In this manuscript, two recent numerical schemes (the trigonometric quintic and exponential cubic B-spline schemes) are employed for evaluating the approximate solutions of the nonlinear Klein-Gordon-Zakharov model. This model describes the interaction between the Langmuir wave and the ion-acoustic wave in a high-frequency plasma. The initial and boundary conditions are constructed via a novel general computational scheme. [
Citation: Mostafa M. A. Khater, A. El-Sayed Ahmed. Strong Langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes[J]. AIMS Mathematics, 2021, 6(6): 5896-5908. doi: 10.3934/math.2021349
In this manuscript, two recent numerical schemes (the trigonometric quintic and exponential cubic B-spline schemes) are employed for evaluating the approximate solutions of the nonlinear Klein-Gordon-Zakharov model. This model describes the interaction between the Langmuir wave and the ion-acoustic wave in a high-frequency plasma. The initial and boundary conditions are constructed via a novel general computational scheme. [
[1] | M. M. Khater, D. Lu, On the dynamics of strong Langmuir turbulence through the generalized khater method in the plasma physics, Eur. Phys. J. Plus, 2021. Accepted. |
[2] | M. M. Khater, M. Inc, K. Nisar, R. A. Attia, Multi-solitons, lumps, and breath solutions of the water wave propagation with surface tension via four recent computational schemes, Ain Shams Eng. J., 2021. In Press. |
[3] | M. M. Khater, T. A. Nofal, H. Abu-Zinadah, M. S. Lotayif, D. Lu, Novel computational and accurate numerical solutions of the modified Benjamin-Bona-Mahony (BBM) equation arising in the optical illusions field, Alex. Eng. J. 60 (2021), 1797–1806. |
[4] | M. M. Khater, M. S. Mohamed, R. A. Attia, On semi analytical and numerical simulations for a mathematical biological model; the time-fractional nonlinear {K}olmogorov-{P}etrovskii-{P}iskunov (KPP) equation, Chaos, Solitons Fract., 144 (2021), 110676. doi: 10.1016/j.chaos.2021.110676 |
[5] | M. M. Khater, A. Mousa, M. El-Shorbagy, R. A. Attia, Analytical and semi-analytical solutions for Phi-four equation through three recent schemes, Results Phys., 22 (2021), 103954. doi: 10.1016/j.rinp.2021.103954 |
[6] | M. M. Khater, A. E. S. Ahmed, M. El-Shorbagy, Abundant stable computational solutions of Atangana-Baleanu fractional nonlinear HIV-1 infection of CD4$^+$ T-cells of immunodeficiency syndrome, Results Phys., 22 (2021), 103890. doi: 10.1016/j.rinp.2021.103890 |
[7] | M. M. Khater, S. Anwar, K. U. Tariq, M. S. Mohamed, Some optical soliton solutions to the perturbed nonlinear Schrödinger equation by modified Khater method, AIP Adv., 11 (2021), 025130. doi: 10.1063/5.0038671 |
[8] | M. M. Khater, R. A. Attia, A. Bekir, D. Lu, Optical soliton structure of the sub-10-fs-pulse propagation model, J. Optics, 50 (2021), 109–119. doi: 10.1007/s12596-020-00667-7 |
[9] | X. Zheng, Y. Shang, X. Peng, Orbital stability of solitary waves of the coupled Klein-Gordon-Zakharov equations, Math. Method. Appl. Sci., 40 (2017), 2623–2633. doi: 10.1002/mma.4187 |
[10] | H. Baskonus, T. Sulaiman, H. Bulut, On the new wave behavior to the Klein-Gordon-Zakharov equations in plasma physics, Indian J. Phys., 93 (2019), 393–399. doi: 10.1007/s12648-018-1262-9 |
[11] | A. Houwe, S. Abbagari, Y. Salathiel, M. Inc, S. Y. Doka, K. T. Crépin, et al., Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations, Results Phys., 17 (2020), 103127. doi: 10.1016/j.rinp.2020.103127 |
[12] | S. Nestor, A. Houwe, H. Rezazadeh, A. Bekir, G. Betchewe, S. Y. Doka, New solitary waves for the Klein-Gordon-Zakharov equations, Mod. Phys. Lett. B, 34 (2020), 2050246. |
[13] | S. Ali, M. Younis, M. O. Ahmad, S. T. R. Rizvi, Rogue wave solutions in nonlinear optics with coupled Schrödinger equations, Opt. Quantum Electron., 50 (2018), 266. doi: 10.1007/s11082-018-1526-9 |
[14] | S. T. R. Rizvi, K. Ali, M. Ahmad, Optical solitons for Biswas-Milovic equation by new extended auxiliary equation method, Optik, 204 (2020), 164181. doi: 10.1016/j.ijleo.2020.164181 |
[15] | I. Ali, S. T. R. Rizvi, S. O. Abbas, Q. Zhou, Optical solitons for modulated compressional dispersive alfven and heisenberg ferromagnetic spin chains, Results Phys., 15 (2019), 102714. doi: 10.1016/j.rinp.2019.102714 |
[16] | S. R. Rizvi, I. Afzal, K. Ali, M. Younis, Stationary solutions for nonlinear Schrödinger equations by Lie group Analysis, Acta Phys. Pol. A, 136 (2019), 187–189. doi: 10.12693/APhysPolA.136.187 |
[17] | B. Nawaz, K. Ali, S. O. Abbas, S. T. R. Rizvi, Q. Zhou, Optical solitons for non-kerr law nonlinear Schrödinger equation with third and fourth order dispersions, Chin. J. Phys., 60 (2019), 133–140. doi: 10.1016/j.cjph.2019.05.014 |
[18] | S. T. R. Rizvi, K. Ali, H. Hanif, Optical solitons in dual core fibers under various nonlinearities, Mod. Phys. Lett. B, 33 (2019), 1950189. |
[19] | A. Arif, M. Younis, M. Imran, M. Tantawy, S. T. R. Rizvi, Solitons and lump wave solutions to the graphene thermophoretic motion system with a variable heat transmission, Eur. Phys. J. Plus, 134 (2019), 303. doi: 10.1140/epjp/i2019-12679-9 |
[20] | P. P. Sullivan, J. C. McWilliams, Langmuir turbulence and filament frontogenesis in the oceanic surface boundary layer, J. Fluid Mech., 879 (2019), 512–553. doi: 10.1017/jfm.2019.655 |
[21] | S. Kim, P. H. Yoon, G. Choe, Y. J. moon, Suprathermal solar wind electrons and Langmuir turbulence, Astrophys. J., 828 (2016), 60. doi: 10.3847/0004-637X/828/1/60 |
[22] | B. G. Reichl, I. Ginis, T. Hara, B. Thomas, T. Kukulka, D. Wang, Impact of sea-state-dependent Langmuir turbulence on the ocean response to a tropical cyclone, Mon. Weather Rev., 144 (2016), 4569–4590. doi: 10.1175/MWR-D-16-0074.1 |
[23] | D. Wang, T. Kukulka, B. G. Reichl, T. Hara, I. Ginis, Wind-wave misalignment effects on Langmuir turbulence in tropical cyclone conditions, J. Phys. Oceanogr., 49 (2019), 3109–3126. doi: 10.1175/JPO-D-19-0093.1 |
[24] | P. Yoon, M. Lazar, K. Scherer, H. Fichtner, R. Schlickeiser, Modified $\kappa$-distribution of solar wind electrons and steady-state Langmuir turbulence, Astrophys. J., 868 (2018), 131. doi: 10.3847/1538-4357/aaeb94 |
[25] | M. Osman, D. Lu, M. M. Khater, A study of optical wave propagation in the nonautonomous schrödinger-hirota equation with power-law nonlinearity, Results Phys., 13 (2019), 102157. doi: 10.1016/j.rinp.2019.102157 |
[26] | M. M. Khater, D. Lu, R. A. Attia, Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method, AIP Adv., 9 (2019), 025003. doi: 10.1063/1.5087647 |
[27] | M. M. Khater, D. Lu, R. A. Attia, Erratum: "Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method" [AIP adv. 9, 025003 (2019)], AIP Adv., 9 (2019), 049902. doi: 10.1063/1.5096005 |
[28] | M. M. Khater, D. Lu, R. A. Attia, Lump soliton wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation and KdV equation, Mod. Phys. Lett. B, 33 (2019), 1950199. |
[29] | Y. Chu, M. M. Khater, Y. Hamed, Diverse novel analytical and semi-analytical wave solutions of the generalized (2+1)-dimensional shallow water waves model, AIP Adv., 11 (2021), 015223. doi: 10.1063/5.0036261 |
[30] | M. M. Khater, A. Bekir, D. Lu, R. A. Attia, Analytical and semi-analytical solutions for time-fractional Cahn-Allen equation, Math. Method. Appl. Sci., 44 (2021), 2682–2691. doi: 10.1002/mma.6951 |
[31] | E. H. Zahran, M. M. Khater, Modified extended tanh-function method and its applications to the Bogoyavlenskii equation, Appl. Math. Model., 40 (2016), 1769–1775. doi: 10.1016/j.apm.2015.08.018 |
[32] | D. Lu, A. R. Seadawy, M. M. Khater, Structures of exact and solitary optical solutions for the higher-order nonlinear schrödinger equation and its applications in mono-mode optical fibers, Mod. Phys. Lett. B, 33 (2019), 1950279. |
[33] | A. Houwe, S. Abbagari, Y. Salathiel, M. Inc, S. Y. Doka, K. T. Crépin, et al., Complex traveling-wave and solitons solutions to the Klein-Gordon-Zakharov equations, Results Phys., 17 (2020), 103127. doi: 10.1016/j.rinp.2020.103127 |
[34] | S. Nestor, A. Houwe, H. Rezazadeh, A. Bekir, G. Betchewe, S. Y. Doka, New solitary waves for the Klein-Gordon-Zakharov equations, Mod. Phys. Lett. B, 34 (2020), 2050246. |
[35] | R. Martínez, J. Macías-Díaz, A. Hendy, Corrigendum to a numerically efficient and conservative model for a riesz space-fractional Klein-Gordon-Zakharov system, Commun. Nonlinear Sci. Numer. Simul., 83 (2020), 105109. doi: 10.1016/j.cnsns.2019.105109 |
[36] | V. E. Zakharov, Collapse of langmuir waves, Sov. Phys. JETP, 35 (1972), 908–914. |
[37] | L. Bergé, B. Bidégaray, T. Colin, A perturbative analysis of the time-envelope approximation in strong langmuir turbulence, Phys. D: Nonlinear Phenom., 95 (1996), 351–379. doi: 10.1016/0167-2789(96)00058-9 |
[38] | C. Su, W. Yi, Error estimates of a finite difference method for the Klein-Gordon-Zakharov system in the subsonic limit regime, IMA J. Numer. Anal., 38 (2018), 2055–2073. doi: 10.1093/imanum/drx044 |
[39] | W. Bao, X. Zhao, Comparison of numerical methods for the nonlinear Klein-Gordon equation in the nonrelativistic limit regime, J. Comput. Phys., 398 (2019), 108886. doi: 10.1016/j.jcp.2019.108886 |
[40] | W. Bao, X. Dong, Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime, Numer. Math., 120 (2012), 189–229. doi: 10.1007/s00211-011-0411-2 |
[41] | E. Faou, K. Schratz, Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime, Numer. Math., 126 (2014), 441–469. doi: 10.1007/s00211-013-0567-z |
[42] | M. M. A. Khater, On the dynamics of strong Langmuir turbulence through the five recent numerical schemes in the plasma physics, Numer. Method. Part. Differ. Equtions, 2020. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/num.22681. |