Let J=[0In−In0]∈R2n×2n. A matrix A∈R2n×2n is said to be Hamiltonian if (AJ)⊤=AJ. In this paper, we first consider the following generalized inverse eigenvalue problem (GIEP): Given a pair of matrices (Λ,X) in the form Λ=diag{λ1,⋯,λp}∈Cp×p and X=[x1,⋯,xp]∈C2n×p, where diagonal elements of Λ are all distinct with rank(X)=p, and both Λ and X are closed under complex conjugation in the sense that λ2i=ˉλ2i−1∈C, x2i=ˉx2i−1∈C2n for i=1,⋯,l, and λj∈R, xj∈R2n for j=2l+1,⋯,p. Find Hamiltonian matrices A and B such that AXΛ=BX. Then, we consider the associated optimal approximation problem (OAP): Given ˜A,˜B∈R2n×2n. Find (ˆA,ˆB)∈SE such that ‖ˆA−˜A‖2+‖ˆB−˜B‖2=min(A,B)∈SE(‖A−˜A‖2+‖B−˜B‖2), where SE is the solution set of Problem GIEP. By using the QR-decomposition, we deduce the representation of the general solution of Problem GIEP. Also, we obtain the unique optimal approximation solution (ˆA,ˆB) of Problem OAP.
Citation: Lina Liu, Huiting Zhang, Yinlan Chen. The generalized inverse eigenvalue problem of Hamiltonian matrices and its approximation[J]. AIMS Mathematics, 2021, 6(9): 9886-9898. doi: 10.3934/math.2021574
[1] | Jia Tang, Yajun Xie . The generalized conjugate direction method for solving quadratic inverse eigenvalue problems over generalized skew Hamiltonian matrices with a submatrix constraint. AIMS Mathematics, 2020, 5(4): 3664-3681. doi: 10.3934/math.2020237 |
[2] | Jiao Xu, Yinlan Chen . On a class of inverse palindromic eigenvalue problem. AIMS Mathematics, 2021, 6(8): 7971-7983. doi: 10.3934/math.2021463 |
[3] | Yinlan Chen, Lina Liu . A direct method for updating piezoelectric smart structural models based on measured modal data. AIMS Mathematics, 2023, 8(10): 25262-25274. doi: 10.3934/math.20231288 |
[4] | Wei Ma, Zhenhao Li, Yuxin Zhang . A two-step Ulm-Chebyshev-like Cayley transform method for inverse eigenvalue problems with multiple eigenvalues. AIMS Mathematics, 2024, 9(8): 22986-23011. doi: 10.3934/math.20241117 |
[5] | Jianan Qiao, Guolin Hou, Jincun Liu . Analytical solutions for the model of moderately thick plates by symplectic elasticity approach. AIMS Mathematics, 2023, 8(9): 20731-20754. doi: 10.3934/math.20231057 |
[6] | Shixian Ren, Yu Zhang, Ziqiang Wang . An efficient spectral-Galerkin method for a new Steklov eigenvalue problem in inverse scattering. AIMS Mathematics, 2022, 7(5): 7528-7551. doi: 10.3934/math.2022423 |
[7] | Gonca Kizilaslan . The altered Hermite matrix: implications and ramifications. AIMS Mathematics, 2024, 9(9): 25360-25375. doi: 10.3934/math.20241238 |
[8] | Yongge Tian . Miscellaneous reverse order laws and their equivalent facts for generalized inverses of a triple matrix product. AIMS Mathematics, 2021, 6(12): 13845-13886. doi: 10.3934/math.2021803 |
[9] | Wanlin Jiang, Kezheng Zuo . Revisiting of the BT-inverse of matrices. AIMS Mathematics, 2021, 6(3): 2607-2622. doi: 10.3934/math.2021158 |
[10] | Yang Chen, Kezheng Zuo, Zhimei Fu . New characterizations of the generalized Moore-Penrose inverse of matrices. AIMS Mathematics, 2022, 7(3): 4359-4375. doi: 10.3934/math.2022242 |
Let J=[0In−In0]∈R2n×2n. A matrix A∈R2n×2n is said to be Hamiltonian if (AJ)⊤=AJ. In this paper, we first consider the following generalized inverse eigenvalue problem (GIEP): Given a pair of matrices (Λ,X) in the form Λ=diag{λ1,⋯,λp}∈Cp×p and X=[x1,⋯,xp]∈C2n×p, where diagonal elements of Λ are all distinct with rank(X)=p, and both Λ and X are closed under complex conjugation in the sense that λ2i=ˉλ2i−1∈C, x2i=ˉx2i−1∈C2n for i=1,⋯,l, and λj∈R, xj∈R2n for j=2l+1,⋯,p. Find Hamiltonian matrices A and B such that AXΛ=BX. Then, we consider the associated optimal approximation problem (OAP): Given ˜A,˜B∈R2n×2n. Find (ˆA,ˆB)∈SE such that ‖ˆA−˜A‖2+‖ˆB−˜B‖2=min(A,B)∈SE(‖A−˜A‖2+‖B−˜B‖2), where SE is the solution set of Problem GIEP. By using the QR-decomposition, we deduce the representation of the general solution of Problem GIEP. Also, we obtain the unique optimal approximation solution (ˆA,ˆB) of Problem OAP.
Throughout this paper, Cm×n, Rm×n, ORn×n and SRn×n stand for the sets of all m×n complex matrices, all m×n real matrices, all n×n orthogonal matrices and all n×n real-valued symmetric matrices, respectively. The symbol A⊤ and tr(A) stand for the transpose and the trace of a matrix A, respectively. In represents the identity matrix of size n, and HR2n×2n represents the set of all 2n×2n Hamiltonian matrices, that is, HR2n×2n={A|(AJ)⊤=AJ, A∈R2n×2n}, where J=[0In−In0]∈R2n×2n.
Hamiltonian matrices are widely applied in Hamiltonian systems of differential equations [1,2], optimal quadratic linear control [3] and H∞ optimization [4], etc. For example, Hamiltonian matrix elements from a symmetric wave function are necessary to study the structure of deuterated molecules [5]. Also, the eigenvalue problems for Hamiltonian and skew-Hamiltonian matrices appear frequently in scientific and engineering applications. Such as to compute the conformal parameterization via a constrained energy minimization problem in the field of digital geometry processing [6,7], quantum mechanical problems with time reversal symmetry [8,9], the study of closed shell Hartree-Fock wave functions in response theory [10,11] and total least squares problems with symmetric constraints [12].
Inverse eigenvalue problems emerge from many application areas, and have been studied by many scholars [13,14,15,16,17,18]. Generalized inverse eigenvalue problems are concerned in structural dynamics [19,20,21], parameter identification [22] and pole assignment [23], etc. Recently, Zhao and Zhang [24] derived the solvability conditions for the inverse eigenvalue problem of normal skew J-Hamiltonian matrices by the Moore-Penrose generalized inverse and the generalized singular value decomposition. Zhang and Yuan [25] solved the generalized inverse eigenvalue problems of Hermitian and J-Hamiltonian/skew-Hamiltonian matrices by applying the singular value decomposition and the spectral decomposition. However, the problem of OAP cannot be considered due to the complexity of the expression of the general solution. Very recently, Yuan and Chen [26] solved the inverse eigenvalue problem and the optimal approximation problem for Hamiltonian matrices by using the generalized singular value decomposition. Nevertheless, the generalized inverse eigenvalue problem of Hamiltonian matrices seems rarely to be discussed in the literatures, which motivates us to study such kind of inverse problem and the associated approximation problem. That is, in this paper, we will consider the following generalized inverse eigenvalue problem and the associated optimal approximation problem, which is a generalization of the problems discussed in [26].
Problem GIEP. Given a pair of matrices (Λ,X) in the form Λ=diag{λ1,⋯,λp}∈Cp×p, and X=[x1,⋯,xp]∈C2n×p, where diagonal elements of Λ are all distinct, X is of full column rank p, and both Λ and X are closed under complex conjugation in the sense that λ2i=ˉλ2i−1∈C, x2i=ˉx2i−1∈C2n for i=1,⋯,l, and λj∈R, xj∈R2n for j=2l+1,⋯,p. Find A,B∈HR2n×2n such that
AXΛ=BX. | (1.1) |
Problem OAP. Given ˜A,˜B∈R2n×2n. Find (ˆA,ˆB)∈SE such that
‖ˆA−˜A‖2+‖ˆB−˜B‖2=min(A,B)∈SE(‖A−˜A‖2+‖B−˜B‖2), | (1.2) |
where ‖⋅‖ is the Frobenius norm and SE is the solution set of Problem GIEP.
By using the QR-decomposition, the representation of the general solution of Problem GIEP is deduced and the unique optimal approximation solution (ˆA,ˆB) of Problem OAP is obtained. Finally, two numerical examples are presented to illustrate the efficiency of the results.
Define Tp as
Tp=diag{1√2[1−i1i],⋯,1√2[1−i1i],Ip−2l}∈Cp×p, |
where i=√−1. It is easy to verify that Tp is a unitary matrix, that is, ˉT⊤pTp=Ip. With this matrix, we have
˜Λ=ˉT⊤pΛTp=diag{[α1β1−β1α1],⋯,[α2l−1β2l−1−β2l−1α2l−1],λ2l+1,⋯,λp}≜diag{˜Λ1,⋯,˜Λ2l−1,λ2l+1,⋯,λp}∈Rp×p, | (2.1) |
˜X=XTp=[√2y1,√2z1,⋯,√2y2l−1,√2z2l−1,x2l+1,⋯,xp]∈R2n×p, | (2.2) |
where αi and βi are the real part and imaginary part of the complex number λi, and yi and zi are, respectively, the real part and imaginary part of the complex vector xi for i=1,3,⋯,2l−1. Then, Eq (1.1) can be equivalently written as
A˜X˜Λ=B˜X, | (2.3) |
clearly, Eq (2.3) is equivalent to
AJJ⊤˜X˜Λ=BJJ⊤˜X. | (2.4) |
Since rank(X) = rank(˜X) = p, the QR-decomposition of J⊤˜X is of the form
J⊤˜X=Q[R0]=[Q1,Q2][R0], | (2.5) |
where Q=[Q1,Q2]∈OR2n×2n with Q1∈R2n×p, and R∈Rp×p is nonsingular. Partition the parameter matrices Q⊤AJQ and Q⊤BJQ into blocks:
Q⊤AJQ=[A11A12A⊤12A22]p2n−p p 2n−p, Q⊤BJQ=[B11B12B⊤12B22]p2n−p p 2n−p, | (2.6) |
where A11, A22, B11 and B22 are real-valued symmetric matrices. By (2.5) and (2.6), Eq (2.4) is equivalent to
[A11A12A⊤12A22][R˜Λ0]=[B11B12B⊤12B22][R0]. | (2.7) |
Then, it follows from Eq (2.7) that
A11R˜Λ=B11R, | (2.8) |
A⊤12R˜Λ=B⊤12R. | (2.9) |
By Eq (2.8), B11 is a symmetric matrix implies that
R⊤A11R˜Λ=˜Λ⊤R⊤A11R. | (2.10) |
Write
C=R⊤A11R, | (2.11) |
then Eq (2.10) can be written as
C˜Λ=˜Λ⊤C, s. t. C=C⊤. | (2.12) |
By direct calculation, we have
C=diag{[a1b1b1−a1],⋯,[a2l−1b2l−1b2l−1−a2l−1],c2l+1,⋯,cp}∈Rp×p, | (2.13) |
where a2i−1, b2i−1, i=1,⋯,l, and cj, j=2l+1,⋯,p, are arbitrary real numbers. Thus
A11=R−⊤CR−1. | (2.14) |
Combining (2.8) with (2.11), we find that
B11=R−⊤C˜ΛR−1. | (2.15) |
By Eq (2.9), we have
B12=R−⊤˜Λ⊤R⊤A12, | (2.16) |
where A12∈Rp×(2n−p) is an arbitrary matrix.
Summing up above discussion, we can obtain the following result.
Theorem 2.1. Suppose that Λ=diag{λ1,⋯,λp}∈Cp×p, X=[x1,⋯,xp]∈C2n×p, where diagonal elements of Λ are all distinct, X is of full column rank p, and both Λ and X are closed under complex conjugation. Let the real matrices ˜Λ and ˜X be given by (2.1) and (2.2) and the QR-decomposition of J⊤˜X be given by (2.5). Then the general solution of Problem GIEP can be expressed as
SE={(A,B)|A=Q[R−⊤CR−1A12A⊤12A22]Q⊤J⊤,B=Q[R−⊤C˜ΛR−1R−⊤˜Λ⊤R⊤A12A⊤12R˜ΛR−1B22]Q⊤J⊤}, | (2.17) |
where A12∈Rp×(2n−p), A22∈SR(2n−p)×(2n−p) and B22∈SR(2n−p)×(2n−p) are arbitrary matrices, and C is given by (2.13).
According to (2.17), we know that the solution set SE is always nonempty and SE is a closed convex subset, which implies that Problem OAP has a unique solution (ˆA,ˆB)∈SE by the optimal approximation theorem (see Ref. [27]). For the given matrices ˜A,˜B∈R2n×2n, write
Q⊤˜AJQ=[˜A11˜A12˜A21˜A22]p2n−pp2n−p,Q⊤˜BJQ=[˜B11˜B12˜B21˜B22]p2n−pp2n−p, | (3.1) |
then
‖A−˜A‖2+‖B−˜B‖2=‖Q[R−⊤CR−1A12A⊤12A22]Q⊤J⊤−˜A‖2+‖Q[R−⊤C˜ΛR−1R−⊤˜Λ⊤R⊤A12A⊤12R˜ΛR−1B22]Q⊤J⊤−˜B‖2=‖R−⊤CR−1−˜A11‖2+‖A12−˜A12‖2+‖A⊤12−˜A21‖2+‖A22−˜A22‖2+‖R−⊤C˜ΛR−1−˜B11‖2+‖R−⊤˜Λ⊤R⊤A12−˜B12‖2+‖A⊤12R˜ΛR−1−˜B21‖2+‖B22−˜B22‖2. |
Therefore, ‖A−˜A‖2+‖B−˜B‖2 = min if and only if
f(C)=‖R−⊤CR−1−˜A11‖2+‖R−⊤C˜ΛR−1−˜B11‖2=min, | (3.2) |
‖A12−˜A12‖2+‖R−⊤˜Λ⊤R⊤A12−˜B12‖2+‖A⊤12−˜A21‖2+‖A⊤12R˜ΛR−1−˜B21‖2=min, | (3.3) |
‖A22−˜A22‖2=min, | (3.4) |
‖B22−˜B22‖2=min. | (3.5) |
Let
R−1=[R1R2], | (3.6) |
where
R1=[R1,1⋮R1,2l−1], R2=[R2,2l+1⋮R2,p], |
and R1,2i−1∈R2×p, R2,j∈R1×p (i=1,⋯,l,j=2l+1,⋯,p). Furthermore, let
{D2i−1=R⊤1,2i−1F1R1,2i−1,D2i=R⊤1,2i−1F2R1,2i−1,Dj=R⊤2,jR2,j,E2i−1=R⊤1,2i−1F1˜Λ2i−1R1,2i−1,E2i=R⊤1,2i−1F2˜Λ2i−1R1,2i−1,Ej=R⊤2,jλjR2,j,i=1,⋯,l,j=2l+1,⋯,p, | (3.7) |
where
F1=[100−1], F2=[0110]. |
Then the relation of (3.2) is equivalent to
f(C)=f(a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp)=‖a1D1+b1D2+⋯+a2l−1D2l−1+b2l−1D2l+c2l+1D2l+1+⋯+cpDp−˜A11‖2+‖a1E1+b1E2+⋯+a2l−1E2l−1+b2l−1E2l+c2l+1E2l+1+⋯+cpEp−˜B11‖2=min, |
that is,
f(a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp)=tr[(a1D⊤1+b1D⊤2+⋯+a2l−1D⊤2l−1+b2l−1D⊤2l+c2l+1D⊤2l+1+⋯+cpD⊤p−˜A⊤11)(a1D1+b1D2+⋯+a2l−1D2l−1+b2l−1D2l+c2l+1D2l+1+⋯+cpDp−˜A11)+(a1E⊤1+b1E⊤2+⋯+a2l−1E⊤2l−1+b2l−1E⊤2l+c2l+1E⊤2l+1+⋯+cpE⊤p−˜B⊤11)(a1E1+b1E2+⋯+a2l−1E2l−1+b2l−1E2l+c2l+1E2l+1+⋯+cpEp−˜B11)]=a21g1,1+2a1b1g1,2+⋯+2a1a2l−1g1,2l−1+2a1b2l−1g1,2l+2a1c2l+1g1,2l+1+⋯+2a1cpg1,p−2a1h1+b21g2,2+⋯+2a2l−1b1g2,2l−1+2b1b2l−1g2,2l+2b1c2l+1g2,2l+1+⋯+2b1cpg2,p−2b1h2+⋯,⋯+a22l−1g2l−1,2l−1+2a2l−1b2l−1g2l−1,2l+2a2l−1c2l+1g2l−1,2l+1+⋯+2a2l−1cpg2l−1,p−2a2l−1h2l−1+b22l−1g2l,2l+2b2l−1c2l+1g2l,2l+1+⋯+2b2l−1cpg2l,p−2b2l−1h2l+c22l+1g2l+1,2l+1+⋯+2c2l+1cpg2l+1,p−2c2l+1h2l+1+⋯,⋯+c2pgp,p−2cphp+e, |
where gm,n=tr(D⊤mDn)+tr(E⊤mEn), hm=tr(D⊤m˜A11)+tr(E⊤m˜B11), e=tr(˜A⊤11˜A11)+tr(˜B⊤11˜B11), m,n=1,⋯,p.
Consequently,
∂f(a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp)∂a1=2a1g1,1+2b1g1,2+⋯+2a2l−1g1,2l−1+2b2l−1g1,2l+2c2l+1g1,2l+1+⋯+2cpg1,p−2h1,∂f(a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp)∂b1=2a1g2,1+2b1g2,2+⋯+2a2l−1g2,2l−1+2b2l−1g2,2l+2c2l+1g2,2l+1+⋯+2cpg2,p−2h2,⋯,⋯,∂f(a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp)∂a2l−1=2a1g2l−1,1+2b1g2l−1,2+⋯+2a2l−1g2l−1,2l−1+2b2l−1g2l−1,2l+2c2l+1g2l−1,2l+1+⋯+2cpg2l−1,p−2h2l−1,∂f(a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp)∂b2l−1=2a1g2l,1+2b1g2l,2+⋯+2a2l−1g2l,2l−1+2b2l−1g2l,2l+2c2l+1g2l,2l+1+⋯+2cpg2l,p−2h2l,∂f(a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp)∂c2l+1=2a1g2l+1,1+2b1g2l+1,2+⋯+2a2l−1g2l+1,2l−1+2b2l−1g2l+1,2l+2c2l+1g2l+1,2l+1+⋯+2cpg2l+1,p−2h2l+1,⋯,⋯,∂f(a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp)∂cp=2a1gp,1+2b1gp,2+⋯+2a2l−1gp,2l−1+2b2l−1gp,2l+2c2l+1gp,2l+1+⋯+2cpgp,p−2hp. |
Clearly, f(a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp) = min if and only if
∂f(a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp)∂a1=0,⋯,∂f(a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp)∂cp=0. |
Therefore,
a1g1,1+b1g1,2+⋯+a2l−1g1,2l−1+b2l−1g1,2l+c2l+1g1,2l+1+⋯+cpg1,p=h1,a1g2,1+b1g2,2+⋯+a2l−1g2,2l−1+b2l−1g2,2l+c2l+1g2,2l+1+⋯+cpg2,p=h2,⋯,⋯,a1g2l−1,1+b1g2l−1,2+⋯+a2l−1g2l−1,2l−1+b2l−1g2l−1,2l+c2l+1g2l−1,2l+1+⋯+cpg2l−1,p=h2l−1,a1g2l,1+b1g2l,2+⋯+a2l−1g2l,2l−1+b2l−1g2l,2l+c2l+1g2l,2l+1+⋯+cpg2l,p=h2l,a1g2l+1,1+b1g2l+1,2+⋯+a2l−1g2l+1,2l−1+b2l−1g2l+1,2l+c2l+1g2l+1,2l+1+⋯+cpg2l+1,p=h2l+1,⋯,⋯,a1gp,1+b1gp,2+⋯+a2l−1gp,2l−1+b2l−1gp,2l+c2l+1gp,2l+1+⋯+cpgp,p=hp. | (3.8) |
If let
G=[g1,1g1,2⋯g1,2l−1g1,2lg1,2l+1⋯g1,pg2,1g2,2⋯g2,2l−1g2,2lg2,2l+1⋯g2,p⋮⋮⋮⋮⋮⋮g2l−1,1g2l−1,2⋯g2l−1,2l−1g2l−1,2lg2l−1,2l+1⋯g2l−1,pg2l,1g2l,2⋯g2l,2l−1g2l,2lg2l,2l+1⋯g2l,pg2l+1,1g2l+1,2⋯g2l+1,2l−1g2l+1,2lg2l+1,2l+1⋯g2l+1,p⋮⋮⋮⋮⋮⋮gp,1gp,2⋯gp,2l−1gp,2lgp,2l+1⋯gp,p], |
T=[a1b1⋮a2l−1b2l−1c2l+1⋮cp], H=[h1h2⋮h2l−1h2lh2l+1⋮hp], |
where G is symmetric matrix. Then Eq (3.8) is equivalent to
GT=H, | (3.9) |
and the solution of Eq (3.9) is
T=G−1H. | (3.10) |
Substituting (3.10) into (2.13), we can obtain C explicitly. Similarly, Eq (3.3) is equivalent to
f(A12)=tr[(A⊤12−˜A⊤12)(A12−˜A12)]+tr[(A⊤12P−˜B⊤12)(P⊤A12−˜B12)]+tr[(A12−˜A⊤21)(A⊤12−˜A21)]+tr[(P⊤A12−˜B⊤21)(A⊤12P−˜B21)]. |
Thus,
∂f(A12)∂A12=2A12−2˜A12+2PP⊤A12−2P˜B12+2A12−2˜A⊤21+2PP⊤A12−2P˜B⊤21, |
setting ∂f(A12)∂A12=0, we obtain
A12=12(Ip+PP⊤)−1(˜A12+P˜B12+˜A⊤21+P˜B⊤21), | (3.11) |
where P=R˜ΛR−1. A22, B22 are symmetric matrices implies that the relations of (3.4) and (3.5) are equivalent to
‖A22−˜A22‖2=‖A22−12(˜A22+˜A⊤22)‖2+‖12(˜A22−˜A⊤22)‖2, |
‖B22−˜B22‖2=‖B22−12(˜B22+˜B⊤22)‖2+‖12(˜B22−˜B⊤22)‖2, |
therefore, we have
A22=12(˜A22+˜A⊤22), B22=12(˜B22+˜B⊤22). | (3.12) |
Theorem 3.1. Given ˜A,˜B∈R2n×2n, then the Problem OAP has a unique solution and the unique solution of Problem OAP is
ˆA=Q[R−TCR−1A12A⊤12A22]Q⊤J⊤, ˆB=Q[R−TC˜ΛR−1R−T˜Λ⊤R⊤A12A⊤12R˜ΛR−1B22]Q⊤J⊤, | (3.13) |
where A12 and A22, B22 are given by (3.11) and (3.12), and a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp are given by (3.10), respectively.
According to Theorems 2.1 and 3.1, we have the following algorithm for solving Problem OAP.
Algorithm 4.1.
1). Input Λ, X, J, ˜A, ˜B.
2). Compute real-valued matrices ˜Λ, ˜X by (2.1) and (2.2), respectively.
3). Compute the QR-decomposition of the matrix J⊤˜X by (2.5).
4). Compute ˜Aij, ˜Bij by (3.1), i,j=1,2.
5). Compute R−1 by (3.6) to form R1,R2.
6). Compute D2i−1,D2i,Dj, E2i−1,E2i and Ej (i=1,⋯,l,j=2l+1,⋯,p) by (3.7).
7). Compute gm,n=tr(D⊤mDn)+tr(E⊤mEn) and hm=tr(D⊤m˜A11)+tr(E⊤m˜B11) (m,n=1,⋯,p).
8). Compute a1,b1,⋯,a2l−1,b2l−1,c2l+1,⋯,cp by (3.10).
9). Compute A12 by (3.11).
10). Compute A22 and B22 by (3.12).
11). Compute ˆA and ˆB by (3.13).
Remark 4.1. After statistics, we find that the amount of computations required by Algorithm 1 is about p5+p4+193p3+14np2+64n3 flops.
Example 4.1. Let n=5, p=5, and the matrices Λ, X, ˜A and ˜B be given by
Λ=diag{−0.2218+2.0231i, −0.2218−2.0231i, −0.1617+0.5721i, −0.1617−0.5721i, 2.7670}, |
X=[−0.6377−0.1444i−0.6377+0.1444i−0.0405+0.3341i−0.0405−0.3341i−1.00000.2678−0.0983i0.2678+0.0983i−0.2615−0.3973i−0.2615+0.3973i0.11510.4260+0.5740i0.4260−0.5740i0.1348−0.2946i0.1348+0.2946i0.0278−0.2032−0.0489i−0.2032+0.0489i−0.5238+0.4762i−0.5238−0.4762i0.03570.2111−0.1510i0.2111+0.1510i0.7982−0.1668i0.7982+0.1668i0.6793−0.5233+0.1151i−0.5233−0.1151i−0.3033−0.4132i−0.3033+0.4132i−0.10910.4820−0.2541i0.4820+0.2541i0.1398−0.0715i0.1398+0.0715i0.85500.3183−0.3431i0.3183+0.3431i−0.2716−0.3411i−0.2716+0.3411i0.64360.1376+0.3007i0.1376−0.3007i−0.1391+0.0981i−0.1391−0.0981i0.0883−0.0672+0.0189i−0.0672−0.0189i0.3143+0.1462i0.3143−0.1462i−0.2828], |
˜A=[1.83513.06359.39001.94769.79751.17427.30336.24062.61879.03723.68485.08518.75942.25924.38872.96684.88616.79143.35368.90926.25625.10775.50161.70711.11123.18785.78533.95526.79733.34167.80238.17636.22482.27662.58064.24172.37283.67441.36556.98750.81137.94835.87044.35704.08725.07864.58859.87987.21231.97819.29396.44322.07743.11105.94900.85529.63090.37741.06760.30547.75713.78613.01259.23382.62212.62485.46818.85176.53767.44074.86798.11584.70924.30216.02848.01015.21149.13294.94175.00024.35865.32832.30491.84827.11220.29222.31597.96187.79054.79924.46783.50738.44319.04882.21759.28854.88900.98717.15049.0472], |
˜B=[6.09871.67930.96734.53803.99261.06224.22846.66533.68921.20616.17679.78688.18154.32395.26883.72415.47871.78134.60735.89518.59447.12698.17558.25314.16801.98129.42741.28019.81642.26198.05495.00477.22440.83476.56864.89694.17749.99081.56403.84625.76724.71091.49871.33176.27973.39499.83051.71128.55525.82991.82920.59626.59611.73392.91989.51633.01450.32606.44762.51812.39936.81975.18593.90944.31659.20337.01105.61203.76272.90448.86510.42439.72978.31380.15490.52686.66348.81871.90926.17090.28670.71456.48998.03369.84067.37865.39136.69184.28252.65284.89905.21658.00330.60471.67172.69126.98111.90434.82028.2438]. |
By applying Algorithm 4.1, we can obtain the unique solution (ˆA,ˆB) of Problem OAP as follows:
ˆA=[3.0180−0.4225−0.15550.84020.91254.00713.88403.21214.01786.8173−0.3558−1.7726−0.31492.4300−2.44213.88401.97345.09882.43346.21851.8766−3.0189−0.9503−1.1732−1.87903.21215.09882.68966.67505.40581.9510−0.1294−0.2763−0.7668−1.90084.01782.43346.67502.91955.23163.02110.2273−0.6075−0.9217−2.78186.81736.21855.40585.23163.96656.37316.92885.53224.43975.4356−3.01800.3558−1.8766−1.9510−3.02116.92884.52316.29467.20493.68510.42251.77263.01890.1294−0.22735.53226.29464.84533.77064.46180.15550.31490.95030.27630.60754.43977.20493.77062.82496.6239−0.8402−2.43001.17320.76680.92175.43563.68514.46186.62392.8468−0.91252.44211.87901.90082.7818], |
ˆB=[0.6709−1.2381−0.7557−1.1218−1.9835−1.10003.78173.82630.63763.54841.34510.2456−0.0257−0.28620.29153.78175.35595.32243.69478.62403.00951.2171−1.09330.95152.12923.82635.32241.21476.80132.43242.0994−1.87543.1477−0.19030.67930.63763.69476.80133.36917.25081.40470.3032−1.6547−2.56971.22023.54848.62402.43247.25086.05582.79992.65385.93684.05301.3808−0.6709−1.3451−3.0095−2.0994−1.40472.65385.33902.35232.63264.12081.2381−0.2456−1.21711.8754−0.30325.93682.35238.41936.94804.55980.75570.02571.0933−3.14771.65474.05302.63266.94808.08385.23731.12180.2862−0.95150.19032.56971.38084.12084.55985.23733.40281.9835−0.2915−2.1292−0.6793−1.2202], |
and
‖ˆAXΛ−ˆBX‖=2.0806×10−14, |
which implies that ˆAXΛ=ˆBX reproduces the desired eigenvalues and eigenvectors.
Example 4.2. We consider an inverse problem for the spectral conformal parameterization (see Refs.[6,7]). Let n=5, p=4, and the matrices Λ, X, ˜B and ˜LC be given by
Λ=diag{−0.0822, −0.0250, 0, 0.0757}≜diag{λ1,λ2,λ3,λ4}, |
X=[0.57600.26840.00000.1340−0.1510−0.06730.0000−1.0000−0.3890−0.06100.0000−0.1246−0.0359−0.14010.00000.99070.34091.00001.00000.03660.00000.00000.00000.0000−0.56720.06650.00000.30721.0000−0.12880.0000−0.1395−0.43280.06230.0000−0.16770.06500.22820.2000−0.1508]≜diag{f1, f2, f3, f4}, |
˜B=[0.70000.54830.53690.69190.60320−0.80830.0306−0.77150.02340.54831.66171.34250.60371.48600.808300.4237−0.5357−0.92920.53691.34251.50750.91121.0372−0.0306−0.423700.43040.04880.69190.60370.91121.55830.94590.77150.5357−0.43040−0.02550.60321.48601.03720.94590.6742−0.02340.9292−0.04880.0255000.8083−0.03060.7715−0.02340.70000.54830.53690.69190.6032−0.80830−0.42370.53570.92920.54831.66171.34250.60371.48600.03060.42370−0.4304−0.04880.53691.34251.50750.91121.0372−0.7715−0.53570.430400.02550.69190.60370.91121.55830.94590.0234−0.92920.0488−0.025500.60321.48601.03720.94590.6742], |
˜LC=[1.70002.54833.53694.6919−9.39680−1.61660.0612−1.54300.04682.54834.66175.3425−9.39632.48601.616600.8474−1.0714−1.85843.53695.3425−8.49251.91123.0372−0.0612−0.847400.86080.09764.6919−9.39631.91123.55833.94591.54301.0714−0.86080−0.0510−9.39682.48603.03723.94594.6742−0.04681.8584−0.09760.0510001.6166−0.06121.5430−0.04681.70002.54833.53694.6919−9.3968−1.61660−0.84741.07141.85842.54834.66175.3425−9.39632.48600.06120.84740−0.8608−0.09763.53695.3425−8.49251.91123.0372−1.5430−1.07140.860800.05104.6919−9.39631.91123.55833.94590.0468−1.85840.0976−0.05100−9.39682.48603.03723.94594.6742]. |
By calculating, we can obtain the unique solution (ˆB,ˆLC) of Problem OAP as follows:
ˆB=[1.0866−0.0847−0.05200.05010.10930.0000−0.03300.0833−0.05030.0134−0.15911.7380−0.2522−0.3467−0.24140.0330−0.0000−0.01910.00870.0234−0.1345−0.23151.6597−0.2656−0.2222−0.08330.01910.00000.0206−0.0230−0.0049−0.3583−0.29451.6496−0.34720.0503−0.0087−0.0206−0.0000−0.1716 0.2724−0.0519−0.1132−0.11590.8731−0.0134−0.02340.02300.17160.00000.00000.0864−0.20140.1221−0.02391.0866−0.1591−0.1345−0.00490.2724−0.0864−0.00000.04150.02440.1288−0.08471.7380−0.2315−0.3583−0.05190.2014−0.04150.0000−0.1586−0.1553−0.0520−0.25221.6597−0.2945−0.1132−0.1221−0.02440.1586−0.0000−0.00000.0501−0.3467−0.26561.6496−0.11590.0239−0.12880.15530.00000.00000.1093−0.2414−0.2222−0.34720.8731], |
ˆLC=[3.07493.01822.98553.3985−0.0221−0.0000−0.57880.01301.01660.11070.86720.74971.14290.20110.44370.57880.0000−0.0656−0.3528−2.21850.75900.83600.51930.65740.1300−0.01300.06560.0000−0.0313−0.65020.10650.3474−0.47520.5081−0.2263−1.01660.35280.03130.00001.1314−0.11390.6946−0.6294−0.15200.0000−0.11072.21850.6502−1.13140.00000.0000−0.34350.7467−0.41580.02283.07490.86720.75900.1065−0.11390.34350.00000.92590.1743−0.13893.01820.74970.83600.34740.6946−0.7467−0.9259−0.0000−1.32160.12592.98551.14290.5193−0.4752−0.62940.4158−0.17431.3216−0.00000.03043.39850.20110.65740.5081−0.1520−0.02280.1389−0.1259−0.0304−0.0000−0.02210.44370.1300−0.22630.0000]. |
Furthermore, we can obtain the following numerical results: Therefore, the new model ˆBXΛ=ˆLCX reproduces the desired eigenvalues and eigenvectors.
The authors would like to express their gratitude to the anonymous referees for their valuable suggestions and comments for the revision of this manuscript.
The authors declare no conflict of interest.
[1] | K. R. Meyer, G. R. Hall, Introduction to Hamiltonian dynamical systems and the N-body problem, Spring, New York, 1992. |
[2] |
B. J. Leimkuhler, E. S. V. Vleck, Orthosymplectic integration of linear Hamiltonian systems, Numer. Math., 77 (1997), 269–282. doi: 10.1007/s002110050286
![]() |
[3] | V. Mehrmann, The autonomous linear quadratic control problem: Theory and numerical solution, Springer-Verlag, 1991. |
[4] | K. Zhou, J. C. Doyle, K. Glover, Robust and optimal control, Prentice Hall, New Jersey, 1996. |
[5] |
I. L. Thomas, Hamiltonian matrix elements from a symmetric wave function, Phys. Rev. A, 2 (1970), 728–733. doi: 10.1103/PhysRevA.2.728
![]() |
[6] |
P. Mullen, Y. Tong, P. Alliez, M. Desbrun, Spectral conformal parameterization, Comput. Graph. Forum, 27 (2008), 1487–1494. doi: 10.1111/j.1467-8659.2008.01289.x
![]() |
[7] |
W. Q. Huang, X. D. Gu, W. W. Lin, S. T. Yau, A novel symmetric skew-Hamiltonian isotropic Lanczos algorithm for spectral conformal parameterizations, J. Sci. Comput., 61 (2014), 558–583. doi: 10.1007/s10915-014-9840-2
![]() |
[8] |
J. J. Dongarra, J. R. Gabriel, D. D. Koelling, J. H. Wilkinson, The eigenvalue problem for Hermitian matrices with time-reversal symmetry, Linear Algebra Appl., 60 (1984), 27–42. doi: 10.1016/0024-3795(84)90068-5
![]() |
[9] |
N. Rösch, Time-reversal symmetry, Kramers' degeneracy and the algebraic eigenvalue problem, Chem. Phys., 80 (1983), 1–5. doi: 10.1016/0301-0104(83)85163-5
![]() |
[10] |
J. Olsen, P. JØrgensen, Linear and nonlinear response functions for an exact state and for an MCSCF state, J. Chem. Phys., 82 (1985), 3235–3264. doi: 10.1063/1.448223
![]() |
[11] |
J. Olsen, H. JØrgen, A. Jensen, P. JØrgensen, Solution of the large matrix equations which occur in response theory, J. Comput. Phys., 74 (1988), 265–282. doi: 10.1016/0021-9991(88)90081-2
![]() |
[12] | P. Lancaster, L. Rodman, Algebraic Riccati equations, Clarendon press, 1995. |
[13] | Z. Zhang, X. Hu, L. Zhang, The solvability conditions for the inverse eigenvalue problem of Hermitian-generalized skew-Hamiltonian matrices and its approximation, Inverse Probl., 18 (2002) 1369–1376. |
[14] |
Z. Bai, The solvability conditions for the inverse eigenvalue problem of Hermitian and generalized skew-Hamiltonian matrices and its approximation, Inverse Probl., 19 (2003), 1185–1194. doi: 10.1088/0266-5611/19/5/310
![]() |
[15] |
J. Qian, R. C. E. Tan, On some inverse eigenvalue problems for Hermitian and generalized Hamiltonian/skew-Hamiltonian matrices, J. Comput. Appl. Math., 250 (2013), 28–38. doi: 10.1016/j.cam.2013.02.023
![]() |
[16] |
S. Gigola, L. Lebtahi, N. Thome, Inverse eigenvalue problem for normal J-hamiltonian matrices, Appl. Math. Lett., 48 (2015), 36–40. doi: 10.1016/j.aml.2015.03.007
![]() |
[17] |
S. Gigola, L. Lebtahi, N. Thome, The inverse eigenvalue problem for a Hermitian reflexive matrix and the optimization problem, J. Comput. Appl. Math., 291 (2016), 449–457. doi: 10.1016/j.cam.2015.03.052
![]() |
[18] |
K. T. Joseph, Inverse eigenvalue problem in structral design, AIAA J., 30 (1992), 2890–2896. doi: 10.2514/3.11634
![]() |
[19] | S. Li, B. Wang, J. Hu, Homotopy solution of the inverse generalized eigenvalue problems in structural dynamics, Appl. Math. Mech. 25 (2004), 580–586. |
[20] | Y. Yuan, A symmetric inverse eigenvalue problem in structural dynamic model updating, Appl. Math. Comput., 213 (2009), 516–521. |
[21] |
Y. Yuan, H. Dai, A generalized inverse eigenvalue problem in structural dynamic model updating, J. Comput. Appl. Math., 226 (2009), 42–49. doi: 10.1016/j.cam.2008.05.015
![]() |
[22] |
P. Wang, H. Dai, Eigensensitivity of symmetric damped systems with repeated eigenvalues by generalized inverse, J. Eng. Math., 96 (2016), 201–210. doi: 10.1007/s10665-015-9790-1
![]() |
[23] |
K. V. Singh, H. Ouyang, Pole assignment using state feedback with time delay in friction-induced vibration problems, Acta Mech., 224 (2013), 645–656. doi: 10.1007/s00707-012-0778-x
![]() |
[24] |
J. Zhao, J. Zhang, The solvability conditions for the inverse eigenvalue problem of normal skew J-Hamiltonian matrices, J. Inequal. Appl., 2018 (2018), 1–8. doi: 10.1186/s13660-017-1594-6
![]() |
[25] | H. Zhang, Y. Yuan, Generalized inverse eigenvalue problems for Hermitian and J-Hamiltonian/skew-Hamiltonian matrices, Appl. Math. Comput., 361 (2019), 609–616. |
[26] |
Y. Yuan, J. Chen, An inverse eigenvalue problem for Hamiltonian matrices, J. Comput. Appl. Math., 381 (2021), 113031. doi: 10.1016/j.cam.2020.113031
![]() |
[27] | J. P. Aubin, Applied functional analysis, John Wiley & Sons, New York, 1979. |
1. | Shuangbing Guo, Xiliang Lu, Zhiyue Zhang, Finite element method for an eigenvalue optimization problem of the Schrödinger operator, 2022, 7, 2473-6988, 5049, 10.3934/math.2022281 | |
2. | Shuyi Li, Weiyue Zhang, Junchen Li, Lidong Wang, Zhibin Li, 2022, Existence and uniqueness of solutions for a class of matrix eigenvalue inverse problems with proportional relations, 978-1-6654-8192-2, 177, 10.1109/GCRAIT55928.2022.00045 |