Research article

Fixed point results in $ \mathcal{C}^\star $-algebra-valued bipolar metric spaces with an application

  • Received: 07 August 2022 Revised: 05 January 2023 Accepted: 11 January 2023 Published: 18 January 2023
  • MSC : 46L05, 47H10, 54H25, 54C30

  • In this work, we prove existence and uniqueness fixed point theorems under Banach and Kannan type contractions on $ \mathcal{C}^{\star} $-algebra-valued bipolar metric spaces. To strengthen our main results, an appropriate example and an effective application are presented.

    Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Hüseyin Işık, Fahd Jarad. Fixed point results in $ \mathcal{C}^\star $-algebra-valued bipolar metric spaces with an application[J]. AIMS Mathematics, 2023, 8(4): 7695-7713. doi: 10.3934/math.2023386

    Related Papers:

  • In this work, we prove existence and uniqueness fixed point theorems under Banach and Kannan type contractions on $ \mathcal{C}^{\star} $-algebra-valued bipolar metric spaces. To strengthen our main results, an appropriate example and an effective application are presented.



    加载中


    [1] M. M. Fr$\acute{e}$chet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo, 22 (1906), 1–72.
    [2] H. Aydi, W. Shatanawi, C. Vetro, On generalized weak G-contraction mapping in G-metric spaces, Comput. Math. Appl., 62 (2011), 4222–4229. https://doi.org/10.1016/j.camwa.2011.10.007 doi: 10.1016/j.camwa.2011.10.007
    [3] Z. Mustafa, B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297.
    [4] T. Rasham, P. Agarwal, L. S. Abbasi, S. Jain, A study of some new multivalued fixed point results in a modular like metric space with graph, J. Anal., 30 (2022), 833–844. https://doi.org/10.1007/s41478-021-00372-z doi: 10.1007/s41478-021-00372-z
    [5] T. Rasham, M. Nazam, H. Aydi, A. Shoaib, C. Park, J. R. Lee, Hybrid pair of multivalued mappings in modular-like metric spaces and applications, AIMS Math., 7 (2022), 10582–10595. https://doi.org/10.3934/math.2022590 doi: 10.3934/math.2022590
    [6] T. Rasham, A. Shoaib, S. Alshoraify, C. Park, J. R. Lee, Study of multivalued fixed point problems for generalized contractions in double controlled dislocated quasi metric type spaces, AIMS Math., 7 (2022), 1058–1073. https://doi.org/10.3934/math.2022063 doi: 10.3934/math.2022063
    [7] M. Gamal, T. Rasham, W. Cholamjiak, F. G. Shi, C. Park, New iterative scheme for fixed point results of weakly compatible maps in multiplicative $G_{M}$-metric space via various contractions with application, AIMS Math., 7 (2022), 13681–13703. https://doi.org/10.3934/math.2022754 doi: 10.3934/math.2022754
    [8] T. Rasham, M. De La Sen, A novel study for hybrid pair of multivalued dominated mappings in b-multiplicative metric space with applications, J. Inequal. Appl., 107 (2022). https://doi.org/10.1186/s13660-022-02845-6 doi: 10.1186/s13660-022-02845-6
    [9] T. Rasham, M. Nazam, H. Aydi, R. P. Agarwal, Existence of common fixed points of generalized $\Delta$-implicit locally contractive mappings on closed ball in multiplicative G-metric spaces with applications, Mathematics, 10 (2022), 3369. https://doi.org/10.3390/math10183369 doi: 10.3390/math10183369
    [10] A. Mutlu, U. G$\ddot{u}$rdal, An infinite dimensional fixed point theorem on function spaces of ordered metric spaces, Kuwait J. Sci., 42 (2015), 36–49. https://doi.org/10.1016/j.langcom.2015.03.001 doi: 10.1016/j.langcom.2015.03.001
    [11] A. Mutlu, U. G$\ddot{u}$rdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (2016), 5362–5373. http://dx.doi.org/10.22436/jnsa.009.09.05 doi: 10.22436/jnsa.009.09.05
    [12] U. G$\ddot{u}$rdal, A. Mutlu, K. $\ddot{O}$zkan, Fixed point results for $\alpha$-$\psi$-contractive mappings in bipolar metric spaces, J. Inequal. Spec. Funct., 11 (2020), 64–75.
    [13] G. N. V. Kishore, R. P. Agarwal, B. S. Rao, R. V. N. S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory A., 2018 (2018), 21. https://doi.org/10.1186/s13663-018-0646-z doi: 10.1186/s13663-018-0646-z
    [14] G. N. V. Kishore, D. R. Prasad, B. S. Rao, V. S. Baghavan, Some applications via common coupled fixed point theorems in bipolar metric spaces, J. Crit. Rev., 7 (2020), 601–607.
    [15] G. N. V. Kishore, K. P. R. Rao, A. Sombabu, R. V. N. S. Rao, Related results to hybrid pair of mappings and applications in bipolar metric spaces, J. Math., 2019 (2019), 8485412. https://doi.org/10.1155/2019/8485412 doi: 10.1155/2019/8485412
    [16] B. S. Rao, G. N. V. Kishore, G. K. Kumar, Geraghty type contraction and common coupled fixed point theorems in bipolar metric spaces with applications to homotopy, Int. J. Math. Trends Technol., 63 (2018), 25–34. http://dx.doi.org/10.14445/22315373/IJMTT-V63P504 doi: 10.14445/22315373/IJMTT-V63P504
    [17] G. N. V. Kishore, K. P. R. Rao, H. Işık, B. S. Rao, A. Sombabu, Covarian mappings and coupled fixed point results in bipolar metric spaces, Int. J. Nonlinear Anal. Appl., 12 (2021), 1–15. http://dx.doi.org/10.22075/IJNAA.2021.4650 doi: 10.22075/IJNAA.2021.4650
    [18] A. Mutlu, K. $\ddot{O}$zkan, U. G$\ddot{u}$rdal, Locally and weakly contractive principle in bipolar metric spaces, TWMS J. Appl. Eng. Math., 10 (2020), 379–388.
    [19] Y. U. Gaba, M. Aphane, H. Aydi, $(\alpha, BK)$-contractions in bipolar metric spaces, J. Math., 2021 (2021), 5562651. https://doi.org/10.1155/2021/5562651 doi: 10.1155/2021/5562651
    [20] K. Roy, M. Saha, R. George, L. Gurand, Z. D. Mitrović, Some covariant and contravariant fixed point theorems over bipolar p-metric spaces and applications, Filomat, 36 (2022), 1755–1767. https://doi.org/10.2298/FIL2205755R doi: 10.2298/FIL2205755R
    [21] Z. H. Ma, L. N. Jiang, H. K. Sun, $C^*$-algebras-valued metric spaces and related fixed point theorems, Fixed Point Theory A., 2014 (2014), 206. https://doi.org/10.1186/1687-1812-2014-206 doi: 10.1186/1687-1812-2014-206
    [22] S. Batul, T. Kamran, $C^{\star}$-valued contractive type mappings, Fixed Point Theory A., 2015 (2015), 142. https://doi.org/10.1186/s13663-015-0393-3 doi: 10.1186/s13663-015-0393-3
    [23] M. Gunaseelan, G. Arul Joseph, A. Ul Haq, I. A. Baloch, F. Jarad, Coupled fixed point theorems on $C^{*}$-algebra-valued bipolar metric spaces. AIMS Math., 7 (2022), 7552–7568. http://dx.doi.org/10.3934/math.2022424 doi: 10.3934/math.2022424
    [24] K. R. Davidson, $C^{\star}$-algebras by example, Fields Institute Monographs, American Mathematical Society, 1996.
    [25] G. J. Murphy, $ C^* $-algebra and operator theory, London, Academic Press, 1990.
    [26] Q. H. Xu, T. E. D. Bieke, Z. Q. Chen, Introduction to operator algebras and noncommutative Lp spaces, Beijing, Science Press, 2010.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1270) PDF downloads(154) Cited by(4)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog