Research article

Minimax perturbation bounds of the low-rank matrix under Ky Fan norm

  • Received: 21 September 2021 Revised: 10 February 2022 Accepted: 11 February 2022 Published: 15 February 2022
  • MSC : 15A42, 65F55

  • This paper considers the minimax perturbation bounds of the low-rank matrix under Ky Fan norm. We first explore the upper bounds via the best rank-$ r $ approximation $ \hat{A}_r $ of the observation matrix $ \hat{A} $. Next, the lower bounds are established by constructing special matrix groups to show the upper bounds are tight on the low-rank matrix estimation error. In addition, we derive the rate-optimal perturbation bounds for the left and right singular subspaces under Ky Fan norm $ \sin\Theta $ distance. Finally, some simulations have been carried out to support our theories.

    Citation: Xinyu Qi, Jinru Wang, Jiating Shao. Minimax perturbation bounds of the low-rank matrix under Ky Fan norm[J]. AIMS Mathematics, 2022, 7(5): 7595-7605. doi: 10.3934/math.2022426

    Related Papers:

  • This paper considers the minimax perturbation bounds of the low-rank matrix under Ky Fan norm. We first explore the upper bounds via the best rank-$ r $ approximation $ \hat{A}_r $ of the observation matrix $ \hat{A} $. Next, the lower bounds are established by constructing special matrix groups to show the upper bounds are tight on the low-rank matrix estimation error. In addition, we derive the rate-optimal perturbation bounds for the left and right singular subspaces under Ky Fan norm $ \sin\Theta $ distance. Finally, some simulations have been carried out to support our theories.



    加载中


    [1] T. T. Cai, A. R. Zhang, Rate-optimal perturbation bounds for singular subspaces with applications to high-dimensional statistics, Ann. Statist., 46 (2018), 60–89. https://doi.org/10.1214/17-AOS1541 doi: 10.1214/17-AOS1541
    [2] T. T. Cai, A. R. Zhang, Supplement to "Rate-optimal perturbation bounds for singular subspaces with applications to high-dimensional statistics", 2018. https://doi.org/10.1214/17-AOS1541SUPP
    [3] C. Davis, W. M. Kahan, The rotation of eigenvectors by a perturbation, SIAM J. Numer. Anal., 7 (1970), 1–46. https://doi.org/10.1137/0707001 doi: 10.1137/0707001
    [4] J. Fan, W. Wang, Y. Zhong, An $l_\infty$ eigenvector perturbation bound and its applicabtion to robust covariance estimation, J. Mach. Learn. Res., 18 (2018), 1–42.
    [5] J. W. Huang, J. J. Wang, F. Zhang, H. L. Wang, W. D. Wang, Perturbation analysis of low-rank matrix stable recovery, Int. J. Wavelets Multi., 19 (2021), 2050091. https://doi.org/10.1142/S0219691320500915 doi: 10.1142/S0219691320500915
    [6] Y. T. Luo, R. G. Han, A. R. Zhang, A Schatten-$q$ low-rank matrix perturbation analysis via perturbation projection error bound, Linear Algebra Appl., 630 (2021), 225–240. https://doi.org/10.1016/j.laa.2021.08.005 doi: 10.1016/j.laa.2021.08.005
    [7] Y. M. Liu, C. G. Ren, An optimal perturbation bound, Math. Method. Appl. Sci., 42 (2019), 3791–3798. https://doi.org/10.1002/mma.5612 doi: 10.1002/mma.5612
    [8] L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Q. J. Math., 11 (1960), 50–59. https://doi.org/10.1093/qmath/11.1.50 doi: 10.1093/qmath/11.1.50
    [9] G. W. Stewart, J. G. Sun, Matrix perturbation theory, New York: Academic Press, 1990.
    [10] V. Vu, Singular vectors under random perturbation, Random Struct. Algor., 39 (2011), 526–538. https://doi.org/10.1002/rsa.20367 doi: 10.1002/rsa.20367
    [11] R. R. Wang, Singular vector perturbation under Gaussian noise, SIAM J. Matrix Anal. Appl., 36 (2015), 158–177. https://doi.org/10.1137/130938177 doi: 10.1137/130938177
    [12] P. A. Wedin, Perturbation bounds in connection with singular value decomposition, BIT, 12 (1972), 99–111. https://doi.org/10.1007/BF01932678 doi: 10.1007/BF01932678
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1471) PDF downloads(72) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog