In the present paper, we introduce the notion of a C⋆-algebra valued bipolar metric space and prove coupled fixed point theorems. Some of the well-known outcomes in the literature are generalized and expanded by the results shown. An example and application to support our result is presented.
Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Absar Ul Haq, Imran Abbas Baloch, Fahd Jarad. Coupled fixed point theorems on C⋆-algebra valued bipolar metric spaces[J]. AIMS Mathematics, 2022, 7(5): 7552-7568. doi: 10.3934/math.2022424
[1] | Gunaseelan Mani, Arul Joseph Gnanaprakasam, Hüseyin Işık, Fahd Jarad . Fixed point results in C⋆-algebra-valued bipolar metric spaces with an application. AIMS Mathematics, 2023, 8(4): 7695-7713. doi: 10.3934/math.2023386 |
[2] | Astha Malhotra, Deepak Kumar, Choonkil Park . C∗-algebra valued R-metric space and fixed point theorems. AIMS Mathematics, 2022, 7(4): 6550-6564. doi: 10.3934/math.2022365 |
[3] | Ouafaa Bouftouh, Samir Kabbaj, Thabet Abdeljawad, Aiman Mukheimer . On fixed point theorems in C∗-algebra valued b-asymmetric metric spaces. AIMS Mathematics, 2022, 7(7): 11851-11861. doi: 10.3934/math.2022661 |
[4] | Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817 |
[5] | Mohammed Shehu Shagari, Trad Alotaibi, OM Kalthum S. K. Mohamed, Arafa O. Mustafa, Awad A. Bakery . On existence results of Volterra-type integral equations via C∗-algebra-valued F-contractions. AIMS Mathematics, 2023, 8(1): 1154-1171. doi: 10.3934/math.2023058 |
[6] | Saleh Omran, Ibtisam Masmali . α-Admissible mapping in C∗-algebra-valued b-metric spaces and fixed point theorems. AIMS Mathematics, 2021, 6(9): 10192-10206. doi: 10.3934/math.2021590 |
[7] | Xudong Wang, Tingting Xiang . Dual Brunn-Minkowski inequality for C-star bodies. AIMS Mathematics, 2024, 9(4): 7834-7847. doi: 10.3934/math.2024381 |
[8] | Saif Ur Rehman, Arjamand Bano, Hassen Aydi, Choonkil Park . An approach of Banach algebra in fuzzy metric spaces with an application. AIMS Mathematics, 2022, 7(5): 9493-9507. doi: 10.3934/math.2022527 |
[9] | Erdal Karapınar, Marija Cvetković . An inevitable note on bipolar metric spaces. AIMS Mathematics, 2024, 9(2): 3320-3331. doi: 10.3934/math.2024162 |
[10] | Joginder Paul, Mohammad Sajid, Naveen Chandra, Umesh Chandra Gairola . Some common fixed point theorems in bipolar metric spaces and applications. AIMS Mathematics, 2023, 8(8): 19004-19017. doi: 10.3934/math.2023969 |
In the present paper, we introduce the notion of a C⋆-algebra valued bipolar metric space and prove coupled fixed point theorems. Some of the well-known outcomes in the literature are generalized and expanded by the results shown. An example and application to support our result is presented.
In 2016, Mutlu and Gürdal [1] introduced the concepts of bipolar metric space and proved fixed point theorems.
Definition 1.1. [1] Let Γ and Ψ be two non-void sets and φ:Γ×Ψ→R+ be a function, such that
(a) φ(σ,ζ)=0 iff σ=ζ, for all (σ,ζ)∈Γ×Ψ.
(b) φ(σ,ζ)=φ(ζ,σ), for all σ,ζ∈Γ∩Ψ.
(c) φ(σ,ζ)≤φ(σ,ω)+φ(σ1,ω)+φ(σ1,ζ), for all σ,σ1∈Γ and ω,ζ∈Ψ.
The pair (Γ,Ψ,φ) is called a bipolar metric space.
In bipolar metric spaces, a lot of significant work has been done (see [2,3,4,5,6,7,8,9,10]). In 2014, Ma, Jiang and Sun [11] introduced the notion of a C⋆-algebra-valued metric space and proved fixed point theorem. In 2015, Batul and Kamran [12] proved fixed theorems on C⋆-algebra-valued metric space. In the present paper, we introduce a new notion of C⋆-algebra valued bipolar metric space and proved coupled fixed point theorems. The details on C⋆-algebra are available in [13,14,15,16,17].
An algebra A, together with a conjugate linear involution map ϑ⟼ϑ⋆, is called a ⋆-algebra if (ϑϖ)⋆=ϖ⋆ϑ⋆ and (ϑ⋆)⋆=ϑ for all ϑ,ϖ∈A. Moreover, the pair (A,⋆) is called a unital ⋆-algebra if A contains the identity element 1A. By a Banach ⋆-algebra we mean a complete normed unital ⋆-algebra (A,⋆) such that the norm on A is submultiplicative and satisfies ‖ϑ⋆‖=‖ϑ‖ for all ϑ∈A. Further, if for all ϑ∈A, we have ‖ϑ⋆ϑ‖=‖ϑ‖2 in a Banach ⋆-algebra (A,⋆), then A is known as a C⋆-algebra. A positive element of A is an element ϑ∈A such that ϑ=ϑ⋆ and its spectrum σ(ϑ)⊂R+, where σ(ϑ) = {υ∈R:υ1A−ϑis noninvertible}. The set of all positive elements will be denoted by A+. Such elements allow us to define a partial ordering ⪰ on the elements of A. That is,
ϖ⪰ϑif and only ifϖ−ϑ∈A+. |
If ϑ∈A is positive, then we write ϑ⪰0A, where 0A is the zero element of A. Each positive element ϑ of a C⋆-algebra A has a unique positive square root. From now on, by A we mean a unital C⋆-algebra with identity element 1A. Further, A+ = {ϑ∈A:ϑ⪰0A} and (ϑ⋆ϑ)1/2 = |ϑ|.
In this section, we extend Definition 1.1 to introduce the notion bipolar metric space in the setting of C∗-algebra as follows.
Definition 2.1. Let A be a C∗-algebra, and Γ, Ψ be two non-void sets. A mapping φ:Γ×Ψ→A+ be a function such that
(a) φ(σ,ζ)=0 iff σ=ζ, for all (σ,ζ)∈Γ×Ψ.
(b) φ(σ,ζ)=φ(ζ,σ), for all σ,ζ∈Γ∩Ψ.
(c) φ(σ,ζ)≤φ(σ,γ)+φ(σ1,γ)+φ(σ1,ζ), for all σ,σ1∈Γ and γ,ζ∈Ψ.
The 4-tuple (Γ,Ψ,A,φ) is called a C⋆-algebra valued bipolar metric space.
Lemma 2.2 ([14,17]). Suppose that A is a unital C⋆-algebra with a unit I.
(A1) For any σ∈A+, we have σ⪯I iff ||σ||≤1.
(A2) If ϑ∈A+ with ||ϑ||<12, then (I−ϑ) is invertible and ||ϑ(I−a)−1||<1.
(A3) Suppose that ϑ,ϖ∈A with ϑϖ⪰0A and ϑϖ=ϖϑ, then ϖϑ⪰0A.
(A4) By A′ we denote the set {ϑ∈A:ϑϖ=ϖϑ,∀ϖ∈A}. Let ϑ∈A′, if ϖ,c∈A with ϖ⪰c⪰0A, and I−ϑ∈A′+ is an invertible operator, then
(I−ϑ)−1ϖ⪰(I−ϑ)−1c. |
(A5) If ϖ,c∈Ah={σ∈A:σ=σ⋆} and ϑ∈A, then ϖ⪯c implies that ϑ⋆ϖϑ⪯ϑ⋆cϑ.
(A6) 0A⪯ϑ⪯ϖ, then ||ϑ||≤||ϖ||.
Notice that in a C⋆-algebra, if 0A⪯ϑ,ϖ, one cannot conclude that 0A⪯ϑϖ.
Definition 2.3. Let (Γ1,Ψ1,A,φ) and (Γ2,Ψ2,A,φ) be pairs of sets and given a function Φ:Γ1∪Ψ1→Γ2∪Ψ2.
(B1) If Φ(Γ1)⊆Γ2 and Φ(Ψ1)⊆Ψ2, then Φ is called a covariant map, or a map from (Γ1,Ψ1,A,φ1) to (Γ2,Ψ2,A,φ2) and this is written as
Φ:(Γ1,Ψ1,A,φ1)⇉(Γ2,Ψ2,A,φ2). |
(B2) If Φ(Γ1)⊆Ψ2 and Φ(Ψ1)⊆Γ2, then Φ is called a contravariant map from (Γ1,Ψ1,A,φ1)to(Γ2,Ψ2,A,φ2) and this is denoted as
Φ:(Γ1,Ψ1,A,φ1)⇆(Γ2,Ψ2,A,φ2). |
Definition 2.4. Let (Γ,Ψ,A,φ) be a C⋆-algebra valued bipolar metric space.
(C1) A point σ∈Γ∪Ψ is said to be a left point if σ∈Γ, a right point if σ∈Ψ and a central point if both hold. Similarly, a sequence{σα} on the set Γ and a sequence {ζn} on the set Ψ are called a left and right sequence with respect to A, respectively.
(C2) A sequence {σα} converges to a point ζ with respect to A iff {σα} is a left sequence, ζ is a right point and limα→∞φ(σα,ζ)=0A or {σα} is a right sequence, ζ is a left point and limα→∞φ(ζ,σα)=0A.
(C3) A bisequence ({σn},{ζn}) is a sequence on the set Γ×Ψ. If the sequence {σn} and {ζn} are convergent with respect to A, then the bisequence ({σn},{ζn}) is said to be convergent with respect to A. ({σn},{ζn}) is a Cauchy bisequence with respect to A if limα,β→∞φ(σα,ζβ)=0A, hence biconvergent with respect to A.
(C4) (Γ,Ψ,A,φ) is complete, if every Cauchy bisequence with respect to A is convergent in Γ×Ψ.
Theorem 3.1. Let (Γ,Ψ,A,φ) be a complete C⋆-algebra valued bipolar metric space. Suppose
Φ:(Γ2,Ψ2,A,φ)⇉(Γ,Ψ,A,φ) |
is a covariant mapping such that
φ(Φ(σ,ζ),Φ(u,v))⪯υ⋆φ(σ,u)υ+υ⋆φ(ζ,v)υfor allσ,ζ∈Γ,u,v∈Ψ, |
where υ∈A with 2||υ||2<1. Then the function
Φ:Γ2∪Ψ2→Γ∪Ψ |
has a unique coupled fixed point.
Proof. Let σ0,ζ0∈Γ and u0,v0∈Ψ. For each α∈N, define
Φ(σα,ζα)=σα+1, |
Φ(ζα,σα)=ζα+1, |
Φ(uα,vα)=uα+1 |
and
Φ(vα,uα)=vα+1. |
Then ({σα},{ζα}) and ({uα},{vα}) are bisequences on (Γ,Ψ,A,φ). Then, for each α∈N,
φ(σα,uα+1)=φ(Φ(σα−1,ζα−1),Φ(uα,vα))⪯υ⋆φ(σα−1,uα)υ+υ⋆φ(ζα−1,vα)υ=υ⋆Mαυ, |
where
Mα=φ(σα−1,uα)+φ(ζα−1,vα). |
Similarly, we get
φ(ζα,vα+1)=φ(Φ(ζα−1,σα−1),Φ(vα,uα))⪯υ⋆φ(ζα−1,vα)υ+υ⋆φ(σα−1,uα)υ=υ⋆Mαυ. |
Now,
Mα+1=φ(σα,uα+1)+φ(ζα,vα+1)⪯υ⋆[φ(σα−1,uα)+φ(ζα−1,vα)]υ+υ⋆[φ(ζα−1,vα)+φ(σα−1,uα)]υ⪯(√2υ)⋆Mα(√2υ). |
By Lemma 2.2 (A5), we have
0A⪯Mα+1⪯(√2υ)⋆Mα(√2υ)⪯⋯⪯((√2υ)⋆)αM1(√2υ)α. |
On the other hand,
φ(σα+1,uα)=φ(Φ(σα,ζα),Φ(uα−1,vα−1))⪯υ⋆φ(σα,uα−1)υ+υ⋆φ(ζα,vα−1)υ=υ⋆Sαυ, |
where
Sα=φ(σα,uα−1)+φ(ζα,vα−1). |
Similarly, we get
φ(ζα+1,vα)=φ(Φ(ζα,σα),Φ(vα−1,uα−1))⪯υ⋆φ(ζα,vα−1)υ+υ⋆φ(σα,uα−1)υ=υ⋆Sαυ. |
Now,
Sα+1=φ(σα+1,uα)+φ(ζα+1,vα)⪯υ⋆[φ(σα,uα−1)+φ(ζα,vα−1)]υ+υ⋆[φ(ζα,vα−1)+φ(σα,uα−1)]υ⪯(√2υ)⋆Sα(√2υ). |
By Lemma 2.2 (A5), we have
0A⪯Sα+1⪯(√2υ)⋆Sα(√2υ)⪯⋯⪯((√2υ)⋆)αS1(√2υ)α. |
Moreover,
φ(σα,uα)=φ(Φ(σα−1,ζα−1),Φ(uα−1,vα−1))⪯υ⋆φ(σα−1,uα−1)υ+υ⋆φ(ζα−1,vα−1)υ=υ⋆Rαυ, |
where
Rα=φ(σα−1,uα−1)+φ(ζα−1,vα−1). |
Similarly, we get
φ(ζα,vα)=φ(Φ(ζα−1,σα−1),Φ(vα−1,uα−1))⪯υ⋆φ(ζα−1,vα−1)υ+υ⋆φ(σα−1,uα−1)υ=υ⋆Rαυ. |
Now,
Rα+1=φ(σα,uα)+φ(ζα,vα)⪯υ⋆[φ(σα−1,uα−1)+φ(ζα−1,vα−1)]υ+υ⋆[φ(ζα−1,vα−1)+φ(σα−1,uα−1)]υ⪯(√2υ)⋆Rα(√2υ). |
By Lemma 2.2 (A5), we have
0A⪯Rα+1⪯(√2υ)⋆Rα(√2υ)⪯⋯⪯((√2υ)⋆)αR1(√2υ)α. |
Now,
φ(σα,uβ)⪯φ(σα,uα+1)+φ(σα+1,uα+1)+⋯+φ(σβ−1,uβ),φ(ζα,vβ)⪯φ(ζα,vα+1)+φ(ζα+1,vα+1)+⋯+φ(ζβ−1,vβ), |
and
φ(σβ,uα)⪯φ(σβ,uβ−1)+φ(σβ−1,uβ−1)+⋯+φ(σα+1,uα),φ(ζβ,vα)⪯φ(ζβ,vβ−1)+φ(ζβ−1,vβ−1)+⋯+φ(ζα+1,vα), |
for each α,β∈N, α<β. Then,
φ(σα,uβ)+φ(ζα,vβ)⪯(φ(σα,uα+1)+φ(ζα,vα+1))+(φ(σα+1,uα+1)+φ(ζα+1,vα+1))+⋯+(φ(σβ−1,uβ)+φ(ζβ−1,vβ))=Mα+1+Rα+2+Mα+2+⋯+Rβ+Mβ⪯((√2υ)⋆)αM1(√2υ)α+((√2υ)⋆)α+1R1(√2υ)α+1+⋯+((√2υ)⋆)β−1R1(√2υ)β−1+((√2υ)⋆)β−1M1(√2υ)β−1=β−1∑i=α((√2υ)⋆)iM1(√2υ)i+β−1∑i=α+1((√2υ)⋆)iR1(√2υ)i=β−1∑i=α((√2υ)⋆)iM121M121(√2υ)i+β−1∑i=α+1((√2υ)⋆)iR121R121(√2υ)i=β−1∑i=α(M121(√2υ)i)⋆(M121(√2υ)i)+β−1∑i=α+1(R121(√2υ)i)⋆(R121(√2υ)i)=β−1∑i=α|M121(√2υ)i|2+β−1∑i=α+1|R121(√2υ)i|2⪯||β−1∑i=α|M121(√2υ)i|2||1A+||β−1∑i=α+1|R121(√2υ)i|2||1A⪯β−1∑i=α||M121||2||(√2υ)i||2||1A+||β−1∑i=α+1||R121||2||(√2υ)i||2||1A⪯||M121||2β−1∑i=α||(√2υ)2||i||1A+||R121||2||β−1∑i=α+1||(√2υ)2||i||1A=||M121||2β−1∑i=α(2||υ||2)i1A+||R121||2β−1∑i=α+1(2||υ||2)i||1A→0A(asβ,α→∞) |
and
φ(σβ,uα)+φ(ζβ,vα)⪯(φ(σβ,uβ−1)+φ(ζβ,vβ−1))+(φ(σβ−1,uβ−1)+φ(ζβ−1,vβ−1))+⋯+(φ(σα+1,uα)+φ(ζα+1,vα))=Sβ+Rβ+Sβ−1+⋯+Rα+2+Sα+1⪯((√2υ)⋆)β−1S1(√2υ)β−1+((√2υ)⋆)β−1R1(√2υ)β−1+⋯+((√2υ)⋆)α+1R1(√2υ)α+1+((√2υ)⋆)αS1(√2υ)α=α+1∑i=β((√2υ)⋆)iS1(√2υ)i+α+2∑i=β((√2υ)⋆)iR1(√2υ)i=α+1∑i=β((√2υ)⋆)iS121S121(√2υ)i+α+2∑i=β((√2υ)⋆)iR121R121(√2υ)i=α+1∑i=β(S121(√2υ)i)⋆(S121(√2υ)i)+α+2∑i=β(R121(√2υ)i)⋆(R121(√2υ)i)=α+1∑i=β|S121(√2υ)i|2+α+2∑i=β|R121(√2υ)i|2⪯||α+1∑i=β|S121(√2υ)i|2||1A+||α+2∑i=β|R121(√2υ)i|2||1A⪯α+1∑i=β||S121||2||(√2υ)i||2||1A+||α+2∑i=β||R121||2||(√2υ)i||2||1A⪯||S121||2α+1∑i=β||(√2υ)2||i||1A+||R121||2||α+2∑i=β||(√2υ)2||i||1A=||S121||2α+1∑i=β(2||υ||2)i1A+||R121||2α+2∑i=β(2||υ||2)i||1A→0A(asβ,α→∞). |
Therefore, ({σα},{uα}) and ({ζα},{vα}) are Cauchy bisequences in Γ×Ψ with respect to A. By completeness of (Γ,Ψ,A,φ), there exist σ,ζ∈Γ and u,v∈Ψ with
limα→∞σα=u,limα→∞ζα=v,limα→∞uα=σand limα→∞vα=ζ. |
Since ({σα},{uα}) and ({ζα},{vα}) are Cauchy bisequences, we derive that
φ(σα,uα)≺ϵ2andφ(ζα,vα)≺ϵ2. |
Then,
φ(Φ(σ,ζ),u)⪯φ(Φ(σ,ζ),uα+1)+φ(σα+1,uα+1)+φ(σα+1,uα)=φ(Φ(σ,ζ),Φ(uα,vα))+φ(σα+1,uα+1)+φ(σα+1,uα)⪯υ⋆φ(σ,uα)υ+υ⋆φ(ζ,vα)υ+φ(σα+1,uα+1)+φ(σα+1,uα). |
As α→∞, we have
φ(Φ(σ,ζ),u)≺ϵ. |
Then,
φ(Φ(σ,ζ),u)=0. |
Hence, Φ(σ,ζ)=u. Similarly, we can derive Φ(ζ,σ)=v, Φ(u,v)=σ and Φ(v,u)=ζ. On the other hand, we derive that
φ(σ,u)=φ(limα→∞uα,limα→∞σα)=limα→∞φ(σα,uα)=0 |
and
φ(ζ,v)=φ(limα→∞vα,limα→∞ζα)=limα→∞φ(ζα,vα)=0. |
So, σ=u and ζ=v. Therefore, (σ,ζ)∈Γ2∩Ψ2 is a coupled fixed point of Φ. Let (e,f)∈Γ2∪Ψ2 is a another coupled fixed point Φ. If (e,f)∈Γ2, then
0A⪯φ(e,σ)=φ(Φ(e,f),Φ(σ,ζ))⪯υ⋆φ(e,σ)υ+υ⋆φ(f,ζ)υ |
and
0A⪯φ(f,ζ)=φ(Φ(f,e),Φ(ζ,σ))⪯υ⋆φ(f,ζ)υ+υ⋆φ(e,σ)υ, |
which implies that
0A⪯φ(e,σ)+φ(f,ζ)⪯(√2υ)⋆(φ(f,ζ)+φ(e,σ))(√2υ). |
Then,
0≤||φ(e,σ)+φ(f,ζ)||≤||√2υ||2||φ(f,ζ)+φ(e,σ)||. |
Since 2||υ||2<1, we derive that
φ(f,ζ)+φ(e,σ)=0. |
Therefore, e=σ and f=ζ. Similarly, if (e,f)∈Ψ2, then e=σ and f=ζ. Then (σ,ζ) is a unique coupled fixed point of Φ.
Example 3.2. Let Γ=[0,1], Ψ={0}∪N−{1}, A+=M2(C) and the map φ:Γ×Ψ→A+ is defined by
φ(σ,u)=[|σ−u|00k|σ−u|] |
for all σ∈Γ and u∈Ψ, where k≥0 is a constant. Let ⪯ be the partial order on A given by
(ϑ1,ϖ1)⪯(ϑ2,ϖ2)⇔ϑ1≤ϑ2 and ϖ1≤ϖ2. |
Then (Γ,Ψ,A,φ) is a complete C⋆-algebra-valued bipolar metric space. Define
Φ:Γ2∪Ψ2⇉Γ∪Ψ |
by
Φ(σ,ζ)=σ+ζ3, |
∀σ,ζ∈Γ2∪Ψ2. Then
φ(Φ(σ,ζ),Φ(u,v))=[|Φ(σ,ζ)−Φ(u,v)|00k|Φ(σ,ζ)−Φ(u,v)|]=[|σ+ζ3−u+v3|00k|σ+ζ3−u+v3|]⪯13([|σ−u|00k|σ−u|]+[|ζ−v|00k|ζ−v|])=υ⋆φ(σ,u)υ+υ⋆φ(ζ,v)υ, |
for all σ,ζ∈Γ,u,v∈Ψ, where
υ=[130013] |
and ||υ||=13<1√2. All the conditions of Theorem 3.1 are fulfilled and Φ has a unique fixed point (0,0).
Theorem 3.3. Let (Γ,Ψ,A,φ) be a complete C⋆-algebra valued bipolar metric space. Suppose
Φ:(Γ×Ψ,Ψ×Γ,A,φ)⇉(Γ,Ψ,A,φ) |
is a covariant mapping such that
φ(Φ(σ,u),Φ(v,ζ))⪯υ⋆φ(σ,v)υ+υ⋆φ(ζ,u)υfor allσ,ζ∈Γ,u,v∈Ψ, |
where υ∈A with 2||υ||2<1. Then the function
Φ:(Γ×Ψ)∪(Ψ×Γ)→Γ∪Ψ |
has a unique coupled fixed point.
Proof. Let σ0,ζ0∈Γ and u0,v0∈Ψ. For each α∈N, define Φ(σα,uα)=σα+1, Φ(ζα,vα)=ζα+1, Φ(uα,σα)=uα+1 and Φ(vα,ζα)=vα+1. Then ({σα},{uα}) and ({ζα},{vα}) are bisequences on (Γ,Ψ,A,φ). Then, for each α∈N,
φ(σα,vα+1)=φ(Φ(σα−1,uα−1),Φ(vα,ζα))⪯υ⋆φ(σα−1,vα)υ+υ⋆φ(ζα,uα−1)υ, |
φ(σα+1,vα)=φ(Φ(σα,uα),Φ(vα−1,ζα−1))⪯υ⋆φ(σα,vα−1)υ+υ⋆φ(ζα−1,uα)υ, |
φ(ζα,uα+1)=φ(Φ(ζα−1,vα−1),Φ(uα,σα))⪯υ⋆φ(ζα−1,uα)υ+υ⋆φ(σα,vα−1)υ, |
φ(ζα+1,uα)=φ(Φ(ζα,vα),Φ(uα−1,σα−1))⪯υ⋆φ(ζα,uα−1)υ+υ⋆φ(σα−1,vα)υ. |
Let
Mα=φ(σα,vα+1)+φ(ζα+1,uα), |
for all α∈N. Then
Mα=φ(σα,vα+1)+φ(ζα+1,uα)⪯υ⋆[φ(σα−1,vα)+φ(ζα,uα−1)]υ+υ⋆[φ(ζα,uα−1)+φ(σα−1,vα)]υ⪯(√2υ)⋆Mα−1(√2υ). |
By Lemma 2.2 (A5), we have
0A⪯Mα⪯(√2υ)⋆Mα−1(√2υ)⪯⋯⪯((√2υ)⋆)αM0(√2υ)α. |
Let
Sα=φ(σα+1,vα)+φ(ζα,uα+1) |
for all α∈N. Then
Sα=φ(σα+1,vα−1)+φ(ζα,uα+1)⪯υ⋆[φ(σα,vα−1)+φ(ζα−1,uα)]υ+υ⋆[φ(ζα−1,uα)+φ(σα,vα−1)]υ⪯(√2υ)⋆Sα−1(√2υ). |
By Lemma 2.2 (A5), we have
0A⪯Sα⪯(√2υ)⋆Sα−1(√2υ)⪯⋯⪯((√2υ)⋆)αS0(√2υ)α. |
On the other hand,
φ(σα,vα+1)=φ(Φ(σα−1,uα−1),Φ(vα,ζα))⪯υ⋆φ(σα−1,vα)υ+υ⋆φ(ζα,uα−1)υ. |
φ(σα,vα)=φ(Φ(σα−1,uα−1),Φ(vα−1,ζα−1))⪯υ⋆φ(σα−1,vα−1)υ+υ⋆φ(ζα−1,uα−1)υ |
and
φ(ζα,uα)=φ(Φ(ζα−1,uα−1),Φ(uα−1,σα−1))⪯υ⋆φ(ζα−1,uα−1)υ+υ⋆φ(σα−1,vα−1)υ |
for all α∈N. Let
Rα=φ(σα,vα)+φ(ζα,uα), |
for all α∈N. Then
Rα=φ(σα,vα)+φ(ζα,uα)⪯υ⋆[φ(σα−1,vα−1)+φ(ζα−1,uα−1)]υ+υ⋆[φ(ζα−1,uα−1)+φ(σα−1,vα−1)]υ⪯(√2υ)⋆Rα−1(√2υ). |
By Lemma 2.2 (A5), we have
0A⪯Rα⪯(√2υ)⋆Rα−1(√2υ)⪯⋯⪯((√2υ)⋆)αR0(√2υ)α. |
Now,
φ(σα,vβ)⪯φ(σα,vα+1)+φ(σα+1,vα+1)+⋯+φ(σβ−1,vβ),φ(ζα,uβ)⪯φ(ζα,uα+1)+φ(ζα+1,uα+1)+⋯+φ(ζβ−1,uβ), |
and
φ(σβ,vα)⪯φ(σβ,vβ−1)+φ(σβ−1,vβ−1)+⋯+φ(σα+1,vα),φ(ζβ,uα)⪯φ(ζβ,uβ−1)+φ(ζβ−1,uβ−1)+⋯+φ(ζα+1,uα), |
for each α,β∈N, α<β. Then,
φ(σα,vβ)+φ(ζβ,uα)⪯(φ(σα,vα+1)+φ(ζα+1,uα))+(φ(σα+1,vα+1)+φ(ζα+1,uα+1))+⋯+(φ(σβ−1,vβ)+φ(ζβ,uβ−1))=Mα+Rα+1+Mα+1+⋯+Rβ−1+Mβ−1⪯((√2υ)⋆)αM0(√2υ)α+((√2υ)⋆)α+1R0(√2υ)α+1+⋯+((√2υ)⋆)β−1R0(√2υ)β−1+((√2υ)⋆)β−1M0(√2υ)β−1=β−1∑i=α((√2υ)⋆)iM0(√2υ)i+β−1∑i=α+1((√2υ)⋆)iR0(√2υ)i=β−1∑i=α((√2υ)⋆)iM120M120(√2υ)i+β−1∑i=α+1((√2υ)⋆)iR120R120(√2υ)i=β−1∑i=α(M120(√2υ)i)⋆(M120(√2υ)i)+β−1∑i=α+1(R120(√2υ)i)⋆(R120(√2υ)i)=β−1∑i=α|M120(√2υ)i|2+β−1∑i=α+1|R120(√2υ)i|2⪯||β−1∑i=α|M120(√2υ)i|2||1A+||β−1∑i=α+1|R120(√2υ)i|2||1A⪯β−1∑i=α||M120||2||(√2υ)i||2||1A+||β−1∑i=α+1||R120||2||(√2υ)i||2||1A⪯||M120||2β−1∑i=α||(√2υ)2||i||1A+||R120||2||β−1∑i=α+1||(√2υ)2||i||1A=||M120||2β−1∑i=α(2||υ||2)i1A+||R120||2β−1∑i=α+1(2||υ||2)i||1A→0A(asβ,α→∞) |
and
\begin{align*} \varphi(\sigma_{\beta},\mathfrak{v}_{\alpha})+\varphi(\zeta_{\alpha},\mathfrak{v}_{\beta})&\preceq (\varphi(\sigma_{\beta},\mathfrak{v}_{\beta-1})+\varphi(\zeta_{\beta-1},\mathfrak{u}_{\beta}))+(\varphi(\sigma_{\beta-1},\mathfrak{v}_{\beta-1})+\varphi(\zeta_{\beta-1},\mathfrak{u}_{\beta-1}))\\ &\; \; \; +\cdots+(\varphi(\sigma_{\alpha+1},\mathfrak{v}_{\alpha})+\varphi(\zeta_{\alpha},\mathfrak{u}_{\alpha+1}))\\ & = \mathcal{S}_{\beta-1}+\mathcal{R}_{\beta-1}+\mathcal{S}_{\beta-1}+\cdots+\mathcal{R}_{\alpha+1}+\mathcal{S}_{\alpha}\\ &\preceq((\sqrt{2}\upsilon)^{\star})^{\beta-1}\mathcal{S}_{0}(\sqrt{2}\upsilon)^{\beta-1}+((\sqrt{2}\upsilon)^{\star})^{\beta-1}\mathcal{R}_{0}(\sqrt{2}\upsilon)^{\beta-1}+\cdots\\ &\; \; \; +((\sqrt{2}\upsilon)^{\star})^{\alpha+1}\mathcal{R}_{0}(\sqrt{2}\upsilon)^{\alpha+1}+((\sqrt{2}\upsilon)^{\star})^{\alpha}\mathcal{S}_{0}(\sqrt{2}\upsilon)^{\alpha}\\ & = \sum\limits_{\mathfrak{i} = \alpha}^{\beta-1}((\sqrt{2}\upsilon)^{\star})^{\mathfrak{i}}\mathcal{S}_{0}(\sqrt{2}\upsilon)^{\mathfrak{i}}+\sum\limits_{\mathfrak{i} = \alpha+1}^{\beta-1}((\sqrt{2}\upsilon)^{\star})^{\mathfrak{i}}\mathcal{R}_{0}(\sqrt{2}\upsilon)^{\mathfrak{i}}\\ & = \sum\limits_{\mathfrak{i} = \alpha}^{\beta-1}((\sqrt{2}\upsilon)^{\star})^{\mathfrak{i}}\mathcal{S}^{\frac{1}{2}}_{0}\mathcal{S}^{\frac{1}{2}}_{0}(\sqrt{2}\upsilon)^{\mathfrak{i}}+\sum\limits_{\mathfrak{i} = \alpha+1}^{\beta-1}((\sqrt{2}\upsilon)^{\star})^{\mathfrak{i}}\mathcal{R}^{\frac{1}{2}}_{0}\mathcal{R}^{\frac{1}{2}}_{0}(\sqrt{2}\upsilon)^{\mathfrak{i}}\\ & = \sum\limits_{\mathfrak{i} = \alpha}^{\beta-1}(\mathcal{S}^{\frac{1}{2}}_{0}(\sqrt{2}\upsilon)^{\mathfrak{i}})^{\star}(\mathcal{S}^{\frac{1}{2}}_{0}(\sqrt{2}\upsilon)^{\mathfrak{i}})+\sum\limits_{\mathfrak{i} = \alpha+1}^{\beta-1}(\mathcal{R}^{\frac{1}{2}}_{0}(\sqrt{2}\upsilon)^{\mathfrak{i}})^{\star}(\mathcal{R}^{\frac{1}{2}}_{0}(\sqrt{2}\upsilon)^{\mathfrak{i}})\\ & = \sum\limits_{\mathfrak{i} = \alpha}^{\beta-1}|\mathcal{S}^{\frac{1}{2}}_{0}(\sqrt{2}\upsilon)^{\mathfrak{i}}|^{2}+\sum\limits_{\mathfrak{i} = \alpha+1}^{\beta-1}|\mathcal{R}^{\frac{1}{2}}_{0}(\sqrt{2}\upsilon)^{\mathfrak{i}}|^{2}\\ &\preceq ||\sum\limits_{\mathfrak{i} = \alpha}^{\beta-1}|\mathcal{S}^{\frac{1}{2}}_{0}(\sqrt{2}\upsilon)^{\mathfrak{i}}|^{2}||1_{\mathbb{A}}+||\sum\limits_{\mathfrak{i} = \alpha+1}^{\beta-1}|\mathcal{R}^{\frac{1}{2}}_{0}(\sqrt{2}\upsilon)^{\mathfrak{i}}|^{2}||1_{\mathbb{A}}\\ &\preceq\sum\limits_{\mathfrak{i} = \alpha}^{\beta-1}||\mathcal{S}^{\frac{1}{2}}_{0}||^{2}||(\sqrt{2}\upsilon)^{\mathfrak{i}}||^{2}||1_{\mathbb{A}}+||\sum\limits_{\mathfrak{i} = \alpha+1}^{\beta-1}||\mathcal{R}^{\frac{1}{2}}_{0}||^{2}||(\sqrt{2}\upsilon)^{\mathfrak{i}}||^{2}||1_{\mathbb{A}}\\ &\preceq||\mathcal{S}^{\frac{1}{2}}_{0}||^{2}\sum\limits_{\mathfrak{i} = \alpha}^{\beta-1}||(\sqrt{2}\upsilon)^{2}||^{\mathfrak{i}}||1_{\mathbb{A}}+||\mathcal{R}^{\frac{1}{2}}_{0}||^{2}||\sum\limits_{\mathfrak{i} = \alpha+1}^{\beta-1}||(\sqrt{2}\upsilon)^{2}||^{\mathfrak{i}}||1_{\mathbb{A}}\\ & = ||\mathcal{S}^{\frac{1}{2}}_{0}||^{2}\sum\limits_{\mathfrak{i} = \alpha}^{\beta-1}(2||\upsilon||^{2})^{\mathfrak{i}}1_{\mathbb{A}}+||\mathcal{R}^{\frac{1}{2}}_{0}||^{2}\sum\limits_{\mathfrak{i} = \alpha+1}^{\beta-1}(2||\upsilon||^{2})^{\mathfrak{i}}||1_{\mathbb{A}}\\ &\rightarrow 0_{\mathbb{A}}\,\,\,(\text{as}\,\beta,\alpha\rightarrow \infty). \end{align*} |
Therefore, (\{\sigma_{\alpha}\}, \{\mathfrak{v}_{\alpha}\}) and (\{\zeta_{\alpha}\}, \{\mathfrak{u}_{\alpha}\}) are Cauchy bisequences in \varGamma\times\varPsi with respect to \mathbb{A} . By completeness of (\varGamma, \varPsi, \mathbb{A}, \varphi) , there exist \sigma, \zeta\in \varGamma and \mathfrak{u}, \mathfrak{v}\in \varPsi with
\begin{equation*} \lim\limits_{\alpha\rightarrow \infty}\sigma_{\alpha} = \mathfrak{v},\,\,\lim\limits_{\alpha\rightarrow \infty}\zeta_{\alpha} = \mathfrak{u},\,\lim\limits_{\alpha\rightarrow \infty}\mathfrak{u}_{\alpha} = \zeta\,\,\text{and}\,\ \lim\limits_{\alpha\rightarrow \infty}\mathfrak{v}_{\alpha} = \sigma. \end{equation*} |
Then for given \epsilon > 0 , there exists \alpha_{1}\in \mathbb{N} with \varphi(\sigma_{\alpha}, \mathfrak{v}) < \frac{\epsilon}{2} for all \alpha\geq \alpha_{1} . Since (\{\sigma_{\alpha}\}, \{\mathfrak{v}_{\alpha}\}) and (\{\zeta_{\alpha}\}, \{\mathfrak{u}_{\alpha}\}) are Cauchy bisequences, we derive that
\begin{align*} \varphi(\sigma_{\alpha},\mathfrak{v}_{\alpha})\prec\frac{\epsilon}{2}. \end{align*} |
Then,
\begin{align*} \varphi(\varPhi(\sigma,\mathfrak{u}),\mathfrak{v})&\preceq \varphi(\varPhi(\sigma,\mathfrak{u}),\mathfrak{v}_{\alpha+1})+\varphi(\sigma_{\alpha+1},\mathfrak{v}_{\alpha+1})+\varphi(\sigma_{\alpha+1},\mathfrak{v})\\ & = \varphi(\varPhi(\sigma,\mathfrak{u}),\varPhi(\mathfrak{u}_{\alpha},\zeta_{\alpha}))+\varphi(\sigma_{\alpha+1},\mathfrak{v}_{\alpha+1})+\varphi(\sigma_{\alpha+1},\mathfrak{v})\\ &\preceq \upsilon^{\star}\varphi(\sigma,\mathfrak{v}_{\alpha})\upsilon+\upsilon^{\star}\varphi(\zeta_{\alpha},\mathfrak{u})\upsilon+\varphi(\sigma_{\alpha+1},\mathfrak{v}_{\alpha+1})+\varphi(\sigma_{\alpha+1},\mathfrak{v}). \end{align*} |
As \alpha\to \infty , we have
\begin{align*} \varphi(\varPhi(\sigma,\mathfrak{u}),\mathfrak{v})\prec \epsilon. \end{align*} |
Then,
\begin{align*} \varphi(\varPhi(\sigma,\mathfrak{u}),\mathfrak{v}) = 0. \end{align*} |
Hence, \varPhi(\sigma, \mathfrak{u}) = \mathfrak{v} . Similarly, we can derive \varPhi(\mathfrak{u}, \sigma) = \zeta , \varPhi(\zeta, \mathfrak{v}) = \mathfrak{u} and \varPhi(\mathfrak{v}, \zeta) = \sigma . On the other hand, we derive that
\begin{align*} \varphi(\sigma,\mathfrak{v}) = \varphi(\lim\limits_{\alpha\to \infty}\mathfrak{v}_{\alpha},\lim\limits_{\alpha\to \infty}\sigma_{\alpha}) = \lim\limits_{\alpha\to \infty}\varphi(\sigma_{\alpha},\mathfrak{v}_{\alpha}) = 0 \end{align*} |
and
\begin{align*} \varphi(\zeta,\mathfrak{u}) = \varphi(\lim\limits_{\alpha\to \infty}\mathfrak{u}_{\alpha},\lim\limits_{\alpha\to \infty}\zeta_{\alpha}) = \lim\limits_{\alpha\to \infty}\varphi(\zeta_{\alpha},\mathfrak{u}_{\alpha}) = 0. \end{align*} |
So, \sigma = \mathfrak{v} and \zeta = \mathfrak{u} . Therefore, (\sigma, \mathfrak{u})\in (\varGamma\times \varPsi)\cap(\varPsi\times\varGamma) is a coupled fixed point of \varPhi . As in the proof of the Theorem 3.1, one can easily prove uniqueness part.
Example 3.4. Let \varGamma = \{0, 1, 2, 7\} , \varPsi = \{0, \frac{1}{4}, \frac{1}{2}, 3\} , \mathbb{A}_{+} = \mathcal{M}_{2}(\mathbb{C}) and the map \varphi : \varGamma \times \varPsi \to \mathbb{A}_{+} is defined by
\begin{equation*} \varphi(\sigma,\mathfrak{u}) = \begin{bmatrix} \begin{array}{c c } \vert \sigma - \mathfrak{u}\vert& 0 \\ 0 & \Bbbk \vert \sigma - \mathfrak{u}\vert\\ \end{array} \end{bmatrix}, \end{equation*} |
for all \sigma \in \varGamma and \mathfrak{u}\in \varPsi , where \Bbbk \geq 0 is a constant. Let \preceq be the partial order on \mathbb{A} given by
\begin{align*} (\vartheta_{1},\varpi_{1}) \preceq (\vartheta_{2},\varpi_{2}) \Leftrightarrow \vartheta_{1} \leq \vartheta_{2} \ {\rm a}nd \ \varpi_{1} \leq \varpi_{2}. \end{align*} |
Then (\varGamma, \varPsi, \mathbb{A}, \varphi) is a complete C^{\star} -algebra-valued bipolar metric space. Define
\varPhi: (\varGamma\times\varPsi) \cup (\varPsi\times\varGamma) \rightarrow \varGamma \cup \varPsi |
by
\begin{align*} \varPhi(\sigma,\zeta) = \frac{\sigma+\zeta}{5}, \end{align*} |
for all \sigma, \zeta\in (\varGamma\times\varPsi) \cup (\varPsi\times\varGamma) . Then
\begin{align*} \varphi(\varPhi (\sigma,\mathfrak{u}),\varPhi(\zeta,\mathfrak{v})) = \begin{bmatrix} \begin{array}{c c } \vert \varPhi (\sigma,\mathfrak{u})- \varPhi (\zeta,\mathfrak{v})\vert& 0 \\ 0 & \Bbbk \vert \varPhi (\sigma,\mathfrak{u})- \varPhi (\zeta,\mathfrak{v})\vert\\ \end{array} \end{bmatrix} = \begin{bmatrix} \begin{array}{c c } \vert \frac{\sigma+\mathfrak{u}}{5} - \frac{\zeta+\mathfrak{v}}{5}\vert& 0 \\ 0 & \Bbbk \vert \frac{\sigma+\mathfrak{u}}{5} - \frac{\zeta+\mathfrak{v}}{5}\vert\\ \end{array} \end{bmatrix}\\ \preceq\frac{1}{5}\bigg(\begin{bmatrix} &\begin{array}{c c } \vert\sigma -\mathfrak{v}\vert& 0 \\ 0 & \Bbbk \vert\sigma -\mathfrak{v}\vert\\ \end{array} \end{bmatrix}+\begin{bmatrix} &\begin{array}{c c } \vert\zeta -\mathfrak{u}\vert& 0 \\ 0 & \Bbbk \vert\zeta -\mathfrak{u}\vert\\ \end{array} \end{bmatrix}\bigg) = \upsilon^{\star}\varphi(\sigma,\mathfrak{v}) \upsilon+\upsilon^{\star}\varphi(\zeta,\mathfrak{u}) \upsilon, \end{align*} |
for all \sigma, \zeta\in \varGamma and \mathfrak{u}, \mathfrak{v} \in \varPsi , where
\begin{equation*} \upsilon = \begin{bmatrix} \begin{array}{c c } \frac{1}{5}& 0 \\ 0 & \frac{1}{5}\\ \end{array} \end{bmatrix} \end{equation*} |
and ||\upsilon|| = \frac{1}{5} < \frac{1}{\sqrt{2}} . All the conditions of Theorem 3.3 are fulfilled and \varPhi has a unique fixed point (0, 0) .
As an application of Theorem 3.1, we find an existence and uniqueness result for a type of following system of Fredholm integral equations.
Theorem 4.1. Let us consider the system of Fredholm integral equations
\begin{align} \sigma(\mu) = \int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\mathcal{G}(\mu,p,\sigma(p), \zeta(p))dp+\delta(\mu),\,\,\mu,p\in \mathcal{E}_{1}\cup\mathcal{E}_{2},\\ \zeta(\mu) = \int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\mathcal{G}(\mu,p,\zeta(p),\sigma(p))dp+\delta(\mu),\,\,\mu,p\in\mathcal{E}_{1}\cup\mathcal{E}_{2}, \end{align} | (4.1) |
where \mathcal{E}_{1}\cup\mathcal{E}_{2} is a Lebesgue measurable set. Suppose
(T1) \mathcal{G}:(\mathcal{E}^{2}_{1}\cup\mathcal{E}^{2}_{2})\times \mathbb{R}\times \mathbb{R}\to[0, \infty) and \delta\in L^{\infty}(\mathcal{E}_{1})\cup L^{\infty}(\mathcal{E}_{2}) .
(T2) There exists a continuous function \kappa:\mathcal{E}^{2}_{1}\times\mathcal{E}^{2}_{2}\to \mathbb{R} and \theta\in (0, 1) , such that
\begin{align*} & |\mathcal{G}(\mu,p,\sigma(p), \zeta(p))-\mathcal{G}(\mu,p,\mathfrak{u}(p), \mathfrak{v}(p))|\\ \leq&\theta|\kappa(\mu,p)|(|\sigma(p)-\mathfrak{u}(p)| + |\zeta(p)-\mathfrak{v}(p)|+I-\theta^{-1}I), \end{align*} |
for all \mu, p\in \mathcal{E}_{1}\cup\mathcal{E}_{2} .
(T3) \sup_{\mu\in \mathcal{E}_{1}\cup\mathcal{E}_{2}}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\kappa(\mu, p)|dp\leq 1 .
Then the integral equation has a unique solution in L^{\infty}(\mathcal{E}_{1})\cup L^{\infty}(\mathcal{E}_{2}) .
Proof. Let \varGamma = L^{\infty}(\mathcal{E}_{1}) and \varPsi = L^{\infty}(\mathcal{E}_{2}) be two normed linear spaces, where \mathcal{E}_{1}, \mathcal{E}_{2} are Lebesgue measurable sets and m(\mathcal{E}_{1}\cup\mathcal{E}_{2}) < \infty . Let \mathcal{H} = L^{2}(\mathcal{E}_{1})\cup L^{2}(\mathcal{E}_{2}) . Consider \varphi:\varGamma\times \varPsi\to L(\mathcal{H}) defined by \varphi(\sigma, \zeta) = \pi_{|\sigma-\zeta|} , where \pi_{\mathfrak{h}}:\mathcal{H}\to \mathcal{H} is the multiplication operator defined by \pi_{\mathfrak{h}}(\omega) = \mathfrak{h}.\omega for \omega\in \mathcal{H} . Then (\varGamma, \varPsi, \mathbb{A}, \varphi) is a complete \mathcal{C}^{\star} -algebra valued bipolar metric space.
Define the covariant mapping \varPhi:\varGamma^{2}\cup \varPsi^{2}\to \varGamma\cup \varPsi by
\begin{align*} \varPhi(\sigma,\zeta)(\mu) = \int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\mathcal{G}(\mu,p,\sigma(p), \zeta(p))dp+\delta(\mu),\,\,\forall \mu,p\in \mathcal{E}_{1}\cup\mathcal{E}_{2}. \end{align*} |
Set \tau = \theta I , then \tau\in L(\mathcal{H})_{+} and ||\tau|| = \theta < 1 . For any \omega\in \mathcal{H} , we have
\begin{align*} ||\varphi(\varPhi(\sigma,\zeta),\varPhi(\mathfrak{u},\mathfrak{v}))||& = \sup\limits_{||\omega|| = 1}(\pi_{|\varPhi(\sigma,\zeta)-\varPhi(\mathfrak{u},\mathfrak{v})|+I}\omega,\omega)\\ & = \sup\limits_{||\omega|| = 1}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}(|\varPhi(\sigma,\zeta)-\varPhi(\mathfrak{u},\mathfrak{v})|+I)\omega(\mu)\overline{\omega(\mu)}d\mu\\ &\leq\sup\limits_{||\omega|| = 1}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\mathcal{G}(\mu,p,\sigma(p), \zeta(p))\\ &\; \; \; -\mathcal{G}(\mu,p,\mathfrak{u}(p), \mathfrak{v}(p))|dp|\omega(\mu)|^{2}d\mu\\ &\; \; \; +\sup\limits_{||\omega|| = 1}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}dp|\omega(\mu)|^{2}d\mu I\\ &\leq \sup\limits_{||\omega|| = 1}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\bigg[\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\theta|\kappa(\mu,p)|(|\sigma(p)-\mathfrak{u}(p)|\\ &\; \; \; +|\zeta(p)-\mathfrak{v}(p)|+I-\theta^{-1}I)dp\bigg]|\omega(\mu)|^{2}d\mu+I\\ &\leq \theta\sup\limits_{||\omega|| = 1}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}\bigg[\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\kappa(\mu,p)|dp\bigg]|\omega(\mu)|^{2}d\mu(||\sigma-\mathfrak{u}||_{\infty}\\ &\; \; \; +||\zeta-\mathfrak{v}||_{\infty})\\ &\leq \theta\sup\limits_{\mu\in\mathcal{E}_{1}\cup\mathcal{E}_{2}}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\kappa(\mu,p)|dp\sup\limits_{||\omega|| = 1}\int_{\mathcal{E}_{1}\cup\mathcal{E}_{2}}|\omega(\mu)|^{2}d\mu(||\sigma-\mathfrak{u}||_{\infty}\\ &\; \; \; +||\zeta-\mathfrak{v}||_{\infty})\\ &\leq\theta[ ||\sigma-\mathfrak{u}||_{\infty}+||\zeta-\mathfrak{v}||_{\infty}]\\ & = ||\tau||[||\varPhi(\sigma,\mathfrak{u})||+||\varPhi(\zeta, \mathfrak{v})||]. \end{align*} |
Therefore, all the conditions of Theorem 3.1 are fulfilled. Hence, the integral equation (4.1) has a unique solution.
In this paper, we introduced the notion of a \mathcal{C}^{\star} -algebra valued bipolar metric space and proved coupled fixed point theorems. An illustrative example is provided that show the validity of the hypothesis and the degree of usefulness of our findings.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article. The work was supported by the Higher Education Commission of Pakistan.
The authors declare no conflicts of interest.
[1] |
A. Mutlu, U. G\ddot{u}rdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373. http://dx.doi.org/10.22436/jnsa.009.09.05 doi: 10.22436/jnsa.009.09.05
![]() |
[2] | U. G\ddot{u}rdal, A. Mutlu, K. \ddot{O}zkan, Fixed point results for \alpha-\psi ontractive mappings in bipolar metric spaces, J. Inequal. Spec. Funct., 11 (2020), 64–75. |
[3] |
G. N. V. Kishore, R. P. Agarwal, B. S. Rao, R. V. N. S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl., 2018 (2018), 21. https://doi.org/10.1186/s13663-018-0646-z doi: 10.1186/s13663-018-0646-z
![]() |
[4] | G. N. V. Kishore, D. R. Prasad, B. S. Rao, V. S. Baghavan, Some applications via common coupled fixed point theorems in bipolar metric spaces, J. Crit. Rev., 7 (2019), 601–607. |
[5] |
G. N. V. Kishore, K. P. R. Rao, A. Sombabu, R. V. N. S. Rao, Related results to hybrid pair of mappings and applications in bipolar metric spaces, J. Math., 2019 (2019), 8485412. https://doi.org/10.1155/2019/8485412 doi: 10.1155/2019/8485412
![]() |
[6] | B. S. Rao, G. N. V. Kishore, G. K. Kumar, Geraghty type contraction and common coupled fixed point theorems in bipolar metric spaces with applications to homotopy, Int. J. Math. Trends Technol., 63 (2018), 25–34. |
[7] |
G. N. V. Kishore, K. P. R. Rao, H. Işık, B. S. Rao, A. Sombabu, Covarian mappings and coupled fixed point results in bipolar metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 1–15. https://dx.doi.org/10.22075/ijnaa.2021.4650 doi: 10.22075/ijnaa.2021.4650
![]() |
[8] | A. Mutlu, K. \ddot{O}zkan, U. G\ddot{u}rdal, Locally and weakly contractive principle in bipolar metric spaces, TWMS J. Appl. Eng. Math., 10 (2020), 379–388. |
[9] |
Y. U. Gaba, M. Aphane, H. Aydi, \alpha, BK-contractions in bipolar metric spaces, J. Math., 2021 (2021), 5562651. https://doi.org/10.1155/2021/5562651 doi: 10.1155/2021/5562651
![]() |
[10] | A. Mutlu, K. \ddot{O}zkan, U. G\ddot{u}rdal, Coupled fixed point theorems on bipolar metric spaces, Eur. J. Pure Math., 10 (2017), 655–667. |
[11] |
Z. H. Ma, L. N. Jiang, H. K. Sun, C^*-algebras-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2014 (2014), 206. https://doi.org/10.1186/1687-1812-2014-206 doi: 10.1186/1687-1812-2014-206
![]() |
[12] |
S. Batul, T. Kamran, C^{\star}-valued contractive type mappings, Fixed Point Theory Appl., 2015 (2015), 142. https://doi.org/10.1186/s13663-015-0393-3 doi: 10.1186/s13663-015-0393-3
![]() |
[13] | K. R. Davidson, C^{\star}-algebras by example, Fields Institute Monographs, American Mathematical Society, 1996. |
[14] | G. J. Murphy, C^* -algebra and operator theory, Waltham: Academic Press, 1990. |
[15] | Q. H. Xu, T. E. D. Bieke, Z. Q. Chen, Introduction to operator algebras and noncommutative Lp spaces, Beijing: Science Press, 2010. |
[16] |
M. Gunaseelan, G. Arul Joseph, P. B. Khumalo, Y. U. Gaba, Common coupled fixed point theorems on C^*-algebra-valued partial metric spaces, J. Func. Spaces, 2022 (2022), 3336095. https://doi.org/10.1155/2022/3336095 doi: 10.1155/2022/3336095
![]() |
[17] | R. G. Douglas, Banach algebra techniques in operator theory, Springer, Berlin, 1998. https://doi.org/10.1007/978-1-4612-1656-8 |
1. | Gunaseelan Mani, Arul Joseph Gnanaprakasam, Hüseyin Işık, Fahd Jarad, Fixed point results in \mathcal{C}^\star -algebra-valued bipolar metric spaces with an application, 2023, 8, 2473-6988, 7695, 10.3934/math.2023386 | |
2. | Rajagopalan Ramaswamy, Gunaseelan Mani, Arul Joseph Gnanaprakasam, Ola A. Ashour Abdelnaby, Vuk Stojiljković, Slobodan Radojevic, Stojan Radenović, Fixed Points on Covariant and Contravariant Maps with an Application, 2022, 10, 2227-7390, 4385, 10.3390/math10224385 | |
3. | Gunaseelan Mani, Subramanian Chinnachamy, Sugapriya Palanisamy, Sabri T.M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Efficient techniques on bipolar parametric ν-metric space with application, 2024, 36, 10183647, 103354, 10.1016/j.jksus.2024.103354 | |
4. | Mohammad Imam Pasha, Kotha Rama Koteswara Rao, Gunaseelan Mani, Arul Joseph Gnanaprakasam, Santosh Kumar, Chang Phang, Solving a Fractional Differential Equation via the Bipolar Parametric Metric Space, 2024, 2024, 2314-4785, 1, 10.1155/2024/5533347 | |
5. | Manoj Kumar, Pankaj Kumar, Ali Mutlu, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, Stojan Radenović, Ulam–Hyers Stability and Well-Posedness of Fixed Point Problems in C*-Algebra Valued Bipolar b-Metric Spaces, 2023, 11, 2227-7390, 2323, 10.3390/math11102323 | |
6. | Gunaseelan Mani, Arul Gnanaprakasam, Poornavel Subbarayan, Subramanian Chinnachamy, Reny George, Zoran Mitrović, Applications to Nonlinear Fractional Differential Equations via Common Fixed Point on ℂ★-Algebra-Valued Bipolar Metric Spaces, 2023, 7, 2504-3110, 534, 10.3390/fractalfract7070534 | |
7. | Annel Thembinkosi Bokodisa, Maggie Aphane, Existence and Uniqueness of Fixed-Point Results in Non-Solid C⋆-Algebra-Valued Bipolar b-Metric Spaces, 2025, 13, 2227-7390, 667, 10.3390/math13040667 |