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1. Introduction

In the Galilean 3-space G3, Ogreenmis et al. [11] proposed that if both curvatures, κ and τ are
positive constants along the curve β, then the curve β is considered a circular helix with respect to the
Frenet frame t(s),n(s), and b(s).

Furthermore, concerning the Frenet frame, a curve β is characterized as a general helix if the ratio
κ
τ

remains constant, and the converse is also true.
Additionally, the concept of a slant helix was introduced by Karacan and Tuncer [10]. If a constant

vector field W exists in G3 and the function ⟨W, n(s)⟩G3 is constant, then a curve β is called a slant helix.
Moreover, if one of the two functions,

±
κ2

τ3

d
ds

(
τ

κ

)
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is constant everywhere and τ does not vanish, then the curve is identified as a slant helix in G3, and the
converse is also true.

Bertrand explored curves in Euclidean 3-space whose principal normal is the principal normal of
another curve in the classical differential geometry of curves. He demonstrated that a linear
relationship with constant coefficients between the first and second curvatures of the original curve is
a necessary and sufficient condition for the existence of such a second curve [3], i.e., κ and τ satisfy
the equation c1κ + c2τ = 1, where c1 and c2 belong to R. A related curve is called a Mannheim curve,
in which the binormal vector field of one curve is the principal normal vector field of another. Liu and
Wang [17] examined Mannheim partner curves in both Minkowski and Euclidean 3-space. Since
these works, many studies on Mannheim curves in Euclidean 3-space, Minkowski 3-space, dual
3-space, and Galilean spaces have been published [2, 4, 7–9, 12–15].

Let γ(s) be an admissible Mannheim curve, and take γ̃(s̃) as the admissible Mannheim companion
curve of γ(s) through the Galilean 3−space G3. In scholarly works, γ̃(s̃) is expressed as

γ̃(s̃) = γ̃
(
g(s)

)
= γ(s) + λ(s) n(s), (1.1)

in which case the function g(s) is differentiable, and n(s) is the major normal line of γ(s) [16]. In
relation (1.1), the vector

−−−→
γ̃ γ does not have to be linearly dependent with the n(s) vector.

Hence, the Mannheim mate curve, γ̃, is assumed to be produced by

γ̃(s̃) = γ̃
(
g(s)

)
= γ(s) + λ1(s) t(s) + λ2(s) n(s) + λ3(s) b(s), (1.2)

where the Frenet frame of γ(s) is represented by t(s), n(s), and b(s). During this situation, if we accept
λ1(s) = λ3(s) = 0, we receive the instance that is referenced inside the written works. Therefore, in our
article we took λ1 , 0, and λ3 , 0 to provide the Mannheim generalized curve in G3.

Throughout this work, we establish the circumstances that must be satisfied for a G3 curve to qualify
as a Mannheim curve and give instances that correspond to this new way of defining Mannheim curves.
Finally, we describe Mannheim mate curves within G3.

2. Galilean 3−space curves

We will provide a few definitions in this section that will be used in our paper. For more fundamental
concepts, see [1, 5, 6].

Galilean space in three dimensions, G3, is defined as the Cayley-Klein space, where the
characteristic protective metric has the signature (0, 0,+,+). In Galilean space, the absolute is
represented by a triple (V, E, J). V indicates the ideal plane, E defines a line in V , and J represents an
elliptic point of involution (0 : 0 : r2 : r3)→ (0 : 0 : r3 : −r2).

A plane is called Euclidean if it contains E, otherwise it is called isotropic. A vector r = (r1, r2, r3)
is described as not being isotropic if r1 , 0. The form of all unit non-isotropic vectors is r = (1, r2, r3).
Regarding the isotropic vectors, r1 is equal to zero.

Allow −→η =
(
η1, η2, η3

)
and
−→
ξ =

(
ξ1, ξ2, ξ3

)
to be two vectors in Galilean 3−space G3. In G3, a dot

product is described as

< −→η ,
−→
ξ >G3=

{
η1ξ1 if η1 , 0 or ξ1 , 0;
η2ξ2 + η3ξ3 if η1 = 0 and ξ1 = 0.
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The vector
−→
ζ =

(
ζ1, ζ2, ζ3

)
, in G3, has the following norm: ∥

−→
ζ ∥ =

√
<
−→
ζ ,
−→
ζ >.

The Galilean vector product can be defined as

−→η ×
−→
ξ =

∣∣∣∣∣∣∣∣∣
0 e2 e3

η1 η2 η3

ξ1 ξ2 ξ3

∣∣∣∣∣∣∣∣∣ .
In a coordinate form, assume that β : I → G3 is a curve in Galilean space G3 given by

β(t) =
(
u(t), v(t), w(t)

)
,

such that u(t), v(t), and w(t) ∈ C3, t ∈ I. In the case of u′(t) , 0, then β is known as an admissible
curve.

Assuming that the curve β is admissible in G3, and that the parameter s is the arc length, which is
derived by

β(s) =
(
s, v(s),w(s)

)
,

κ(s), and τ(s), the first and second curvature functions, respectively, are given by

κ(s) =∥ β
′′

(s) ∥=
√

v′′2(s) + w′′2(s),

and

τ(s) =
det

(
β
′

(s), β
′′

(s), β
′′′

(s)
)

κ2(s)
,

respectively. The Frenet frame associated with β(s) is written as

t(s) = β
′

(s) =
(
1, v

′

(s),w
′

(s)
)
,

n(s) =
β
′′

(s)
κ(s)

=
1
κ(s)

(
0, v

′′

(s),w
′′

(s)
)
,

b(s) =
1
κ(s)

(
0,−w

′′

(s), v
′′

(s)
)
,

so that the velocity vector, principal normal vector, and binormal vector of the curve β are represented,
respectively, by the symbols t(s), n(s), and b(s).

Regarding β(s), the Frenet equations are written as

d
ds


t(s)
n(s)
b(s)

 =


0 κ 0
0 0 τ

0 −τ 0




t(s)
n(s)
b(s)

 .
3. A new method for Mannheim curves within Galilean space G3

Definition 3.1. An admissible curve γ : I ⊂ R→ G3 with non-vanishing curvatures is claimed to be a
Mannheim curve if there exists a curve γ̃ : Ĩ ⊂ R→ G3 in such a way that the principle normal vector
field of γ(s) coincides with the bi-normal vector field of γ̃(s̃) at s ∈ I and s̃ ∈ Ĩ. γ(s) will be referred to
as a Mannheim curve, γ̃(s̃) as a Mannheim partner, and the pair (γ, γ̃) as a pair of Mannheim’s.
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Let γ : I → G3, I ⊂ R be an admissible Mannheim curve in G3 with the Frenet frame
{t(s),n(s),b(s)} and non-vanishing curvatures κ(s) and τ(s). Furthermore, assuming the Frenet frame
{̃t, ñ, b̃}, let γ̃ : Ĩ → G3, Ĩ ⊂ R be an admissible Mannheim partner curve for γ using non-vanishing
curvatures κ̃(s) and τ̃(s).

Then, γ̃ can be formulated as

γ̃(s̃) = γ̃
(
g(s)

)
= γ(s) + λ1(s) t(s) + λ2(s) n(s) + λ3(s) b(s),

where the functions λ1(s), λ2(s), and λ3(s) exhibit differentiability on I.

Theorem 3.1. Assume that γ : I → G3, I ⊂ R is an admissible Mannheim curve within G3 whose
curvatures κ(s), τ(s) do not vanish. If there are differentiable functions λ1, λ2, and λ3 that satisfy the
given conditions:

λ′2 + κλ1 = τλ3,
(
1 + λ′1

)
κ =

(
λ′3 + τλ2

)
τ, λ′3 + τλ2 , 0. (3.1)

Hence, curve γ is a Mannheim curve with γ̃ as its Mannheim partner; in addition, the converse is
also true.

Proof. Consider that γ is an admissible Mannheim curve with non-zero curvatures κ, τ, using arc length
s as the parameter, and γ̃ represents the Mannheim partner of γ, where the parameter is the arc length
s̃. Then, the curve γ̃ can be represented as

γ̃(s̃) = γ̃
(
g(s)

)
= γ(s) + λ1(s) t(s) + λ2(s) n(s) + λ3(s) b(s), (3.2)

for s ∈ I, such that λ1(s), λ2(s), and λ3(s) are differentiable functions on I. By using s to differentiate
Eq (3.2), we arrive at

g′(s) t̃(s̃) =
(
1 + λ′1(s)

)
t(s) +

(
κ(s)λ1(s) − τ(s)λ3(s) + λ′2(s)

)
n(s) +

(
τ(s)λ2(s) + λ′3(s)

)
b(s). (3.3)

Taking the scalar product of Eq (3.3) with n(s), we get

κ(s)λ1(s) − τ(s)λ3(s) + λ′2(s) = 0. (3.4)

Substituting from (3.4) into (3.3), implies

g′(s) t̃(s̃) =
(
1 + λ′1(s)

)
t(s) +

(
τ(s)λ2(s) + λ′3(s)

)
b(s). (3.5)

Taking the scalar product of Eq (3.5) with itself yields(
g′(s)

)2
=

(
1 + λ′1(s)

)2
+

(
τ(s)λ2(s) + λ′3(s)

)2
. (3.6)

If we take

α(s) =
1 + λ′1(s)

g′(s)
, and θ(s) =

τ(s)λ2(s) + λ′3(s)
g′(s)

,

we have
t̃(s̃) = α(s) t(s) + θ(s) b(s). (3.7)

When we differentiate Eq (3.7) in relation to s, we obtain

κ̃(s̃) ñ(s̃) g′(s) = α′(s) t(s) +
(
κ(s) α(s) − τ(s) θ(s)

)
n(s) + θ′(s) b(s). (3.8)
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Using the scalar product of Eq (3.8) and n(s), we get κ(s) α(s) − τ(s) θ(s) = 0, and therefore(
1 + λ′1(s)

)
κ(s) =

(
τ(s)λ2(s) + λ′3(s)

)
τ(s), (3.9)

such that τ(s)λ2(s) + λ′3(s) , 0.
In contrast, consider γ to be a curve with the non-vanishing curvatures κ and τ and conditions (3.1)

hold for differentiable functions λ1, λ2, and λ3.
Then, we can create an additional curve, γ̃, as follows

γ̃(s̃) = γ̃
(
g(s)

)
= γ(s) + λ1(s) t(s) + λ2(s) n(s) + λ3(s) b(s). (3.10)

Differentiating Eq (3.10) with respect to s yields

g′(s) t̃(s̃) =
(
1 + λ′1(s)

)
t(s) +

(
τ(s)λ2(s) + λ′3(s)

)
b(s), (3.11)

which gives that

g′(s) =
(
< t̃(s), t̃(s) >G3

) 1
2
=

q1

κ

(
τ(s)λ2(s) + λ′3(s)

)√
κ2 + τ2 , (3.12)

where q1 = sgn
(
τ(s)λ2(s) + λ′3(s)

)
.

Substituting into Eq (3.11), we have

t̃(s̃) =
q1

√
κ2 + τ2

(
τ(s) t(s) + κ(s) b(s)

)
, (3.13)

and hence < t̃(s̃), t̃(s̃) >G3= 1.
Taking

α1(s) =
q1τ(s)
√
κ2 + τ2

, and α2(s) =
q1κ(s)
√
κ2 + τ2

,

then
t̃(s̃) = α1(s) t(s) + α2(s) b(s). (3.14)

Equation (3.14) can be differentiated with respect to s to yield

dt̃
ds̃
=

1
g′(s)

(
α′1 t(s) + α′2 b(s)

)
,

and then

κ̃ =

√
<

dt̃
ds̃
,

dt̃
ds̃
> =

√
α′21 (s) + α′22 (s)

g′(s)
=

q2

(
κτ′ − τκ′

)
g′(s)

(
κ2 + τ2

) = q2 κ
2
(
τ
κ

)′
g′(s)

(
κ2 + τ2

) , (3.15)

such that q2 = sgn
(
κτ′ − τκ′

)
. Then, we may determine ñ(s̃) as follows:

ñ(s̃) =
q1

q2

√
κ2 + τ2

(
κ t(s) − τ b(s)

)
, (3.16)
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and < ñ(s̃), ñ(s̃) >G3= 1. Also, b̃(s̃) can be defined as

b̃(s̃) = t̃(s̃) × ñ(s̃) =
1
q2

n(s), (3.17)

and < b̃(s̃), b̃(s̃) >G3= 1. Finally, we get

τ̃(s̃) = − < b̃′(s̃), ñ(s̃) >=
q1τ

2

√
κ2 + τ2

, 0. (3.18)

Therefore, γ̃ is a Mannheim partner curve of γ. Then γ is a Mannheim curve. □

In Theorem (3.1), if we set λ1(s) = λ3(s) = 0, using the Mannheim mate curve γ̃, which is expressed
as

γ̃(s) = γ(s) + λ2(s) n(s),

we may derive the criteria of classical Mannheim curves seen in the literature.

Corollary 3.2. Assume that the admissible curve γ : I → G3, I ⊂ R has non-vanishing curvatures κ
and τ. After that, the curve γ is a Mannheim curve, and its Mannheim partner γ̃ is defined as

γ̃(s) = γ(s) + λ2(s) n(s),

if λ2(s) exists and it fulfills κ = λ2τ
2, and the opposite is again valid.

Corollary 3.3. Let γ(s) constitute an admissible Mannheim curve through G3 using s as the parameter
for arc length, and let γ̃(s̃) be an admissible Mannheim partner curve of γ. Assume γ(s) is a generalized
helix, then γ̃(s̃) represents a straight line.

Proof. Assume γ : I → G3, I ⊂ R is an admissible Mannheim general helix that has non-vanishing
curvatures κ and τ. Following that, the ratio τ

κ
is constant, which gives from Eq (3.15) that κ̃ = 0. Then,

γ̃(s̃) defines a line. □

Corollary 3.4. Take γ : I ⊂ R → G3 to be an admissible Mannheim curve with non-vanishing
curvatures κ and τ, and let curve γ̃ be the Mannheim partner curve of γ having κ̃ and τ̃ non-zero
curvatures. Thus, given that g′(s) has a non-zero value, γ̃ indicates a general helix if the slant helix is
represented by γ. In addition, the opposite also holds.

Proof. Consider γ : I ⊂ R → G3 as an admissible Mannheim curve with κ; and τ non-vanishing
curvatures and let γ̃ be the Mannheim partner curve of γ having non-zero curvatures κ̃ and τ̃. And,
following that, from Eqs (3.15) and, (3.18), we obtain

κ̃

τ̃
=

q2 κ
2
(
τ
κ

)′
q1g′(s)τ3

√(
τ
κ

)2
+ 1

.

If g′(s) is a non-zero constant, then γ̃ can only be considered a general helix in the event that γ is a
slant helix. □
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In the next part, we introduce special cases for the Mannheim curve in G3 and its Mannheim partner
curve.

Case 3.5. Assuming that γ : I → G3, I ⊂ R is an admissible Mannheim curve with non-zero curvatures
κ(s) and τ(s), then the requirements of Theorem (3.1) have been met. Suppose that λ2 = λ ∈ R. Next,
we are able to acquire

κ(s)λ1(s) = τ(s)λ3(s) and
(
1 + λ′1(s)

)
κ(s) =

(
λ′3(s) + λτ(s)

)
τ(s),

which gives that

λ3(s) =
λτ2(s) − κ(s)

κ(s)
(
τ
κ

)′ and λ1(s) =
τ(s)

[
λτ2(s) − κ(s)

]
κ2(s)

(
τ
κ

)′ .

Therefore, we get the Mannheim partner curve γ̃ as

γ̃(s̃) = γ(s) +
τ(s)

[
λτ2(s) − κ(s)

]
κ2(s)

(
τ
κ

)′ t(s) + λ n(s) +
λτ2(s) − κ(s)

κ(s)
(
τ
κ

)′ b(s).

The following illustration displays the Mannheim curve as an example of the Salkowski curve.

Example 3.6. Consider the Salkowski curve in G3 given by

γ(s) =
(
s,

1
4

(
3 − 4s

)
cos(2

√
s) + 6

√
s sin(2

√
s)
)
,

1
4

((
3 − 4s

)
sin(2

√
s) − 6

√
s cos(2

√
s)
))
,

along with curvatures κ(s) = 1 and τ(s) = 1
√

s and the Frenet frame

t(s) =
(
1,
√

ssin(2
√

s) +
1
2

(
cos(2

√
s)
)
, −
√

scos(2
√

s) +
1
2

(
sin(2

√
s)
))
,

n(s) =
(
0, cos(2

√
s), sin(2

√
s)
)
,

b(s) =
(
0, −sin(2

√
s), cos(2

√
s)
)
.

If we set λ = 0 in case (3.5), the Mannheim partner curve γ̃(s̃) may be derived as

γ̃(s̃) =
(
3s,

3
4

(
cos(2

√
s) + 2

√
ssin(2

√
s)
)
,

3
4

(
sin(2

√
s) − 2

√
scos(2

√
s)
))
, (3.19)

along with curvatures

κ̃ =

√
s(s + 1)

6 s (s + 1)2 , and τ̃ =
√

s(s + 1)
s (s + 1)

,

and it is possible to acquire the Frenet frame as follows

t̃(s̃) =
( 1
√

s + 1
,

1

2
√

s + 1
cos(2

√
s),

1

2
√

s + 1
sin(2

√
s)
)
,

ñ(s̃) =
(
−
√

s
√

s + 1
, −
√

s + 1 sin(2
√

s) −
√

s

2
√

s + 1
cos(2

√
s),
√

s + 1cos(2
√

s) −
√

s

2
√

s + 1
sin(2

√
s)
)
,
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b̃(s̃) =
(
0, −cos(2

√
s), −sin(2

√
s)
)
.

We can easily obtain n(s) = −b̃(s̃), implying that the Mannheim curve γ(s) possesses a Mannheim
partner curve γ̃(s̃). And, γ̃(s̃) is not a general helix (Figure 1).

Figure 1. Curves γ(s) and γ̃(s̃) diagram of Example 3.6.

In the next part, we present a Mannheim Curve as an illustration of the anti-Salkowski curve inside
G3.

Example 3.7. Define γ(s) to be an anti-Salkowski curve in G3, which is given by

γ(s) =
(
s,

16
289

[
8 sin(s) sinh

( s
4

)
− 15 cos(s) cosh

( s
4

)]
,−

16
289

[
8 cos(s) sinh

( s
4

)
+ 15 sin(s) cosh

( s
4

)])
with curvatures κ(s) = cosh

(
s
4

)
and τ(s) = 1, and the Frenet frame in the manner described below:

t(s) =
(
1,

16
17

[
sin(s) cosh

( s
4

)
+

1
4

cos(s) sinh
( s
4

)]
, −

16
17

[
cos(s) cosh

( s
4

)
−

1
4

sin(s) sinh
( s
4

)])
,

n(s) =
(
0, cos(s), sin(s)

)
,

b(s) =
(
0, −sin(s), cos(s)

)
.

Taking λ = 0 in case (3.5), the Mannheim partner curve γ̃(s̃) is then obtained in the following
manner:

γ̃(s̃) =
(
s + 4 coth

( s
4

)
,

128
289

sin(s) sinh
( s
4

)
+

32
289

cos(s) cosh
( s
4

)
−

4
17

sin(s) cosh
( s
4

)
coth

( s
4

)
,

−
128
289

cos(s) sinh
( s
4

)
+

32
289

sin(s) cosh
( s
4

)
+

4
17

cos(s) cosh
( s
4

)
coth

( s
4

))
,

with curvatures κ̃ =
−sgn

(
1
4 sinh

(
s
4

))
tanh

(
s
4

)
4

(
1−csech2

(
s
4

))(
1+cosh2

(
s
4

)) 3
2

and τ̃ =
sgn

(
1−cosech2

(
s
4

))
√

1+cosh2( s
4 )

, and the Frenet frame obtained

as

t̃(s̃) =
sgn

(
1 − cosech2( s

4
))√

1 + cosh2( s
4 )

(
1,

1
17

[
− sin(s)cosh

( s
4

)
+ 4cos(s)sinh

( s
4

)]
,

1
17

[
cos(s)cosh

( s
4

)
+ 4sin(s)sinh

( s
4

)])
,
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ñ(s̃) =
sgn

(
1 − cosech2( s

4
))

sgn
(

1
4 sinh

( s
4
))√

1 + cosh2( s
4 )

(
cosh

( s
4

)
, cosh

( s
4

)[16
17

sin(s)cosh
( s
4

)
+

4
17

cos(s)sinh
( s
4

)]
+ sin(s),

cosh
( s
4

)[
−

16
17

cos(s)cosh
( s
4

)
+

4
17

sin(s)sinh
( s
4

)]
− cos(s)

)
,

b̃(s̃) = 1

sgn
(

1
4 sinh

(
s
4

)) (
0, cos(s), sin(s)

)
.

It is simple to obtain n(s) = sgn
(

1
4 sinh

( s
4

))
b̃(s̃), indicating that γ(s) is a Mannheim curve and that

γ̃(s̃) is its Mannheim partner curve. Again, γ̃(s̃) is not a general helix (Figure 2).

Figure 2. Diagram of curves γ(s) and γ̃(s̃) in Example 3.7.

Example 3.8. Consider the curve in G3 defined by

γ(s) =
(
s,−
√
π s FresnelS

(
s
√
π

)
−2cos

(
s2

2

)
,
√
π s FresnelC

(
s
√
π

)
−2sin

(
s2

2

))
, with the curvatures κ(s) =

s2 and τ(s) = s, where FresnelS (x) =
∫

sin
(
πx2

2

)
dx and FresnelC(x) =

∫
cos

(
πx2

2

)
dx, and the Frenet

frame is obtained as

t(s) =
(
1, s sin

( s2

2

)
−

∫
sin

( s2

2

)
ds, −s cos

( s2

2

)
+

∫
cos

( s2

2

)
ds

)
,

n(s) =
(
0, cos

( s2

2

)
, sin

( s2

2

))
,

b(s) =
(
0, −sin

( s2

2

)
, cos

( s2

2

))
.

Taking λ = 0 in case (3.5), we acquire the Mannheim partner curve γ̃(s̃) according to

γ̃(s̃) =
(
2s, −2s

∫
sin

( s2

2

)
ds − 2cos

( s2

2

)
, 2s

∫
cos

( s2

2

)
ds − 2sin

( s2

2

))
,

with curvatures κ̃ = 1

2
(

s2+1
) 3

2
and τ̃ = s

√
s2+1

. The Frenet frame is calculated as
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t̃(s̃) =

( 1
√

s2 + 1
,

−1
√

s2 + 1

∫
sin

( s2

2

)
ds,

1
√

s2 + 1

∫
cos

( s2

2

)
ds

)
,

ñ(s̃) =

(
−

s
√

s2 + 1
, −
√

s2 + 1 sin
( s2

2

)
+

s
√

s2 + 1

∫
sin

( s2

2

)
ds,
√

s2 + 1 cos
( s2

2

)
−

s
√

s2 + 1

∫
cos

( s2

2

)
ds

)
,

b̃(s̃) =
(
0, −cos

( s2

2

)
, −sin

( s2

2

))
.

Then, we can deduce that n(s) = −b̃(s̃), which means that γ(s) is a Mannheim curve, along with
γ̃(s̃) serving as its Mannheim partner curve. Also, γ̃(s̃) is not a general helix (Figure 3).

Figure 3. Curves γ(s) and γ̃(s̃) of Example 3.8.

Theorem 3.9. Let γ̃ : Ĩ → G3, Ĩ ⊂ R be an admissible curve utilizing the {̃t, ñ, b̃} Frenet frame as well
as the non-zero curvatures κ̃ and τ̃. For each given Mannheim curve, if its Mannheim partner curve is
represented by γ̃, then there exist differentiable functions µ1, µ2, µ3, and δ satisfying the following two
cases:
(1) If Ḃ , 0, then we have

τ̃µ2(s) + µ̇3(s̃) = 0,
1 + µ̇1(s̃)

ḟ
, 0, δ̇ = −̃κ, µ̇2(s̃) + κ̃µ1(s̃) − τ̃µ3(s̃) = δ

(
1 + µ̇1(s̃)

)
. (3.20)

(2) If Ḃ = 0, then we have

τ̃µ2(s̃) + µ̇3(s̃) = 0, µ̇2(s̃) − τ̃µ3(s̃) + κ̃
(
− s̃ + co

)
= d ḟ , (3.21)

where co and d are non-zero constants and B = µ̇2(s̃)+̃κµ1(s̃)−τ̃µ3(s̃)
ḟ . In this case, “.” signifies the derivative

in relation to s̃.

Proof. Suppose that γ is an admissible Mannheim curve with non-zero κ and τ curvatures, specified
by the arc length s, and the Mannheim partner curve of curve γ is represented by curve γ̃, where γ̃ is
parameterized by the arc length s̃. Thus, we may define the curve γ as

γ(s) = γ
(

f (s̃)
)
= γ̃(s̃) + µ1(s̃) t̃(s̃) + µ2(s̃) ñ(s̃) + µ3(s̃) b̃(s̃), (3.22)
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with every s̃ ∈ Ĩ, such that µ1(s̃), µ2(s̃), and µ3(s̃) are differentiable functions on Ĩ.
When we differentiate Eq (3.22) considering s̃, we arrive at

t(s) ḟ =
(
1 + µ̇1(s̃)

)̃
t(s̃) +

(
µ̇2(s̃) + κ̃µ1(s̃) − τ̃µ3(s̃)

)̃
n(s̃) +

(̃
τµ2(s̃) + µ̇3(s̃)

)̃
b(s̃). (3.23)

By taking the dot product of (3.23) with b̃(s̃), we get

τ̃µ2(s̃) + µ̇3(s̃) = 0. (3.24)

Inserting (3.24) in (3.23), we have

t(s) ḟ =
(
1 + µ̇1(s̃)

)̃
t(s̃) +

(
µ̇2(s̃) + κ̃µ1(s̃) − τ̃µ3(s̃)

)̃
n(s̃). (3.25)

By taking the scalar product of (3.25) with itself, we deduce

( ḟ )2 =
(
1 + µ̇1(s̃)

)2
+

(
µ̇2(s̃) + κ̃µ1(s̃) − τ̃µ3(s̃)

)2
. (3.26)

If we set
A =

1 + µ̇1(s̃)
ḟ

, and B =
µ̇2(s̃) + κ̃µ1(s̃) − τ̃µ3(s̃)

ḟ
, (3.27)

we obtain
t(s) = A t̃(s̃) + B ñ(s̃). (3.28)

Differentiating (3.28) with respect to s̃, we obtain

ḟ κ n(s) = Ȧ t̃(s̃) +
(
Ãκ + Ḃ

)
ñ(s̃) + τ̃B b̃(s̃). (3.29)

Since the principle normal vector n(s) of the curve γ(s) and the bi-normal vector b̃(s̃) of its
Mannheim Partner curve is linearly dependent, we reach

κ̃ =
−Ḃ
A
.

We have two cases:

• If Ḃ , 0, then A , 0 and B , 0, which implies

1 + µ̇1(s̃)
ḟ

, 0, and µ̇2(s̃) + κ̃µ1(s̃) − τ̃µ3(s̃) = δ
(
1 + µ̇1(s̃)

)
,

where δ = B
A .

Again, from (3.29), utilizing b̃(s̃) to obtain the scalar product, we acquire Ȧ = 0 and Ãκ + Ḃ = 0,
which gives

δ̇ = −̃κ.

• If Ḃ = 0, then A = 0, which implies µ̇1 = −1 and µ1 = −s̃+ co, where co is constant. Also, we can
deduce that B is non-zero constant (d, say). Now, from Eq (3.27), we have

µ̇2(s̃) − τ̃µ3(s̃) + κ̃
(
− s̃ + co

)
= d ḟ
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□

If we set µ1(s̃) = µ2(s̃) = 0 within Theorem (3.9), we arrive at the requirements of traditional
Mannheim partner curves found in the literature by using

γ(s) = γ
(

f (s̃)
)
= γ̃(s̃) + µ3(s̃)̃b(s̃).

Also, we get
µ̇3(s̃) = 0, δ̇ = −̃κ, −τ̃µ3(s̃) = δ.

So, we have

τ̃ =
−1
a

∫
κ̃ds̃,

for some non-zero real number a. Therefore, this leads us to the next corollary.

Corollary 3.10. Suppose that γ̃ : Ĩ → G3, Ĩ ⊂ R is an admissible curve with non-zero curvatures κ̃
and τ̃, and with the Frenet frame {̃t, ñ, b̃}. If γ̃ is a Mannheim partner curve of a certain Mannheim
curve given by

γ(s) = γ
(

f (s̃)
)
= γ̃(s̃) + µ3(s)̃b(s̃),

then a non-zero real number a exists such that

τ̃ =
−1
a

∫
κ̃ds̃.

4. Conclusions

In this study, a novel method for Mannheim curves in three-dimensional Galilean space was
presented. The necessary and sufficient conditions for a curve to be a Mannheim curve were obtained.
Finally, some examples were introduced.
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