In this article, we investigate the Wong-Zakai approximations of a class of second order non-autonomous stochastic lattice systems with additive white noise. We first prove the existence and uniqueness of tempered pullback random attractors for the original stochastic system and its Wong-Zakai approximation. Then, we establish the upper semicontinuity of these attractors for Wong-Zakai approximations as the step-length of the Wiener shift approaches zero.
Citation: Xintao Li. Wong-Zakai approximations and long term behavior of second order non-autonomous stochastic lattice dynamical systems with additive noise[J]. AIMS Mathematics, 2022, 7(5): 7569-7594. doi: 10.3934/math.2022425
In this article, we investigate the Wong-Zakai approximations of a class of second order non-autonomous stochastic lattice systems with additive white noise. We first prove the existence and uniqueness of tempered pullback random attractors for the original stochastic system and its Wong-Zakai approximation. Then, we establish the upper semicontinuity of these attractors for Wong-Zakai approximations as the step-length of the Wiener shift approaches zero.
[1] | L. Arnold, Random dynamical systems, 1 Eds., Berlin: Springer, 1998. http://dx.doi.org/10.1007/978-3-662-12878-7 |
[2] | P. W. Bates, H. Lisei, K. Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6 (2006), 1–21. http://dx.doi.org/10.1142/S0219493706001621 doi: 10.1142/S0219493706001621 |
[3] | Z. Brzeźniak, U. Manna, D. Mukherjee, Wong-Zakai approximation for the stochastic Landau-Lifshitz-Gilbert equations, J. Differ. Equations, 267 (2019), 776–825. http://dx.doi.org/10.1016/j.jde.2019.01.025 doi: 10.1016/j.jde.2019.01.025 |
[4] | T. L. Carrol, L. M. Pecora, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821–824. http://dx.doi.org/10.1103/PhysRevLett.64.821 doi: 10.1103/PhysRevLett.64.821 |
[5] | P. Chen, R. Wang, X. Zhang, Long-time dynamics of fractional nonclassical diffusion equations with nonlinear colored noise and delay on unbounded domains, B. Sci. Math., 173 (2021), 103071. http://dx.doi.org/10.1016/j.bulsci.2021.103071 doi: 10.1016/j.bulsci.2021.103071 |
[6] | C. Cheng, Z. Feng, Y. Su, Global stability of traveling wave fronts for a reaction-diffusion system with a quiescent stage on a one-dimensional spatial lattice, Appl. Anal., 97 (2018), 2920–2940. http://dx.doi.org/10.1080/00036811.2017.1395864 doi: 10.1080/00036811.2017.1395864 |
[7] | L. O. Chua, T. Roska, The CNN paradigm, IEEE Trans. Circuits Syst., 40 (1993), 147–156. http://dx.doi.org/10.1109/81.222795 |
[8] | X. Ding, J. Jiang, Random attractors for stochastic retarded lattice dynamical systems, Abstract. Appl. Anal., 2012 (2012), 409282. http://dx.doi.org/10.1155/2012/409282 doi: 10.1155/2012/409282 |
[9] | A. Gu, Asymptotic behavior of random lattice dynamical systems and their wong-zakai approximations, Discrete Contin. Dyn. Syst. B, 24 (2019), 5737–5767. http://dx.doi.org/10.3934/dcdsb.2019104 doi: 10.3934/dcdsb.2019104 |
[10] | A. Gu, K. Lu, B. Wang, Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations, Discrete Contin. Dyn. Syst., 39 (2019), 185–218. http://dx.doi.org/10.3934/dcds.2019008 doi: 10.3934/dcds.2019008 |
[11] | A. Gu, B. Guo, B. Wang, Long term behavior of random Navier-Stokes equations driven by colored noise, Discrete Contin. Dyn. Syst. B, 25 (2020), 2495–2532. http://dx.doi.org/10.3934/dcdsb.2020020 doi: 10.3934/dcdsb.2020020 |
[12] | J. Guo, C. Wu, The existence of traveling wave solutions for a bistable three-component lattice dynamical system, J. Differ. Equations, 260 (2016), 1445–1455. http://dx.doi.org/10.1016/j.jde.2015.09.036 doi: 10.1016/j.jde.2015.09.036 |
[13] | Z. Han, S. Zhou, Random uniform exponential attractors for non-autonomous stochastic lattice systems and FitzHugh-Nagumo lattice systems with quasi-periodic forces and multiplicative noise, Stoch. Dyn., 20 (2020), 2050036. http://dx.doi.org/10.1142/S0219493720500367 doi: 10.1142/S0219493720500367 |
[14] | R. Kapral, Discrete models for chemically reacting systems, J. Math. Chem., 6 (1991), 113–163. http://dx.doi.org/10.1007/BF01192578 doi: 10.1007/BF01192578 |
[15] | D. Li, L. Shi, Upper semicontinuity of random attractors of stochastic discrete complex Ginzburg-Landau equations with time-varying delays in the delay, J. Differ. Equ. Appl., 24 (2018), 872–897. http://dx.doi.org/10.1080/10236198.2018.1437913 doi: 10.1080/10236198.2018.1437913 |
[16] | D. Li, L. Shi, X. Wang, Long term behavior of stochastic discrete complex ginzburg-landau equations with time delays in weighted spaces, Discrete Contin. Dyn. Syst. B, 24 (2019), 5121–5148. http://dx.doi.org/10.3934/dcdsb.2019046 doi: 10.3934/dcdsb.2019046 |
[17] | K. Lu, B. Wang, Wong-Zakai approximations and long term behavior of stochastic partial differential equations, J. Dyn. Diff. Equat., 31 (2019), 1341–1371. http://dx.doi.org/10.1007/s10884-017-9626-y doi: 10.1007/s10884-017-9626-y |
[18] | K. Lu, Q. Wang, Chaotic behavior in differential equations driven by a Brownian motion, J. Differ. Equations, 251 (2011), 2853–2895. http://dx.doi.org/10.1016/j.jde.2011.05.032 doi: 10.1016/j.jde.2011.05.032 |
[19] | J. Malletparet, S. Chow, Pattern formation and spatial chaos in lattice dynamical systems I, IEEE Transactions on Circuits Systems I Fundamental Theory Applications, 42 (2002), 746–751. http://dx.doi.org/10.1109/81.473583 doi: 10.1109/81.473583 |
[20] | U. Manna, D. Mukherjee, A. A. Panda, Wong-Zakai approximation for the stochastic Landau-Lifshitz-Gilbert equations with anisotropy energy, J. Math. Anal. Appl., 480 (2019), 123384. http://dx.doi.org/10.1016/j.jmaa.2019.123384 doi: 10.1016/j.jmaa.2019.123384 |
[21] | L. She, R. Wang, Regularity, forward-compactness and measurability of attractors for non-autonomous stochastic lattice systems, J. Math. Anal. Appl., 479 (2019), 2007–2031. http://dx.doi.org/10.1016/j.jmaa.2019.07.038 doi: 10.1016/j.jmaa.2019.07.038 |
[22] | J. Shen, K. Lu, W. Zhang, Heteroclinic chaotic behavior driven by a Brownian motion, J. Differ. Equations, 255 (2013), 4185–4225. http://dx.doi.org/10.1016/j.jde.2013.08.003 doi: 10.1016/j.jde.2013.08.003 |
[23] | H. Su, S. Zhou, L. Wu, Random exponential attractor for second-order nonautonomous stochastic lattice systems with multiplicative white noise, Stoch. Dyn., 19 (2019), 1950044. http://dx.doi.org/10.1142/S0219493719500448 doi: 10.1142/S0219493719500448 |
[24] | B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms, Stoch. Dyn., 14 (2014), 1450009. http://dx.doi.org/10.1142/S0219493714500099 doi: 10.1142/S0219493714500099 |
[25] | X. Wang, D. Li, J. Shen, Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise, Discrete Contin. Dyn. Syst. B, 26 (2021), 2829–2855. http://dx.doi.org/10.3934/dcdsb.2020207 doi: 10.3934/dcdsb.2020207 |
[26] | R. Wang, Y. Li, B. Wang, Random dynamics of fractional nonclassical diffusion equations driven by colored noise, Discrete Contin. Dyn. Syst., 39 (2019), 4091–4126. http://dx.doi.org/10.3934/dcds.2019165 doi: 10.3934/dcds.2019165 |
[27] | X. Wang, S. Li, D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear. Anal. Theor., 72 (2010), 483–494. http://dx.doi.org/10.1016/j.na.2009.06.094 doi: 10.1016/j.na.2009.06.094 |
[28] | X. Wang, K. Lu, B. Wang, Wong-Zakai approximations and attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differ. Equations, 264 (2018), 378–424. http://dx.doi.org/10.1016/j.jde.2017.09.006 doi: 10.1016/j.jde.2017.09.006 |
[29] | X. Wang, K. Lu, B. Wang, Stationary approximations of stochastic wave equations on unbounded domains with critical exponents, J. Math. Phys., 62 (2021) 092702. http://dx.doi.org/10.1063/5.0011987 |
[30] | X. Wang, J. Shen, K. Lu, B. Wang, Wong-Zakai approximations and random attractors for non-autonomous stochastic lattice systems, J. Differ. Equations, 280 (2021), 477–516. http://dx.doi.org/10.1016/j.jde.2021.01.026 doi: 10.1016/j.jde.2021.01.026 |
[31] | R. Wang, L. Shi, B. Wang, Asymptotic behavior of fractional nonclassical diffusion equations driven by nonlinear colored noise on $R^N$, Nonlinearity, 32 (2019), 4524–4556. http://dx.doi.org/10.1088/1361-6544/ab32d7 doi: 10.1088/1361-6544/ab32d7 |
[32] | R. Wang, B. Wang, Random dynamics of P-Laplacian lattice systems driven by infinite-dimensional nonlinear noise, Stoch. Proc. Appl., 130 (2020), 7431–7462. http://dx.doi.org/10.1016/j.spa.2020.08.002 doi: 10.1016/j.spa.2020.08.002 |
[33] | R. L. Winalow, A. L. Kimball, A. Varghese, Simulating cartidiac sinus and atrial network dynamics on connection machine, Physica D, 64 (1993), 281–298. http://dx.doi.org/10.1016/0167-2789(93)90260-8 doi: 10.1016/0167-2789(93)90260-8 |
[34] | C. Wu, A general approach to the asymptotic behavior of traveling waves in a class of three-component lattice dynamical systems, J. Dyn. Differ. Equ., 28 (2016), 317–338. http://dx.doi.org/10.1007/s10884-016-9524-8 doi: 10.1007/s10884-016-9524-8 |
[35] | X. Xiang, S. Zhou, Random attractor for stochastic second-order non-autonomous stochastic lattice equations with dispersive term, J. Differ. Equ. Appl., 22 (2016), 235–252. http://dx.doi.org/10.1080/10236198.2015.1080694 doi: 10.1080/10236198.2015.1080694 |
[36] | L. Xu, W. Yan, Stochastic FitzHugh-Nagumo systems with delay, Taiwan. J. Math., 16 (2012), 1079–1103. http://dx.doi.org/10.11650/twjm/1500406680 doi: 10.11650/twjm/1500406680 |
[37] | W. Yan, Y. Li, S. Ji, Random attractors for first order stochastic retarded lattice dynamical systems, J. Math. Phys., 51 (2010), 032702. http://dx.doi.org/10.1063/1.3319566 doi: 10.1063/1.3319566 |
[38] | C. Zhang, L. Zhao, The attractors for 2nd-order stochastic delay lattice systems, Discrete Contin. Dyn. Sys., 37 (2017), 575–590. http://dx.doi.org/10.3934/dcds.2017023 doi: 10.3934/dcds.2017023 |
[39] | S. Zhou, Attractors for second-order lattice dynamical systems with damping, J. Math. Phys., 43 (2002), 452–465. http://dx.doi.org/10.1063/1.1418719 doi: 10.1063/1.1418719 |
[40] | S. Zhou, Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise, J. Differ. Equations, 263 (2020), 2247–2279. http://dx.doi.org/10.1016/j.jde.2017.03.044 doi: 10.1016/j.jde.2017.03.044 |