This paper considers the minimax perturbation bounds of the low-rank matrix under Ky Fan norm. We first explore the upper bounds via the best rank-$ r $ approximation $ \hat{A}_r $ of the observation matrix $ \hat{A} $. Next, the lower bounds are established by constructing special matrix groups to show the upper bounds are tight on the low-rank matrix estimation error. In addition, we derive the rate-optimal perturbation bounds for the left and right singular subspaces under Ky Fan norm $ \sin\Theta $ distance. Finally, some simulations have been carried out to support our theories.
Citation: Xinyu Qi, Jinru Wang, Jiating Shao. Minimax perturbation bounds of the low-rank matrix under Ky Fan norm[J]. AIMS Mathematics, 2022, 7(5): 7595-7605. doi: 10.3934/math.2022426
This paper considers the minimax perturbation bounds of the low-rank matrix under Ky Fan norm. We first explore the upper bounds via the best rank-$ r $ approximation $ \hat{A}_r $ of the observation matrix $ \hat{A} $. Next, the lower bounds are established by constructing special matrix groups to show the upper bounds are tight on the low-rank matrix estimation error. In addition, we derive the rate-optimal perturbation bounds for the left and right singular subspaces under Ky Fan norm $ \sin\Theta $ distance. Finally, some simulations have been carried out to support our theories.
[1] | T. T. Cai, A. R. Zhang, Rate-optimal perturbation bounds for singular subspaces with applications to high-dimensional statistics, Ann. Statist., 46 (2018), 60–89. https://doi.org/10.1214/17-AOS1541 doi: 10.1214/17-AOS1541 |
[2] | T. T. Cai, A. R. Zhang, Supplement to "Rate-optimal perturbation bounds for singular subspaces with applications to high-dimensional statistics", 2018. https://doi.org/10.1214/17-AOS1541SUPP |
[3] | C. Davis, W. M. Kahan, The rotation of eigenvectors by a perturbation, SIAM J. Numer. Anal., 7 (1970), 1–46. https://doi.org/10.1137/0707001 doi: 10.1137/0707001 |
[4] | J. Fan, W. Wang, Y. Zhong, An $l_\infty$ eigenvector perturbation bound and its applicabtion to robust covariance estimation, J. Mach. Learn. Res., 18 (2018), 1–42. |
[5] | J. W. Huang, J. J. Wang, F. Zhang, H. L. Wang, W. D. Wang, Perturbation analysis of low-rank matrix stable recovery, Int. J. Wavelets Multi., 19 (2021), 2050091. https://doi.org/10.1142/S0219691320500915 doi: 10.1142/S0219691320500915 |
[6] | Y. T. Luo, R. G. Han, A. R. Zhang, A Schatten-$q$ low-rank matrix perturbation analysis via perturbation projection error bound, Linear Algebra Appl., 630 (2021), 225–240. https://doi.org/10.1016/j.laa.2021.08.005 doi: 10.1016/j.laa.2021.08.005 |
[7] | Y. M. Liu, C. G. Ren, An optimal perturbation bound, Math. Method. Appl. Sci., 42 (2019), 3791–3798. https://doi.org/10.1002/mma.5612 doi: 10.1002/mma.5612 |
[8] | L. Mirsky, Symmetric gauge functions and unitarily invariant norms, Q. J. Math., 11 (1960), 50–59. https://doi.org/10.1093/qmath/11.1.50 doi: 10.1093/qmath/11.1.50 |
[9] | G. W. Stewart, J. G. Sun, Matrix perturbation theory, New York: Academic Press, 1990. |
[10] | V. Vu, Singular vectors under random perturbation, Random Struct. Algor., 39 (2011), 526–538. https://doi.org/10.1002/rsa.20367 doi: 10.1002/rsa.20367 |
[11] | R. R. Wang, Singular vector perturbation under Gaussian noise, SIAM J. Matrix Anal. Appl., 36 (2015), 158–177. https://doi.org/10.1137/130938177 doi: 10.1137/130938177 |
[12] | P. A. Wedin, Perturbation bounds in connection with singular value decomposition, BIT, 12 (1972), 99–111. https://doi.org/10.1007/BF01932678 doi: 10.1007/BF01932678 |