Convergence in the $ L^{\infty} $ norm is a very important consideration in numerical simulations of interface problems. In this paper, a modified stable generalized finite element method (SGFEM) was proposed for solving the second-order elliptic interface problem in the two-dimensional bounded and convex domain. The proposed SGFEM uses a one-side enrichment function. There is no stability term in the weak form of the model problem, and it is a conforming finite element method. Moreover, it is applicable to any smooth interface, regardless of its concavity or shape. Several nontrivial examples illustrate the excellent properties of the proposed SGFEM, including its convergence in both the $ L^2 $ and $ L^{\infty} $ norms, as well as its stability and robustness.
Citation: Pengfei Zhu, Kai Liu. Numerical investigation of convergence in the $ L^{\infty} $ norm for modified SGFEM applied to elliptic interface problems[J]. AIMS Mathematics, 2024, 9(11): 31252-31273. doi: 10.3934/math.20241507
Convergence in the $ L^{\infty} $ norm is a very important consideration in numerical simulations of interface problems. In this paper, a modified stable generalized finite element method (SGFEM) was proposed for solving the second-order elliptic interface problem in the two-dimensional bounded and convex domain. The proposed SGFEM uses a one-side enrichment function. There is no stability term in the weak form of the model problem, and it is a conforming finite element method. Moreover, it is applicable to any smooth interface, regardless of its concavity or shape. Several nontrivial examples illustrate the excellent properties of the proposed SGFEM, including its convergence in both the $ L^2 $ and $ L^{\infty} $ norms, as well as its stability and robustness.
[1] | Z. Chen, J. Zou, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79 (1998), 175–202. https://doi.org/10.1007/s002110050336 doi: 10.1007/s002110050336 |
[2] | J. Huang, J. Zou, Uniform a priori estimates for elliptic and static Maxwell interface problems, Discrete Contin. Dyn. Syst. Ser. B, 7 (2007), 145–170. https://doi.org/10.3934/dcdsb.2007.7.145 doi: 10.3934/dcdsb.2007.7.145 |
[3] | D. Braess, Finite elements: theory, fast solver, and applications in solid mechanics, 3 Eds., Cambridge University Press, UK, 2007. |
[4] | P. Zhu, Q. Zhang, BDF Schemes in stable generalized finite element methods for parabolic interface problems with moving interfaces, CMES-Comput. Model. Eng. Sci., 124 (2020), 107–127. https://doi.org/10.32604/cmes.2020.09831 doi: 10.32604/cmes.2020.09831 |
[5] | J. W. Barrett, C. M. Elliott, Fitted and unfitted finite-element methods for elliptic equations with smooth interfaces, IMA J. Numer. Anal., 7 (1987), 283–300. https://doi.org/10.1093/imanum/7.3.283 doi: 10.1093/imanum/7.3.283 |
[6] | Z. Li, T. Lin, X. Wu, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96 (2003), 61–98. https://doi.org/10.1007/s00211-003-0473-x doi: 10.1007/s00211-003-0473-x |
[7] | S. Adjerid, T. Lin, H. Meghaichi, A high order geometry conforming immersed finite element for elliptic interface problems, Comput. Methods Appl. Mech. Engrg., 420 (2024), 116703. https://doi.org/10.1016/j.cma.2023.116703 doi: 10.1016/j.cma.2023.116703 |
[8] | R. Guo, T. Lin, X. Zhang, Nonconforming immersed finite element spaces for elliptic interface problems, Comput. Math. Appl., 75 (2018), 2002–2016. https://doi.org/10.1016/j.camwa.2017.10.040 doi: 10.1016/j.camwa.2017.10.040 |
[9] | T. Lin, Y. Lin, X. Zhang, Partially penalized immersed finite element methods for elliptic interface problems, SIAM J. Numer Anal., 53 (2015), 1121–1144. https://doi.org/10.1137/130912700 doi: 10.1137/130912700 |
[10] | R. E. Ewing, Z. Li, T. Lin, Y. Lin, The immersed finite volume element methods for the elliptic interface problems, Math. Comput. Simul., 50 (1999), 63–76. https://doi.org/10.1016/S0378-4754(99)00061-0 doi: 10.1016/S0378-4754(99)00061-0 |
[11] | L. Zhu, Z. Zhang, Z. Li, An immersed finite volume element method for 2D PDEs with discontinuous coefficients and non-homogeneous jump conditions, Comput. Math. Appl., 70 (2015), 89–103. https://doi.org/10.1016/j.camwa.2015.04.012 doi: 10.1016/j.camwa.2015.04.012 |
[12] | Q. Wang, J. Xie, Z. Zhang, L. Wang, Bilinear immersed finite volume element method for solving matrix coefficient elliptic interface problems with non-homogeneous jump conditions, Comput. Math. Appl., 86 (2021), 1–15. https://doi.org/10.1016/j.camwa.2020.12.016 doi: 10.1016/j.camwa.2020.12.016 |
[13] | Q. Wang, Z. Zhang. A stabilized immersed finite volume element method for elliptic interface problems, Appl. Numer. Math., 143 (2019), 75–87. https://doi.org/10.1016/j.apnum.2019.03.010 doi: 10.1016/j.apnum.2019.03.010 |
[14] | Q. Wang, Z. Zhang, L. Wang, New immersed finite volume element method for elliptic interface problems with non-homogeneous jump conditions, J. Comput. Phys., 427 (2021), 110075. https://doi.org/10.1016/j.jcp.2020.110075 doi: 10.1016/j.jcp.2020.110075 |
[15] | T. Strouboulis, K. Copps, I. Babuška, The generalized finite element method, Comput. Methods Appl. Mech. Engrg., 190 (2001), 4081–4193. https://doi.org/10.1016/S0045-7825(01)00188-8 doi: 10.1016/S0045-7825(01)00188-8 |
[16] | I. Babuška, U. Banerjee, J. E. Osborn, Generalized finite element methods-mail ideas, results and perspective, Int. J. Comput. Methods, 1 (2004), 67–103. https://doi.org/10.1142/S0219876204000083 doi: 10.1142/S0219876204000083 |
[17] | T. Belytschko, R. Gracie, G. Ventura, A review of extended/generalized finite element methods for material modeling, Model. Simul. Mater. Sci Eng., 17 (2009), 043001. https://doi.org/10.1088/0965-0393/17/4/043001 doi: 10.1088/0965-0393/17/4/043001 |
[18] | T. P. Fries, T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. Methods Eng., 84 (2010), 253–304. https://doi.org/10.1002/nme.2914 doi: 10.1002/nme.2914 |
[19] | K. W. Cheng, T. P. Fries, Higher-order XFEM for curved strong and weak discontinuities, Internat. J. Numer. Methods Engrg., 82 (2010), 564–590. https://doi.org/10.1002/nme.2768 doi: 10.1002/nme.2768 |
[20] | H. Sauerland, T. P. Fries, The extended finite element method for two-phase and free-surface flows: a systematic study, J. Comput. Phys., 230 (2011) 3369–3390. https://doi.org/10.1016/j.jcp.2011.01.033 doi: 10.1016/j.jcp.2011.01.033 |
[21] | I. Babuška, U. Banerjee, Stable generalized finite element method, Comput. Methods Appl. Mech. Engrg., 201–204 (2012), 91–111. https://doi.org/10.1016/j.cma.2011.09.012 doi: 10.1016/j.cma.2011.09.012 |
[22] | K. Kergrene, I. Babuška, U. Banerjee, Stable generalized finite element method and associated iterative schemes: application to interface problems, Comput. Methods Appl. Mech. Engrg., 305 (2016), 1–36. https://doi.org/10.1016/j.cma.2016.02.030 doi: 10.1016/j.cma.2016.02.030 |
[23] | I. Babuška, U. Banerjee, K. Kergrene, Strongly stable generalized finite element method: application to interface problems, Comput. Methods Appl. Mech. Engrg., 327 (2017), 58–92. https://doi.org/10.1016/j.cma.2017.08.008 doi: 10.1016/j.cma.2017.08.008 |
[24] | Q. Zhang, U. Banerjee, I. Babuška, High order stable generalized finite element methods, Numer. Math., 128 (2014), 1–29. https://doi.org/10.1007/s00211-014-0609-1 doi: 10.1007/s00211-014-0609-1 |
[25] | Q. Zhang, I. Babuška, A stable generalized finite element method (SGFEM) of degree two for interface problems, Comput. Methods Appl. Mech. Engrg., 363 (2020), 112889. https://doi.org/10.1016/j.cma.2020.112889 doi: 10.1016/j.cma.2020.112889 |
[26] | Q. Deng, V. Calo, Higher order stable generalized finite element method for the elliptic eigenvalue and source problems with an interface in 1D, J. Comput. Appl. Math., 368 (2020), 112558. https://doi.org/10.1016/j.cam.2019.112558 doi: 10.1016/j.cam.2019.112558 |
[27] | Q. Zhang, U. Banerjee, I. Babuška, Strongly stable generalized finite element method (SSGFEM) for a non-smooth interface problem, Comput. Methods Appl. Mech. Engrg., 344 (2019), 538–568. https://doi.org/10.1016/j.cma.2018.10.018 doi: 10.1016/j.cma.2018.10.018 |
[28] | Q. Zhang, U. Banerjee, I. Babuška, Strongly stable generalized finite element method (SSGFEM) for a non-smooth interface problem Ⅱ: a simplified algorithm, Comput. Methods Appl. Mech. Engrg., 363 (2020), 112926. https://doi.org/10.1016/j.cma.2020.112926 doi: 10.1016/j.cma.2020.112926 |
[29] | W. Gong, H. Li, Q. Zhang, Improved enrichments and numerical integrations in SGFEM for interface problems, J. Comput. Appl. Math., 438 (2024), 115540. https://doi.org/10.1016/j.cam.2023.115540 doi: 10.1016/j.cam.2023.115540 |
[30] | Q. Zhang, I. Babuška, U. Banerjee, Robustness in stable generalized finite element methods (SGFEM) applied to Poisson problems with crack singularities, Comput. Methods Appl. Mech. Engrg., 311 (2016), 476–502. https://doi.org/10.1016/j.cma.2016.08.019 doi: 10.1016/j.cma.2016.08.019 |
[31] | H. Li, C. Cui, Q. Zhang, Stable generalized finite element methods (SGFEM) for interfacial crack problems in bi-materials, Eng. Anal. Bound. Elem., 138 (2022), 83–94. https://doi.org/10.1016/j.enganabound.2022.01.010 doi: 10.1016/j.enganabound.2022.01.010 |
[32] | P. Zhu, Q. Zhang, T. Liu, Stable generalized finite element method (SGFEM) for parabolic interface problems, J. Comput. Appl. Math., 367 (2020), 112475. https://doi.org/10.1016/j.cam.2019.112475 doi: 10.1016/j.cam.2019.112475 |
[33] | V. Gupta, C. A. Duarte, I. Babuška, U. Banerjee, A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics, Comput. Methods Appl. Mech. Engrg., 266 (2013), 23–39. https://doi.org/10.1016/j.cma.2013.07.010 doi: 10.1016/j.cma.2013.07.010 |
[34] | A. G. Sanchez-Rivadeneira, C. A. Duarte, A stable generalized/extended FEM with discontinuous interpolants for fracture mechanics, Comput. Methods Appl. Mech. Engrg., 345 (2019), 876–918. https://doi.org/10.1016/j.cma.2018.11.018 doi: 10.1016/j.cma.2018.11.018 |
[35] | A. G. Sanchez-Rivadeneira, N. Shauer, B. Mazurowski, C. A. Duarte, A stable generalized/extended p-hierarchical FEM for three-dimensional linear elastic fracture mechanics, Comput. Methods Appl. Mech. Engrg., 364 (2020), 112970. https://doi.org/10.1016/j.cma.2020.112970 doi: 10.1016/j.cma.2020.112970 |
[36] | N. Moës, M. Cloirec, P. Cartraud, J. F. Remacle, A computational approach to handle complex microstructure geometries, Comput. Methods Appl. Mech. Engrg., 192 (2003), 3163–3177. https://doi.org/10.1016/S0045-7825(03)00346-3 doi: 10.1016/S0045-7825(03)00346-3 |
[37] | Q. Zhang, C. Cu, U. Banerjee, I. Babuška, A condensed generalized finite element methods (CGFEM) for interface problems, Comput. Methods Appl. Mech. Engrg., 391 (2022), 114537. https://doi.org/10.1016/j.cma.2021.114537 doi: 10.1016/j.cma.2021.114537 |
[38] | G. Jo, D. Y. Kwak, Y. J. Lee, Locally conservative immersed finite element method for elliptic interface problems, J. Sci. Comput., 87 (2021), 60. https://doi.org/10.1007/s10915-021-01476-1 doi: 10.1007/s10915-021-01476-1 |