\frac{s^2}{2}\right)\right).
$$

Taking $\lambda = 0$ *in case* [\(3.5\)](#page-6-0), we acquire the Mannheim partner curve $\widetilde{\gamma(s)}$ according to

$$
\widetilde{\gamma(s)} = \left(2s, \ -2s \int \sin\left(\frac{s^2}{2}\right) ds - 2\cos\left(\frac{s^2}{2}\right), \ 2s \int \cos\left(\frac{s^2}{2}\right) ds - 2\sin\left(\frac{s^2}{2}\right) \right),
$$

with curvatures $\widetilde{\kappa} = \frac{1}{2(s^2+1)^2}$ $\frac{1}{2(s^2+1)^{\frac{3}{2}}}$ and $\widetilde{\tau} = \frac{s}{\sqrt{s^2+1}}$. The Frenet frame is calculated as

$$
\widetilde{t(s)} = \left(\frac{1}{\sqrt{s^2+1}}, \frac{-1}{\sqrt{s^2+1}} \int \sin(\frac{s^2}{2})ds, \frac{1}{\sqrt{s^2+1}} \int \cos(\frac{s^2}{2})ds\right),
$$
\n
$$
\widetilde{n(s)} = \left(-\frac{s}{\sqrt{s^2+1}}, -\sqrt{s^2+1}\sin(\frac{s^2}{2}) + \frac{s}{\sqrt{s^2+1}} \int \sin(\frac{s^2}{2})ds, \sqrt{s^2+1}\cos(\frac{s^2}{2}) - \frac{s}{\sqrt{s^2+1}} \int \cos(\frac{s^2}{2})ds\right),
$$
\n
$$
\widetilde{b(s)} = \left(0, -\cos(\frac{s^2}{2}), -\sin(\frac{s^2}{2})\right).
$$

Then, we can deduce that $n(s) = -\widetilde{b(s)}$ *, which means that* $\gamma(s)$ *is a Mannheim curve, along with* ^eγ(e*s*) *serving as its Mannheim partner curve. Also,* ^eγ(e*s*) *is not a general helix (Figure 3).*

Figure 3. Curves $\gamma(s)$ and $\widetilde{\gamma(s)}$ of Example 3.8.

Theorem 3.9. Let $\widetilde{\gamma}$: $\widetilde{I} \to G_3$, $\widetilde{I} \subset \mathbb{R}$ be an admissible curve utilizing the $\{\widetilde{t},\widetilde{n},\widetilde{b}\}$ *Frenet frame as well* as the non-zero curvatures κ and τ. For each given Mannheim curve, if its Mannheim partner curve is *represented by* $\widetilde{\gamma}$ *, then there exist differentiable functions* μ_1, μ_2, μ_3 *, and* δ *satisfying the following two cases:*

(1) If $\dot{B} \neq 0$ *, then we have*

$$
\widetilde{\tau}\mu_2(s) + \mu_3(\widetilde{s}) = 0, \quad \frac{1 + \mu_1(\widetilde{s})}{\dot{f}} \neq 0, \quad \dot{\delta} = -\widetilde{\kappa}, \quad \mu_2(\widetilde{s}) + \widetilde{\kappa}\mu_1(\widetilde{s}) - \widetilde{\tau}\mu_3(\widetilde{s}) = \delta\left(1 + \mu_1(\widetilde{s})\right). \tag{3.20}
$$

(2) If $\dot{B} = 0$ *, then we have*

$$
\widetilde{\tau}\mu_2(\widetilde{s}) + \mu_3(\widetilde{s}) = 0, \ \mu_2(\widetilde{s}) - \widetilde{\tau}\mu_3(\widetilde{s}) + \widetilde{\kappa}\left(-\widetilde{s} + c_o\right) = df,\tag{3.21}
$$

where c_o and d are non-zero constants and $B = \frac{\mu_2(\overline{s})+\overline{\kappa}\mu_1(\overline{s})-\overline{\tau}\mu_3(\overline{s})}{\dot{f}}$. In this case, "²" signifies the derivative *in relation to* \tilde{s} *.*

Proof. Suppose that γ is an admissible Mannheim curve with non-zero κ and τ curvatures, specified by the arc length *s*, and the Mannheim partner curve of curve γ is represented by curve $\tilde{\gamma}$, where $\tilde{\gamma}$ is parameterized by the arc length \tilde{s} . Thus, we may define the curve γ as

$$
\gamma(s) = \gamma(f(\overline{s})) = \widetilde{\gamma(s)} + \mu_1(\overline{s}) \widetilde{t(s)} + \mu_2(\overline{s}) \widetilde{n(s)} + \mu_3(\overline{s}) \widetilde{b(s)}, \tag{3.22}
$$

with every $\widetilde{s} \in \widetilde{I}$, such that $\mu_1(\widetilde{s})$, $\mu_2(\widetilde{s})$, and $\mu_3(\widetilde{s})$ are differentiable functions on \widetilde{I} .

When we differentiate Eq (3.22) considering \tilde{s} , we arrive at

$$
\mathbf{t}(s)\dot{f} = \left(1 + \mu_1(\overline{s})\right)\overline{\tilde{\mu}(\overline{s})} + \left(\mu_2(\overline{s}) + \overline{\kappa}\mu_1(\overline{s}) - \overline{\tau}\mu_3(\overline{s})\right)\overline{\tilde{\mu}(\overline{s})} + \left(\overline{\tau}\mu_2(\overline{s}) + \mu_3(\overline{s})\right)\overline{\tilde{\rho}(\overline{s})}.
$$
(3.23)

By taking the dot product of [\(3.23\)](#page-10-0) with $\widetilde{b(s)}$, we get

$$
\widetilde{\tau}\mu_2(\widetilde{s}) + \mu_3(\widetilde{s}) = 0. \tag{3.24}
$$

Inserting (3.24) in (3.23) , we have

$$
\mathbf{t}(s)\dot{f} = (1 + \mu_1(\vec{s}))\tilde{t}(\vec{s}) + (\mu_2(\vec{s}) + \tilde{\kappa}\mu_1(\vec{s}) - \tilde{\tau}\mu_3(\vec{s}))\tilde{n}(\vec{s}).
$$
\n(3.25)

By taking the scalar product of [\(3.25\)](#page-10-2) with itself, we deduce

$$
(\dot{f})^2 = \left(1 + \mu_1(\overline{s})\right)^2 + \left(\mu_2(\overline{s}) + \overline{\kappa}\mu_1(\overline{s}) - \overline{\tau}\mu_3(\overline{s})\right)^2. \tag{3.26}
$$

If we set

$$
A = \frac{1 + \mu_1(\overline{s})}{\dot{f}}, \text{ and } B = \frac{\mu_2(\overline{s}) + \overline{\kappa}\mu_1(\overline{s}) - \overline{\tau}\mu_3(\overline{s})}{\dot{f}}, \tag{3.27}
$$

we obtain

$$
\mathbf{t}(s) = A \ \widetilde{t(s)} + B \ \widetilde{n(s)}.\tag{3.28}
$$

Differentiating [\(3.28\)](#page-10-3) with respect to \tilde{s} , we obtain

$$
\dot{f} \kappa n(s) = \dot{A} \, \widetilde{t(s)} + \left(\widetilde{A\kappa} + \dot{B}\right) \widetilde{n(s)} + \widetilde{\tau} \widetilde{B} \, \widetilde{b(s)}.
$$
\n(3.29)

Since the principle normal vector $\mathbf{n}(s)$ of the curve $\gamma(s)$ and the bi-normal vector $\widetilde{b}(\widetilde{s})$ of its Mannheim Partner curve is linearly dependent, we reach

$$
\widetilde{\kappa} = \frac{-\dot{B}}{A}.
$$

We have two cases:

• If $\dot{B} \neq 0$, then $A \neq 0$ and $B \neq 0$, which implies

$$
\frac{1+\mu_1(\overline{s})}{\dot{f}}\neq 0, \quad \text{and} \quad \mu_2(\overline{s})+\widetilde{\kappa}\mu_1(\overline{s})-\widetilde{\tau}\mu_3(\overline{s})=\delta\Big(1+\mu_1(\overline{s})\Big),
$$

where $\delta = \frac{B}{A}$ *A*

Again, from [\(3.29\)](#page-10-4), utilizing $\widetilde{b}(\widetilde{s})$ to obtain the scalar product, we acquire $\dot{A} = 0$ and $A\widetilde{\kappa} + \dot{B} = 0$, which gives

$$
\dot{\delta}=-\widetilde{\kappa}.
$$

• If $\dot{B} = 0$, then $A = 0$, which implies $\mu_1 = -1$ and $\mu_1 = -\tilde{s} + c_o$, where c_o is constant. Also, we can deduce that *R* is non-zero constant (*d*, say). Now from Eq. (3.27), we have deduce that *B* is non-zero constant (d, say) . Now, from Eq [\(3.27\)](#page-10-5), we have

$$
\mu_2(\widetilde{s}) - \widetilde{\tau}\mu_3(\widetilde{s}) + \widetilde{\kappa}\left(-\widetilde{s} + c_o\right) = d\widetilde{f}
$$

□

If we set $\mu_1(\bar{s}) = \mu_2(\bar{s}) = 0$ within Theorem [\(3.9\)](#page-9-1), we arrive at the requirements of traditional Mannheim partner curves found in the literature by using

$$
\gamma(s) = \gamma\big(f(\widetilde{s})\big) = \widetilde{\gamma}(\widetilde{s}) + \mu_3(\widetilde{s})\widetilde{b}(\widetilde{s}).
$$

Also, we get

$$
\dot{\mu_3}(\vec{s}) = 0, \; \dot{\delta} = -\tilde{\kappa}, \; -\tilde{\tau}\mu_3(\tilde{s}) = \delta.
$$

So, we have

$$
\widetilde{\tau}=\frac{-1}{\mathbf{a}}\int \widetilde{\kappa}d\widetilde{s},
$$

for some non-zero real number a. Therefore, this leads us to the next corollary.

Corollary 3.10. *Suppose that* $\widetilde{\gamma}: \widetilde{I} \to G_3$, $\widetilde{I} \subset \mathbb{R}$ *is an admissible curve with non-zero curvatures* $\widetilde{\kappa}$ *and* $\tilde{\tau}$, and with the Frenet frame $\{t, \tilde{n}, \tilde{b}\}$. If $\tilde{\gamma}$ is a Mannheim partner curve of a certain Mannheim *curve given by*

$$
\gamma(s) = \gamma\big(f(\overline{s})\big) = \widetilde{\gamma(s)} + \mu_3(s)\widetilde{b(s)},
$$

then a non-zero real number a exists such that

$$
\widetilde{\tau}=\frac{-1}{a}\int \widetilde{\kappa}d\widetilde{s}.
$$

4. Conclusions

In this study, a novel method for Mannheim curves in three-dimensional Galilean space was presented. The necessary and sufficient conditions for a curve to be a Mannheim curve were obtained. Finally, some examples were introduced.

Author contributions

Mervat Elzawy: conceptualization, methodology, software, reviewing and editing; Safaa Mosa: data curation, writing-original draft preparation, visualization, investigation, reviewing and editing.

Acknowledgments

The authors would like to extend their sincere gratitude to the referee for their insightful comments, which helped to improve the initial article.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

- 1. A. T. Ali, Position vectors of curves in the Galilean space G_3 , Matematički Vesnik, 64 (2012), 200–210.
- 2. M. Akyigit, A. Z. Azak, M. Tosun, Admissible Mannheim curves in Pseudo-Galilean space *G* 1 $\frac{1}{3}$ *Afr. Diaspora J. Math.*, 10 (2010), 58–65.
- 3. J. Bertrand, Mémoire sur la théorie des courbes à double courbure, Journal de mathématiques pures *et appliqu´ees*, 15 (1850), 332–350.
- 4. A. Elsharkawy, A. M. Elshenhab, Mannheim curves and their prtner curves in Minkowski 3-Space E_1^3 1 , *Demonstr. Math.*, 55 (2022), 798–811. http://doi.org/10.1515/[dema-2022-0163](https://dx.doi.org/http://doi.org/10.1515/dema-2022-0163)
- 5. M. Elzawy, S. Mosa, Characterizations of Frenet curves in Galilean 3-space, *J. Math. Comput. Sci.*, 12 (2022), 179. http://doi.org/[10.28919](https://dx.doi.org/http://doi.org/10.28919/jmcs/7458)/jmcs/7458
- 6. S. Ersoy, M. Akyigit, M. Tosun. A Note on admissible Mannheim curves in Galilean space *G*3, *Int. J. Math. Combin.*, 1 (2011), 88–93.
- 7. M. A. Gungor, M. Tosun, A study on dual Mannheim partner curves, *International Mathematical Forum*, 5 (2010), 2319–2330.
- 8. S. Honda, M. Takahashi, H. Yu, Bertrand and Mannheim curves of framed curves in the 4 dimensional Euclidean space, *J. Geom.*, 114 (2023), 12. http://doi.org/10.1007/[s00022-023-00673-](https://dx.doi.org/http://doi.org/10.1007/s00022-023-00673-7) [7](https://dx.doi.org/http://doi.org/10.1007/s00022-023-00673-7)
- 9. M. K. Karacan, Weakened Mannheim curves, *Int. J. Phys. Sci.*, 6 (2011), 4700–4705.
- 10. M. K. Karacan, Y. Tuncer, Characterization of slant helix in Galilean and Pseudo-Galilean spaces, *SAÜ Fen Edebiyat Dergisi*, **12** (2010), 43–53.
- 11. A. O. Ogrenmis, E. Ergut, M. Bektas, On the helices in the Galilean space *G*3, *Iran. J. Sci. Technol.*, 31 (2007), 177–181. http://doi.org/10.22099/[ijsts.2007.2327](https://dx.doi.org/http://doi.org/10.22099/ijsts.2007.2327)
- 12. K. Orbay, E. Kasap, On Mannheim partner curves in *E* 3 , *J. Phys. Sci.*, 4 (2009), 261–264.
- 13. S. Özkaldi, K. Ilarslan, Y. Yayli, On Mannheim partner curve in dual space, An. St. Univ. Ovidius *Constant*, 17 (2009), 131–142.
- 14. H. Öztekin, M. Ergüt, Null Mannheim curves in the Minkowski 3-space E_1^3 1 , *Turk. J. Math.*, 35 (2011), 107–114. http://doi.org/10.3906/[mat-0907-105](https://dx.doi.org/http://doi.org/10.3906/mat-0907-105)
- 15. S. Tarla, H. Oztekin, On generalized Mannheim curves in the equiform geometry of the Galilean 4-Space, *Turk. J. Sci. Technol.*, 16 (2021), 197–204.
- 16. A. Ucum, C. Camci, K. ˙Ilarslan, A new approach to Mannheim curve in Euclidean 3-Space, *Tamkang J. Math.*, 54 (2023), 93–106. https://doi.org/10.5556/[j.tkjm.54.2023.4085](https://dx.doi.org/https://doi.org/10.5556/j.tkjm.54.2023.4085)
- 17. H. Liu, F. Wang, Mannheim partner curves in 3-Space, *J. Geom.*, 88 (2008), 120–126. http://doi.org/10.1007/[s00022-007-1949-0](https://dx.doi.org/http://doi.org/10.1007/s00022-007-1949-0)

© 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (https://[creativecommons.org](https://creativecommons.org/licenses/by/4.0)/licenses/by/4.0)