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Abstract: Convergence in the L∞ norm is a very important consideration in numerical simulations of
interface problems. In this paper, a modified stable generalized finite element method (SGFEM) was
proposed for solving the second-order elliptic interface problem in the two-dimensional bounded and
convex domain. The proposed SGFEM uses a one-side enrichment function. There is no stability term
in the weak form of the model problem, and it is a conforming finite element method. Moreover, it is
applicable to any smooth interface, regardless of its concavity or shape. Several nontrivial examples
illustrate the excellent properties of the proposed SGFEM, including its convergence in both the L2 and
L∞ norms, as well as its stability and robustness.
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1. Introduction

In practical applications, partial differential equations (PDEs) can characterize and describe various
physical phenomena and engineering problems effectively. In many engineering fields, elliptic PDEs
with discontinuous coefficients are an important class of mathematical and physical equations, which
can be used to describe various physical phenomena and engineering problems, such as bi-material
interface cracks, multi-phase flows, fluid-structure interaction, as well as crystal growth. These
situations involve multiple materials or fluids with distinct properties on the entire physical domain.
These physical problems and natural phenomena modeled by various types of elliptic PDEs, referred
to as “interface problems”, may exhibit some non-smooth characteristics, such as discontinuities, high
gradients, and singularities. The non-smooth features on the interfaces will significantly affect the
regularity of the solution for model problem [1, 2]. As a result, these non-smooth features on the
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interface pose difficulties in accurately representing and simulating the interactions between different
materials or fluids.
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Figure 1. Fitted mesh and its quality measured by the chunkiness parameter cK =
hK
ρK

. The
left figure shows that the interface is approximated by a convex polygon. The right figure
shows that the chunkiness parameters of the yellow and orange triangles are larger than the
ones of other triangles, which means that their smallest angles are very narrow.

Due to their flexibility in mesh generation and their ability to handle problems with irregular
geometries, finite element methods (FEMs) are now viewed as powerful tools for solving PDEs that
occur in various engineering disciplines. When addressing interface problems in a finite element
framework, the discrete background mesh can be categorized as fitted mesh and unfitted mesh, based on
the alignment between the mesh and the interface. Classical FEMs often exhibit poor convergence rates
when solving interface problems under the unfitted mesh framework, while satisfactory accuracy can be
achieved if fitted meshes are used, as shown in the left figure of Figure 1. For a triangulation Th = {K}
of a bounded domain Ω ⊂ R2, the chunkiness parameter cK , defined as the ratio of the circumradius
hK of triangle K to the inradius ρK of that triangle, measures the minimum angle of triangle K and
is a significant indicator of mesh quality. A large chunkiness parameter indicates that the triangle K
is extremely elongated, which leads to poor mesh quality. The right figure of Figure 1 illustrates the
mesh quality of the fitted mesh mentioned earlier and clearly shows yellow and orange triangles with
larger chunkiness parameters. A triangulation Th = {K} based on a bounded domain Ω ⊂ R2 is called
shape-regular if cK =

hK
ρK
≤ β for every element K ∈ Th, where the positive constant β does not depend

on the given mesh parameter [3]. It is extremely difficult to construct high-quality meshes that are
tailored to match different types of interfaces in cases where the computational domain or interface
involve complex shapes. Moreover, a significant amount of time and computational resources would
be required to create an interface-fitted mesh with high quality, especially when dealing with time
dependent interface problems. For example, when calculating the solution to problems involving a
moving interface, it is necessary to perform mesh partitioning at different temporal layers since the
numerical solution at the previous temporal layer may be projected onto the new mesh at the current
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temporal layer [4].
Although FEMs based on a unfitted mesh suffer from low precision and a poor rate of convergence

in various norms when handling interface problems, unfitted mesh methods based on fixed quasi-
uniform meshes have always attracted extensive attention in the field of numerical solutions for PDEs
due to their advantages, such as flexibility, adaptability to dynamic physical processes, and handling
of irregular domains [5]. Therefore, numerical methods with unfitted meshes, such as the immersed
FEM [6–9], the immersed finite volume element method (FVEM) [10–14], and the generalized or
extended FEM (GFEM/XFEM) [15–20], have made significant advancements for solving interface
problems since the beginning of this century. Given the fundamental similarity in the ideas of GFEM
and XFEM, they will be hereafter collectively referred to as GFEM.

In the context of immersed FEM and immersed FVEM, the basis functions close to the interface
require some local modifications such that the given jump conditions associated with the interface
problem are preserved as accurately as possible, while standard basis functions are employed on
elements located away from the interface, as usual. Hence these two methods maintain the same
number of basis functions as their classic counterparts. Both conforming and non-conforming
immersed FEMs have been presented in [6–8]. It was shown in [6] that the conforming immersed
FEM yields satisfactory accuracy and convergence in terms of the L∞ norm, while the non-conforming
immersed FEM fails to do so in some cases of significantly large ratios of jump coefficients.
Additionally, numerical results in [9] have already shown that the classic immersed FEM exhibits
comparatively larger point-wise errors around the interface and leads to poor convergence behavior
in both L2 and L∞ norms when the mesh is more refined. To address these issues, the authors of [9]
developed a partial-penalty immersed FEM, in which the penalty strategies were adopted to maintain
the desired convergence rates in the L2 and L∞ norms for elliptic interface problems. In order to
locally preserve the physical conservation laws, the authors of [10] presented an immersed FVEM to
solve elliptic interface problems in the late 1990s; however, the numerical results sometimes exhibited
oscillating features when there was a large ratio of jump coefficients. In [11–13], various techniques
such as the source removal technique and adding stability terms were employed to improve the
traditional immersed FVEM for solving elliptic interface problems. At the same time, the convergence
of approximate solutions in the sense of the L∞ norm was investigated through extensive numerical
examples. In [14], a new immersed FVEM without stability terms was proposed and the authors
explored the convergence of the L∞ norm through numerical examples.

The GFEM is an extended version of the traditional FEM, incorporating non-polynomial shape
functions into the standard FEM approximation space. However, the GFEM may cause severe ill-
conditioning of the linear equations [18, 21, 22]. Recently, a stable GFEM has grown to become a
very efficient and robust numerical method for addressing the issue of ill-conditioning in GFEM [21–
24], as it satisfies these excellent properties: (a) It can achieve an optimal convergence rate (first-
order accuracy for linear finite element shape functions) in the sense of the energy norm; (b) the
growing speed of the scaled stiffness matrix conditioning exhibits a trend almost identical to that of
traditional FEM; (c) it exhibits robustness as the relative distance between the interface and mesh
boundaries decreases. In [21–23], the SGFEM was utilized to solve elliptic interface problems, and
a detailed convergence analysis of the energy norm was provided in [23]. In [24], a higher-order
SGFEM was developed, and it has been used to solve elliptic interface problems [25] and elliptic
eigenvalue problems [26], where it achieved optimal higher-order convergence rates. In [27, 28], a
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strongly SGFEM with singular and distance functions as enrichment functions was introduced to solve
specific non-smooth interface problems with corner interfaces. To reduce computational complexity, an
improved SGFEM was investigated for interface problems in [29], which did not require the evaluation
of distance function gradients. Additionally, a proof of convergence analysis of the energy norm was
provided. The SGFEM has also been extensively applied to other mathematical models and physical
problems with interfaces, such as crack problems [30,31], parabolic interface problems [4,32], fracture
mechanics [33–35], and so on.

In the SGFEM studies mentioned above, the study of convergence mostly focuses on the energy
norm or the H1 semi-norm; and what is more, most of the interfaces associated with model problems
are trivial in the numerical experiments. However, as far as we know, there has been limited studies
on the numerical investigation of L∞ norm convergence using the SGFEM for the elliptic interface
problems with complicated interfaces. In this paper, a modified SGFEM is presented to solve elliptic
interface problems with complicated but smooth interfaces, where a one-side distance function or level
set function serves as the enrichment function. The modified SGFEM is based on an unfitted mesh,
and there are no stability terms or penalty parameters in the weak form of the model problem, that is to
say, it is a conforming FEM. The numerical convergence behavior of the modified SGFEM is verified
with respect to the L2 and L∞ norms through several non-trivial numerical examples, and at the same
time, its stability and robustness are evaluated.

The remaining sections are structured as follows. The elliptic interface problem and its
corresponding weak form are presented in Section 2. In Section 3, the methodologies of standard
SGFEM and proposed SGFEM with a one-side enrichment function are explained in detail. In
Section 4, several non-trivial numerical examples are presented, in which the relevant interfaces have
different shapes to illustrate the convergence, stability, and robustness of the presented SGFEM. The
conclusions are drawn in the last section.

2. Elliptic interface problem

In this paper, we will consider a classical second-order elliptic interface problem defined on a
bounded and convex domain Ω ⊆ R2. The model problem with a Neumann boundary condition is
stated as follows:

−∇ · (a∇u) = f , x ∈ Ω, (2.1)

a
∂u
∂n⃗b

= g, x ∈ ∂Ω, (2.2)

where the solution domain Ω is divided into the two mutually disjoint subdomains Ω0 and Ω1 by a
smooth interface Γ = Ω0 ∩ Ω1, as shown in Figure 2, and n⃗b is the unit outward normal vector of the
boundary ∂Ω. The coefficient function a(x) = ai for x ∈ Ωi, i = 0, 1, in which a0 and a1 are known
positive constants, is discontinuous on the interface Γ. The jump conditions of the solution and its
gradient are specified as

[u]Γ = 0,
[
a
∂u
∂n⃗

]
Γ

= q on Γ, (2.3)

where n⃗ stands for the unit outward normal vector of the given smooth interface Γ, and the notation
[u]Γ = u|Ω0 − u|Ω1 represents the difference of the function u restricted to the given smooth interface Γ.
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Figure 2. A plane domain Ω containing an interface Γ.

The weak form of the classical second-order elliptic interface problem (2.1) is described as follows:
Find u ∈ E(Ω), such that

B (u, v) = F(v),∀ v ∈ E(Ω), (2.4)

where the bilinear form B(·, ·) and linear functional F(·) are defined as

B(u, v) =
∫
Ω

a∇u · ∇v dx, F(v) =
∫
Ω

f v dx +
∫
∂Ω

gv ds +
∫
Γ

qv ds, (2.5)

and the energy space is expressed as

E(Ω) := {u ∈ H1(Ω) : B(u, u) < +∞, [u]Γ = 0}. (2.6)

The compatibility condition F(1) = 0 holds true for the given functions f , g, and q. For the elliptic
interface problem (2.1) with Neumann boundary condition, the weak solution u is uniquely determined
in the energy space E(Ω), up to a constant term. The imposition of an essential constraint on the
boundary ∂Ω allows the determination of a unique solution.

Remark 2.1. The focus of the discussion now shifts to the clarification of the interface jump
conditions (2.3). In many physics problems, it is common to come across weakly or strongly
discontinuous interface problems [19, 20]. Weak discontinuities are expressed through kinks in the
solution function u, where the function is continuous on the interface (i.e., [u]Γ = 0), and a discontinuity
is present in the gradient (the jump in the flux may be non-homogeneous, i.e.,

[
a∂u
∂n⃗

]
Γ
= q , 0). On the

other hand, strong discontinuities refer to jumps in the solution function, where the solution function u
satisfies [u]Γ , 0 on the interface. In this paper, we only consider the case of weak discontinuity.

3. The modified SGFEM

This section begins with an intensive review of GFEM, followed by an introduction to the stable
GFEM (SGFEM) with a one-side distance function.
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For a bounded and convex domain Ω, let Th = {K} be a regular and uniform finite element mesh
with size h. The mesh consists of closed quadrilateral elements K, such that Ω = ∪K∈Th K. The nodes
related to the finite element mesh Th = {K} are represented as {xi}i∈Ih , where Ih is the index set. For
each node xi, the classical bilinear finite element basis function is defined as ϕi, and its support is
represented as supp{ϕi} = ω̄i, where ωi is the patch related to xi. These finite element basis functions
{ϕi}i∈Ih possess the property of partition of unity, i.e.,

∑
i∈Ih

ϕi(x) = 1.

For the weak form (2.4), the approximation solution uh for the standard FEM is defined as follows:

uh(x) =
∑
i∈Ih

ϕi(x)ui ∈ SFEM, (3.1)

where SFEM is the standard FEM approximation space, and ui is the nodal degrees of freedom (DOFs)
associated with the basis function ϕi. It is widely acknowledged that the standard FEM can obtain
satisfactory numerical results only in the case of smooth problems, whereas standard FEMs with
unfitted meshes have poor approximation properties when addressing interface problems [22]. To
improve approximation accuracy, some special (non-polynomial) basis functions are added into the
initial FEM space to establish a good approximation space with the capability of mimicking the
non-smooth features on the interface. Consequently, the standard FEM approximation space SFEM

is converted into the GFEM approximation space SGFEM. The approximate solution uh for the interface
problem, which belongs to the approximation space SGFEM, can be written as

uh(x) =
∑
i∈Ih

ϕi(x)ci +
∑

i∈Ih,enr

ϕi(x)Πi(x)bi ∈ SGFEM = SFEM + SENR, (3.2)

where the set Ih,enr ⊂ Ih represents the index set of enriched nodes; the function Πi, referred to as
enrichment function, usually depends on the specific problem; the coefficients ci and bi are standard
and enriched nodal DOFs related to the components ϕi and ϕiΠi, respectively; and SENR stands for the
global enrichment space.

For smooth interface problems with weak discontinuities, a so-called distance function

D(x) = dist(x,Γ), dist(x,Γ) is the distance of point x to the interface Γ, (3.3)

or the absolute value of the level set function

D(x) = |φ(x)|, φ(x) is a level set function, (3.4)

which possesses a weak discontinuous property is commonly used as the enrichment function [18, 22,
36]. It can be seen that D(x) is equal to zero for any point x ∈ Γ, and the continuity is maintained
in D(x) but not in its derivative. Unfortunately, the system matrix could be badly conditioned and
bring about a large condition number when the GFEM is applied to the interface problem, leading
to the GFEM approximation solution (3.2) having poor accuracy for interface problems [21–24, 32].
To improve the accuracy and conditioning of the GFEM, a stable GFEM with a local modification
of the enrichment function was developed in [21] and further studied in [22–24]. Therefore, the
approximation solution uh, belonging to the SGFEM approximation space SS GFEM can be corrected as

uh(x) =
∑
i∈Ih

ϕi(x)ci +
∑

i∈IΓh,enr

ϕi(x)
(
D(x) − IhD(x)

)
bi, (3.5)
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and
IΓh,enr = {i ∈ Ih : xi ∈ K where K̊ ∩ Γ , ∅},

where Ih is an interpolation operator with the finite element hat function as the interpolation function.
In [32], an SGFEM with a one-side enrichment function D̃ (see (3.7)) was proposed to solve parabolic
interface problems, where the corresponding approximation function was written as

uh(x) =
∑
i∈Ih

ϕi(x)ci +
∑

i∈IΓh,enr

ϕi(x)
(
D̃(x) − IhD̃(x)

)
bi, (3.6)

where the one-side enrichment function is given by

D̃(x) =
{

D(x), x ∈ Ω0,

0, x ∈ Ω1.
(3.7)

We note that the modified enrichment functions D−IhD and D̃−IhD̃ are equal to zero at the nodes and
not equal to zero in the interior of the interface elements. The SGFEM approximation solution obtained
from (3.5) or (3.6) satisfies these excellent properties: (a) It can achieve an optimal convergence
rate (first-order accuracy for linear finite element shape functions) in the sense of the energy norm;
(b) the growth speed of the scaled stiffness matrix conditioning exhibits a trend almost identical to
that of traditional FEM; (c) it remains robust as the relative distance between the interface and mesh
boundaries decreases. Certainly, it is possible to replace the one-side enrichment function with

D̃(x) =
{

0, x ∈ Ω0,

D(x), x ∈ Ω1.
(3.8)

For convenience, in this paper, SGFEMs with a one-side enrichment function (3.7) (or (3.8)) is
referred to as SGFEM0 (or SGFEM1). The enrichment functions are problem-dependent, and different
enrichment strategies are used to approximate different types of interface problems. For interface
problems with strong discontinuities, it can be observed that there is a jump in the solution on the
interface. As a result, the Heaviside step or sign function is commonly chosen as an enrichment
function to model the strong discontinuity of the model problem on the interface [19, 20]. For the
non-smooth interface problem with a corner on the interface, its solution always has singularity at the
corner, thus the modified singular function and modified distance function are required to approximate
the solution more accurately and to ensure convergence [27, 28].

Using the Ritz-Galerkin method, the variational problem (2.4) can be discretized in the SGFEM
approximation space SS GFEM spanned by the finite element basis functions ϕi and non-polynomial
basis functions ϕi(D̃ − IhD̃). Let SS GFEM ⊂ E(Ω) be a finite dimensional space, and the SGFEM
solution uh ∈ SS GFEM satisfies

B (uh, vh) = F(vh), ∀ vh ∈ SS GFEM. (3.9)

In light of the Galerkin orthogonality, we have the following error estimate:

∥u − uh∥E(Ω) = B (u − uh, u − uh)1/2
≤ min

v∈SS GFEM
∥u − v∥E(Ω), (3.10)
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which implies that the approximate solution uh belonging to the finite dimensional space SS GFEM is the
best approximation in the energy space E(Ω). Hence, a space with good approximation properties is
crucial in ensuring that the SGFEM produces accurate approximations for non-smooth problems. One
noteworthy feature of the suggested SGFEM is that the bilinear form B(·, ·) does not include additional
stabilization terms in the discrete weak form (3.9) and the computational expense of assembling the
stiffness matrix and load term is only marginally higher than that of conventional FEM. Furthermore,
the stiffness matrix derived from the discrete weak form (3.9) remains unchanged regardless of
variations in the gradient jump conditions.

The stiffness matrix A associated with the aforementioned weak form (3.9) is a symmetric definite
matrix. The condition number of the stiffness matrix A is a pivotal indicator when solving linear
equation systems. Its scaled condition number (SCN) is now discussed in detail. The SCN of matrix
A is measured by the condition number of scaled matrix Â = DAD, where Dii = A−1/2

ii is a diagonal
matrix. Then, the SCN K of stiffness matrix A is given by

K := κ2(Â), (3.11)

where κ2(Â) refers to the spectral condition number of the invertible matrix Â.

Remark 3.1. We mention that the GFEM with the enriched node set IΓh,enr is called topological GFEM,
and the GFEM with the enriched nodes within a specified region adjacent to the interface is referred
to as geometric GFEM [22, 32]. These two methods have some shortcomings in solving interface
problems. Topological GFEM cannot obtain the first-order accuracy in the energy norm for linear
elements, while geometric GFEM brings more enriched DOFs and leads to bad SCN of stiffness
matrix [22]. It is obvious that the SGFEM and topological GFEM have a minimum of enriched DOFs
when compared with the geometric GFEM, and their extra computational costs are minimal among
these GFEMs (including SGFEM). Therefore, in the following numerical experiments, topological and
geometric GFEMs are not taken into consideration.

4. Numerical experiments

In the experiment section, we consider the standard FEM along with various SGFEMs. These
SGFEMs include SGFEM, SGFEM0, and SGFEM1. The convergence, stability, and robustness of
the proposed SGFEM are verified through various types of numerical examples. In the numerical
experiments, we discretize the bounded domain Ω using an N × N rectangular mesh. Assuming a0 = 1
or a1 = 1, several numerical tests with different contrasts ρ (defined by ρ = a1

a0
) are conducted. In

certain specific cases, numerical tests about variable coefficients are also implemented.
For comparison, the numerical relative errors of the approximation solution uh in the sense of L2

and L∞ norms are given by

∥e∥L2(Ω) =
∥u − uh∥L2(Ω)

∥u∥L2(Ω)
, ∥e∥L∞(Ω) =

∥u − uh∥L∞(Ω)

∥u∥L∞(Ω)
, (4.1)

where

∥u∥L2(Ω) =
( ∫
Ω

|u|2 dx
)1/2

and ∥u∥L∞(Ω) = max
K∈Th
∥u∥L∞(K) (4.2)
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denote the L2 and infinity norms of the function u over the whole domain Ω. To calculate ∥u∥L∞(K),
we choose 10 × 10 uniformly distributed points on the element K and compute the maximum absolute
value of u among these sampling points. Similarly, we compare the SCN of the stiffness matrix A
measured by (3.11).

4.1. Convergence and SCN

In this subsection, the convergence and stability of various SGFEMs are verified by some numerical
examples with straight or curved interfaces. For a straight or curved interface given by the set Γ = {x =
(x, y) ∈ Ω : γ(x) = 0}, the domain Ω∩{x : γ(x) < 0} is denoted as Ω0 and Ω∩{x : γ(x) > 0} is denoted
as Ω1.

Example 4.1. In this example, a straight interface problem defined on the solution domain Ω = (0, 1)2

is considered, where the interface Γ is defined by a straight line segment {x ∈ Ω : y − tan(θ0)(x − 1 −
d0) − 1 = 0}, and its analytical solution u is represented by

u =

rα0 cos(α0(θ + π − θ0)) + rα0 sin(α0(θ + π − θ0)), x ∈ Ω0,

rα0 cos(α0(θ + π − θ0)) + a0
a1

rα0 sin(α0(θ + π − θ0)), x ∈ Ω1,

with α0 = 2, θ0 = π6 , and d0 =
1
π
, where the point A(1 + d0, 1) outside the solution domain is the center

of the polar coordinate system (r, θ) with the polar axis {x : x > 1+ d0, y = 1}. This numerical example
was introduced in [37].

The mesh size is set as h = 1
2k+1 , where k = 1, 2, · · · , 7, in this example. The relative errors associated

with various SGFEMs and FEM are presented in Figure 3 for different contrasts ρ. It is noted that the
relative errors of the approximation solution uh in both L2 and L∞ norms are slightly larger for ρ = 100
compared to ρ = 10. As might be expected, it is clear form Figure 3 that the standard FEM only has
poor convergence rates in both L2 and L∞ norms, since the mesh is not an interface-fitted mesh. It
can be observed that various SGFEMs (including SGFEM, SGFEM0, and SGFEM1) exhibit second-
order accuracy in the sense of L2 and L∞ norms. The SCNs KFEM, KS GFEM ,KS GFEM0, and KS GFEM1

associated with the stiffness matrices are plotted against h in Figure 4, where it can be observed that
they grow at the same rate, although the magnitude of the SCNs obtained by various SGFEMs is
slightly larger compared to those of the standard FEM. These numerical results show that the SGFEMs
possess excellent convergence and are indeed stable.

Example 4.2. In this example, a circular interface problem with different flux conditions is considered,
where the circular interface is defined as Γ = {x ∈ Ω : (x− x0)2+(y−y0)2−r2

0 = 0} centered at O(x0, y0)
with radius r0. The classical solution u of the interface problem, with a homogeneous jump condition
in flux

[
a∂u
∂n⃗

]
Γ
= 0, is chosen as

u =


2a1

(a1−a0)r4
0
r2 cos(2θ), x ∈ Ω0,

a1+a0
(a1−a0)r4

0
r2 cos(2θ) + r−2 cos(2θ), x ∈ Ω1,

and the classical solution u of the interface problem, with a non-homogeneous jump condition in flux
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a∂u
∂n⃗

]
Γ
= (a1 − a0) sin(xy)(y cos θ + x sin θ) , 0, is given by

u =


2a1

(a1−a0)r4
0
r2 cos(2θ) + cos(xy), x ∈ Ω0,

a1+a0
(a1−a0)r4

0
r2 cos(2θ) + r−2 cos(2θ) + cos(xy), x ∈ Ω1,

where the point O(x0, y0) inside the given domain Ω = (0, 1)2 is the center of the polar coordinate
system (r, θ), and the polar axis is {x : x > x0, y = y0}. For the numerical example, we will take
x0 =

1
√

5
, y0 =

1
√

3
, and r0 =

1
√

10
. This numerical example with the homogeneous jump condition in flux

was introduced in [37].

The mesh size is set as h = 1
2k+1 , k = 1, 2, · · · , 7. The relative errors with homogeneous and non-

homogeneous jump conditions in flux, associated with the different SGFEMs and FEM are presented
in Figures 5–7 for different contrasts ρ. It is evident that all SGFEMs yield second-order accuracy in
terms of various norms, whereas the standard FEM only achieves first-order accuracy. The approximate
solution obtained by various SGFEMs in the L2 norm is slightly larger than the second-order accuracy
for both cases of smaller and larger contrasts (ρ = 1/1000 and ρ = 1000). The SCNs of the stiffness
matrices obtained by different SGFEMs and FEM are plotted with respect to h in Figure 8 for different
contrasts ρ. The figure shows that various SGFEMs (including SGFEM, SGFEM0, and SGFEM1) are
well conditioned, that is to say, their SCNs grow at the rate of O(h−2) with further mesh refinement for
different contrasts ρ. Thus, the proposed SGFEM is indeed stable.
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Figure 3. The relative errors against h of FEM and various SGFEMs for the straight interface
problem. Left: L2 norm; Right: L∞ norm.
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Figure 4. The SCNs of stiffness matrices against h of FEM and various SGFEMs for the
straight interface problem.
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Figure 5. The relative errors against h of FEM and various SGFEMs for the circular interface
problem with the homogeneous jump condition in flux. Left: L2 norm; Right: L∞ norm.
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Figure 6. The relative errors against h of FEM and various SGFEMs for the circular interface
problem with the homogeneous jump condition in flux. Left: L2 norm; Right: L∞ norm.
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Figure 7. The relative errors against h of FEM and various SGFEMs for the circular interface
problem with the non-homogeneous jump condition in flux. Left: L2 norm; Right: L∞ norm.

AIMS Mathematics Volume 9, Issue 11, 31252–31273.



31264

10
-2

10
-1

h

10
2

10
3

10
4

10
5

10
6

10
7

K
A

O(h−2)

FEM ρ=10

SGFEM ρ=10

SGFEM0 ρ=10

SGFEM1 ρ=10

FEM ρ=100

SGFEM ρ=100

SGFEM0 ρ=100

SGFEM1 ρ=100

10
-2

10
-1

h

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

K
A O(h−2)

FEM ρ=1/1000

SGFEM ρ=1/1000

SGFEM0 ρ=1/1000

SGFEM1 ρ=1/1000

FEM ρ=1000

SGFEM ρ=1000

SGFEM0 ρ=1000

SGFEM1 ρ=1000

Figure 8. The SCNs of stiffness matrices against h of FEM and various SGFEMs for the
circular interface problem.

Example 4.3. This example focuses on the interface problem with variable coefficients, with the
computational domain and interface matching those in Example 4.2. The variable coefficients are
assumed to be a0(x) = x2+y2+7

7 and a1(x) = xy+50
5 . The classical solution u of the interface problem,

with a non-homogeneous jump condition in flux
[
a∂u
∂n⃗

]
Γ
= (a0(x) − a1(x))

(
∂a1
∂x cos θ + ∂a1

∂y sin θ
)

r5
0 , 0,

is given by

u =

a1(x)r5, x ∈ Ω0,

a0(x)r5 + (a1(x) − a0(x)) r5
0, x ∈ Ω1.

The relative errors and SCNs against mesh size h = 1
2k+1 , k = 1, 2, · · · , 7, are reported in Figures 9

and 10, respectively. It is observed that various SGFEMs attain the optimal convergence order O(h2) in
various norms, while the FEM only attains the suboptimal convergence order O(h). Figure 10 shows
that the SCNs KA of various SGFEMs grow at the expected growth rate O(h−2).

In the following, three interface problems with more complicated interfaces are considered, where
the curvature of the interfaces is not constant.

Example 4.4. This numerical example was presented in [38]. The interface is a curved interface
Γ = {x ∈ Ω : y− 3x(x− 0.3)(x− 0.8)− 0.38 = 0} which is defined on the solution domain Ω = (−1, 1)2,
and the analytical solution u is chosen as

u =

 y−3x(x−0.3)(x−0.8)−0.38
a0

, x ∈ Ω0,
y−3x(x−0.3)(x−0.8)−0.38

a1
, x ∈ Ω1.

The relative errors and the SCNs against mesh size h = 2
2k+1+1 , k = 1, 2, · · · , 7, are shown in

Figures 11 and 12, respectively. It can be seen from Figure 11 that various SGFEMs achieve the
optimal convergence order O(h2) in both L2 and L∞ norms, while the FEM only achieves the suboptimal
convergence order O(h) in both L2 and L∞ norms. Figure 12 shows that the SCNs KA of different
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SGFEMs grow at the expected rate O(h−2) with further mesh refinement for different contrasts ρ, which
indicates that they are stable.
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Figure 9. The relative errors against h of FEM and various SGFEMs for the circular interface
problem with variable coefficients. Left: L2 norm; Right: L∞ norm.
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Figure 10. The SCNs of stiffness matrices against h of FEM and various SGFEMs for the
circular interface problem with variable coefficients.
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Figure 11. The relative errors against h of FEM and various SGFEMs for the curved interface
problem. Left: L2 norm; Right: L∞ norm.
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Figure 12. The SCNs of stiffness matrices against h of FEM and various SGFEMs for the
curved interface problem.

Example 4.5. In this case, the test example has an ellipsoid interface Γ = {x ∈ Ω : x2

α2 +
y2

β2 − 1 = 0}
with a semimajor axis α = π

4.71 and a semiminor axis β = π
6.28 , as illustrated in Figure 13. The solution

u defined on the computational domain Ω = (−1, 1)2 is given as follows:

u =

 1
a0

( x2

α2 +
y2

β2 − 1
)
e2x+y, x ∈ Ω0,

1
a1

( x2

α2 +
y2

β2 − 1
)
e2x+y, x ∈ Ω1.
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Figure 13. Left: the ellipsoid interface; Right: the flower-like interface with 6 petals.

The relative errors and SCNs are plotted against the mesh size h = 2
2k+1+1 , k = 1, 2, · · · , 7, in

Figures 14 and 15. As can be seen from Figure 14, the approximate solutions obtained by different
SGFEMs yield second-order accuracy in terms of various norms, while the FEM has poor convergence.
It is evident from Figure 15 that the SCNs KA obtained by different SGFEMs grow at the almost
identical rate O(h−2) for different contrasts ρ.

Example 4.6. Next, a more complicated interface problem from [8] is investigated. The problem is
defined on the domain Ω = (−1, 1)2 and the interface is a flower-like curve defined as Γ = {x ∈ Ω :
r4(1 + 0.4 sin(6θ)

)
− 0.3 = 0}, as shown in Figure 13. Its analytical solution u is given by

u =


r4
(

1+0.4 sin(6θ)
)
−0.3

a0
, x ∈ Ω0,

r4
(

1+0.4 sin(6θ)
)
−0.3

a1
, x ∈ Ω1,

where the point (0, 0) is the center of the polar coordinate system (r, θ), and the polar axis is the right
half of the x-axis.

The relative errors and SCNs are plotted against the mesh size h = 2
2k+1+1 , k = 1, 2, · · · , 7, and the

similar numerical behaviors are observed in Figures 16 and 17. Examination of the figures shows that
the relative errors measured by different SGFEMs diminish approximately quadratically in the sense of
L2 and L∞ norms. Figure 17 clearly shows that the SCNs of various SGFEMs grow at a rate of O(h−2)
with further mesh refinement for different contrasts ρ.
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Figure 14. The relative errors against h of FEM and various SGFEMs for the interface
problem with an ellipsoid interface. Left: L2 norm; Right: L∞ norm.
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Figure 15. The SCNs of stiffness matrices against h of FEM and various SGFEMs for the
interface problem with an ellipsoid interface.
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Figure 16. The relative errors against h of FEM and various SGFEMs for the flower-like
interface problem. Left: L2 norm; Right: L∞ norm.
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Figure 17. The SCNs of stiffness matrices against h of FEM and various SGFEMs for the
flower-like interface problem.

4.2. Robustness test

To study the robustness of the suggested SGFEM, a mesh of 8 × 8 elements is discretized on the
unit square domain Ω = [0, 1]2. Additionally, the interface Γ is defined by a horizontal line segment
{x ∈ Ω : 0 ≤ x ≤ 1, y = α + δ} with the discontinuous coefficient

a(x) =
{

a1, y ≥ α + δ;
a0, y < α + δ;
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where α = 0.25 or α = 0.50, δ j = 0.06×2− j+1, j = 1, 2, · · · , 20. It is evident that some mesh elements
are cut by the interface. As the parameter δ decreases, the horizontal straight line segment Γ approaches
the edges of the fixed mesh. Figure 18 exhibits the changes in the SCN of the stiffness matrices for
different SGFEMs and standard FEM. It is clear that the SCNs of SGFEMs are independent of the
relative distance δh in both interface scenarios, which indicates all SGFEMs are robust as the relative
distance between the interface and mesh boundaries decreases.
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Figure 18. The SCNs of stiffness matrices against δh of FEM and various SGFEMs as the
relative distance between the interface and mesh boundaries decreases. Left: y = 0.25 + δ;
Right: y = 0.5 + δ.

5. Conclusions

In this study, a modified SGFEM was proposed to resolve the second-order elliptic interface
problem involving non-trivial interfaces. The proposed SGFEM utilizes a one-side enrichment
function, which is a straightforward extension of the SGFEM with a two-side distance function. Several
non-trivial numerical examples on SGFEM with a one-side enrichment function were investigated,
showing that the modified SGFEM can achieve the optimal convergence order O(h2) in both L2 and L∞

norms for linear elements. The numerical experiments also show that the proposed SGFEM is stable
and robust, and applicable to any smooth interface, regardless of its concavity or shape. A study on the
higher-order SGFEM for parabolic interface problems will be investigated in our forthcoming paper.
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