An efficient spectral method is proposed for a new Steklov eigenvalue problem in inverse scattering. Firstly, we establish the weak form and the associated discrete scheme by introducing an appropriate Sobolev space and a corresponding approximation space. Then, according to the Fredholm Alternative, the corresponding operator forms of weak formulation and discrete formulation are derived. After that, the error estimates of approximated eigenvalues and eigenfunctions are proved by using the spectral approximation results of completely continuous operators and the approximation properties of orthogonal projection operators. We also construct an appropriate set of basis functions in the approximation space and derive the matrix form of the discrete scheme based on the tensor product. In addition, we extend the algorithm to the circular domain. Finally, we present plenty of numerical experiments and compare them with some existing numerical methods, which validate that our algorithm is effective and high accuracy.
Citation: Shixian Ren, Yu Zhang, Ziqiang Wang. An efficient spectral-Galerkin method for a new Steklov eigenvalue problem in inverse scattering[J]. AIMS Mathematics, 2022, 7(5): 7528-7551. doi: 10.3934/math.2022423
An efficient spectral method is proposed for a new Steklov eigenvalue problem in inverse scattering. Firstly, we establish the weak form and the associated discrete scheme by introducing an appropriate Sobolev space and a corresponding approximation space. Then, according to the Fredholm Alternative, the corresponding operator forms of weak formulation and discrete formulation are derived. After that, the error estimates of approximated eigenvalues and eigenfunctions are proved by using the spectral approximation results of completely continuous operators and the approximation properties of orthogonal projection operators. We also construct an appropriate set of basis functions in the approximation space and derive the matrix form of the discrete scheme based on the tensor product. In addition, we extend the algorithm to the circular domain. Finally, we present plenty of numerical experiments and compare them with some existing numerical methods, which validate that our algorithm is effective and high accuracy.
[1] | S. Bergman, M. Schiffer, Kernel functions and elliptic differential equations in mathematical physics, New York: Academic Press, 1953. |
[2] | C. Conca, J. Planchard, M. Vanninathanm, Fluid and periodic structures, Paris: John Wiley & Sons Inc, 1995. |
[3] | D. Bucur, I. Ionescu, Asymptotic analysis and scaling of friction parameters, Z. angew. Math. Phys., 57 (2006), 1042–1056. https://doi.org/10.1007/s00033-006-0070-9 doi: 10.1007/s00033-006-0070-9 |
[4] | J. Canavati, A. Minzoni, A discontinuous Steklov problem with an application to water waves, J. Math. Anal. Appl., 69 (1979), 540–558. https://doi.org/10.1016/0022-247X(79)90165-3 doi: 10.1016/0022-247X(79)90165-3 |
[5] | A. Andreev, T. Todorov, Isoparametric finite-element approximation of a Steklov eigenvalue problem, IMA J. Numer. Anal., 24 (2004), 309–322. https://doi.org/10.1093/imanum/24.2.309 doi: 10.1093/imanum/24.2.309 |
[6] | Y. Yang, Q. Li, S. Li, Nonconforming finite element approximations of the Steklov eigenvalue problem, Appl. Numer. Math., 59 (2009), 2388–2401. https://doi.org/10.1016/j.apnum.2009.04.005 doi: 10.1016/j.apnum.2009.04.005 |
[7] | M. Armentano, C. Padra, A posteriori error estimates for the Steklov eigenvalue problem, Appl. Numer. Math., 58 (2008), 593–601. https://doi.org/10.1016/j.apnum.2007.01.011 doi: 10.1016/j.apnum.2007.01.011 |
[8] | J. An, H. Bi, Z. Luo, A highly efficient spectral-Galerkin method based on tensor product for fourth-order Steklov equation with boundary eigenvalue, J. Inequal. Appl., 2016 (2016), 211. https://doi.org/10.1186/s13660-016-1158-1 doi: 10.1186/s13660-016-1158-1 |
[9] | Q. Li, Y. Yang, A two-grid discretization scheme for the Steklov eigenvalue problem, J. Appl. Math. Comput., 36 (2011), 129–139. https://doi.org/10.1007/s12190-010-0392-9 doi: 10.1007/s12190-010-0392-9 |
[10] | H. Bi, Y. Yang, A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem, Appl. Math. Comput., 217 (2011), 9669–9678. https://doi.org/10.1016/j.amc.2011.04.051 doi: 10.1016/j.amc.2011.04.051 |
[11] | L. Cao, L. Zhang, W. Allegretto, Y. Lin, Multiscale asymptotic method for Steklov eigenvalue equations in composite media, SIAM J. Numer. Anal., 51 (2013), 273–296. https://doi.org/10.1137/110850876 doi: 10.1137/110850876 |
[12] | F. Lepe, D. Mora, G. Rivera, I. Velásquez, A virtual element method for the Steklov eigenvalue problem allowing small edges, J. Sci. Comput., 88 (2021), 44. https://doi.org/10.1007/s10915-021-01555-3 doi: 10.1007/s10915-021-01555-3 |
[13] | S. Domínguez, Steklov eigenvalues for the Lamé operator in linear elasticity, J. Comput. App. Math., 394 (2021), 113558. https://doi.org/10.1016/j.cam.2021.113558 doi: 10.1016/j.cam.2021.113558 |
[14] | F. Cakoni, D. Colton, S. Meng, P. Monk, Stekloff eigenvalues in inverse scattering, SIAM J. Appl. Math., 76 (2016), 1737–1763. https://doi.org/10.1137/16M1058704 doi: 10.1137/16M1058704 |
[15] | J. Liu, J. Sun, T. Turner, Spectral indicator method for a non-selfadjoint Steklov eigenvalue problem, J. Sci. Comput., 79 (2019), 1814–1831. https://doi.org/10.1007/s10915-019-00913-6 doi: 10.1007/s10915-019-00913-6 |
[16] | H. Bi, Y. Zhang, Y. Yang, Two-grid discretizations and a local finite element scheme for a non-selfadjoint Stekloff eigenvalue problem, Comput. Math. Appl., 79 (2020), 1895–1913. https://doi.org/10.1016/j.camwa.2018.08.047 doi: 10.1016/j.camwa.2018.08.047 |
[17] | Y. Zhang, H. Bi, Y. Yang, A multigrid correction scheme for a new Steklov eigenvalue problem in inverse scattering, Int. J. Comput. Math., 97 (2020), 1412–1430. https://doi.org/10.1080/00207160.2019.1622686 doi: 10.1080/00207160.2019.1622686 |
[18] | Y. Yang, Y. Zhang, H. Bi, Non-coforming Crouzeix-Raviart element approximation for Stekloff eigenvalues in inverse scattering, Adv. Comput. Math., 46 (2020), 81. https://doi.org/10.1007/s10444-020-09818-7 doi: 10.1007/s10444-020-09818-7 |
[19] | F. Xu, M. Yue, Q. Huang, H. Ma, An asymptotically exact a posteriori error estimator for non-selfadjoint Steklov eigenvalue problem, Appl. Numer. Math., 156 (2020), 210–227. https://doi.org/10.1016/j.apnum.2020.04.020 doi: 10.1016/j.apnum.2020.04.020 |
[20] | G. Wang, J. Meng, Y. Wang, L. Mei, A priori and a posteriori error estimates for a virtual element method for the non-self-adjoint Steklov eigenvalue problem, IMA J. Numer. Anal., in press. https://doi.org/10.1093/imanum/drab079 |
[21] | J. Shen, Efficient spectral-Galerkin methods III: polar and cylindrical geometries, SIAM J. Sci. Comput., 18 (1997), 1583–1604. https://doi.org/10.1137/S1064827595295301 doi: 10.1137/S1064827595295301 |
[22] | T. Tan, J. An, Spectral Galerkin approximation and rigorous error analysis for the Steklov eigenvalue problem in circular domain, Math. Method. Appl. Sci., 41 (2018), 3764–3778. https://doi.org/10.1002/mma.4863 doi: 10.1002/mma.4863 |
[23] | J. An, An efficient Legendre-Galerkin spectral approximation for steklov eigenvalue problem, Scientia Sinica Mathematica, 45 (2015), 83–92. https://doi.org/10.1360/012014-64 doi: 10.1360/012014-64 |
[24] | B. Guo, Z. Wang, Z. Wan, D. Chu, Second order Jacobi approximation with applications to fourth-order differential equations, Appl. Numer. Math., 55 (2005), 480–520. https://doi.org/10.1016/j.apnum.2005.01.002 doi: 10.1016/j.apnum.2005.01.002 |
[25] | X. Yu, B. Guo, Spectral method for fourth-order problems on quadrilaterals, J. Sci. Comput., 66 (2016), 477–503. https://doi.org/10.1007/s10915-015-0031-6 doi: 10.1007/s10915-015-0031-6 |
[26] | G. Hsiao, W. Wendland, Boundary integral equations, Berlin: Springer-Verlag, 2008. https://doi.org/10.1007/978-3-540-68545-6 |
[27] | M. Dauge, Elliptic boundary value problems on corner domains: smoothness and asymptotics of solutions, Berlin: Springer-Verlag, 1988. https://doi.org/10.1007/BFb0086682 |
[28] | J. Shen, T. Tang, L. Wang, Spectral methods, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-540-71041-7 |
[29] | E. Garau, P. Morin, Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems, IMA J. Numer. Anal., 31 (2011), 914–946. https://doi.org/10.1093/imanum/drp055 doi: 10.1093/imanum/drp055 |
[30] | I. Babuska, J. Osborn, Eigenvalue problem, In: Handbook of numerical analysis, North-Holand: Elsevier Science Publishers, 1991,641–787. https://doi.org/10.1016/S1570-8659(05)80042-0 |