In the present paper, we introduce the notion of a $ \mathcal{C}^{\star} $-algebra valued bipolar metric space and prove coupled fixed point theorems. Some of the well-known outcomes in the literature are generalized and expanded by the results shown. An example and application to support our result is presented.
Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Absar Ul Haq, Imran Abbas Baloch, Fahd Jarad. Coupled fixed point theorems on $ \mathcal{C}^\star $-algebra valued bipolar metric spaces[J]. AIMS Mathematics, 2022, 7(5): 7552-7568. doi: 10.3934/math.2022424
In the present paper, we introduce the notion of a $ \mathcal{C}^{\star} $-algebra valued bipolar metric space and prove coupled fixed point theorems. Some of the well-known outcomes in the literature are generalized and expanded by the results shown. An example and application to support our result is presented.
[1] | A. Mutlu, U. G$\ddot{u}$rdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373. http://dx.doi.org/10.22436/jnsa.009.09.05 doi: 10.22436/jnsa.009.09.05 |
[2] | U. G$\ddot{u}$rdal, A. Mutlu, K. $\ddot{O}$zkan, Fixed point results for $\alpha-\psi$ ontractive mappings in bipolar metric spaces, J. Inequal. Spec. Funct., 11 (2020), 64–75. |
[3] | G. N. V. Kishore, R. P. Agarwal, B. S. Rao, R. V. N. S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl., 2018 (2018), 21. https://doi.org/10.1186/s13663-018-0646-z doi: 10.1186/s13663-018-0646-z |
[4] | G. N. V. Kishore, D. R. Prasad, B. S. Rao, V. S. Baghavan, Some applications via common coupled fixed point theorems in bipolar metric spaces, J. Crit. Rev., 7 (2019), 601–607. |
[5] | G. N. V. Kishore, K. P. R. Rao, A. Sombabu, R. V. N. S. Rao, Related results to hybrid pair of mappings and applications in bipolar metric spaces, J. Math., 2019 (2019), 8485412. https://doi.org/10.1155/2019/8485412 doi: 10.1155/2019/8485412 |
[6] | B. S. Rao, G. N. V. Kishore, G. K. Kumar, Geraghty type contraction and common coupled fixed point theorems in bipolar metric spaces with applications to homotopy, Int. J. Math. Trends Technol., 63 (2018), 25–34. |
[7] | G. N. V. Kishore, K. P. R. Rao, H. Işık, B. S. Rao, A. Sombabu, Covarian mappings and coupled fixed point results in bipolar metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 1–15. https://dx.doi.org/10.22075/ijnaa.2021.4650 doi: 10.22075/ijnaa.2021.4650 |
[8] | A. Mutlu, K. $\ddot{O}$zkan, U. G$\ddot{u}$rdal, Locally and weakly contractive principle in bipolar metric spaces, TWMS J. Appl. Eng. Math., 10 (2020), 379–388. |
[9] | Y. U. Gaba, M. Aphane, H. Aydi, $\alpha, BK$-contractions in bipolar metric spaces, J. Math., 2021 (2021), 5562651. https://doi.org/10.1155/2021/5562651 doi: 10.1155/2021/5562651 |
[10] | A. Mutlu, K. $\ddot{O}$zkan, U. G$\ddot{u}$rdal, Coupled fixed point theorems on bipolar metric spaces, Eur. J. Pure Math., 10 (2017), 655–667. |
[11] | Z. H. Ma, L. N. Jiang, H. K. Sun, $C^*$-algebras-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2014 (2014), 206. https://doi.org/10.1186/1687-1812-2014-206 doi: 10.1186/1687-1812-2014-206 |
[12] | S. Batul, T. Kamran, $C^{\star}$-valued contractive type mappings, Fixed Point Theory Appl., 2015 (2015), 142. https://doi.org/10.1186/s13663-015-0393-3 doi: 10.1186/s13663-015-0393-3 |
[13] | K. R. Davidson, $C^{\star}$-algebras by example, Fields Institute Monographs, American Mathematical Society, 1996. |
[14] | G. J. Murphy, $ C^* $-algebra and operator theory, Waltham: Academic Press, 1990. |
[15] | Q. H. Xu, T. E. D. Bieke, Z. Q. Chen, Introduction to operator algebras and noncommutative Lp spaces, Beijing: Science Press, 2010. |
[16] | M. Gunaseelan, G. Arul Joseph, P. B. Khumalo, Y. U. Gaba, Common coupled fixed point theorems on $C^*$-algebra-valued partial metric spaces, J. Func. Spaces, 2022 (2022), 3336095. https://doi.org/10.1155/2022/3336095 doi: 10.1155/2022/3336095 |
[17] | R. G. Douglas, Banach algebra techniques in operator theory, Springer, Berlin, 1998. https://doi.org/10.1007/978-1-4612-1656-8 |