This paper extends a result of isolated calmness for nuclear norm regularized convex optimization problems to Ky Fan $ k $-norm regularized convex optimization problems. We find that there exists a certain equivalence relationship among the critical cones of the Ky Fan $ k $-norm function and its conjugate as well as the "sigma term", namely, the conjugate function of the parabolic second-order directional derivative of the Ky Fan $ k $-norm. By establishing the equivalence between the primal (dual) strict Robinson constraint qualification (SRCQ) and the dual (primal) second-order sufficient condition (SOSC), we derive a series of complete characterizations of the robust isolated calmness of the Karush-Kuhn-Tucker (KKT) mapping for Ky Fan $ k $-norm regularized convex matrix optimization problems. The obtained results enrich the stability theory of the Ky Fan $ k $-norm regularized convex optimization problems and further enhance the usability of the related algorithms.
Citation: Ziran Yin, Chongyang Liu, Xiaoyu Chen, Jihong Zhang, Jinlong Yuan. A comprehensive characterization of the robust isolated calmness of Ky Fan $ k $-norm regularized convex matrix optimization problems[J]. AIMS Mathematics, 2025, 10(3): 4955-4969. doi: 10.3934/math.2025227
This paper extends a result of isolated calmness for nuclear norm regularized convex optimization problems to Ky Fan $ k $-norm regularized convex optimization problems. We find that there exists a certain equivalence relationship among the critical cones of the Ky Fan $ k $-norm function and its conjugate as well as the "sigma term", namely, the conjugate function of the parabolic second-order directional derivative of the Ky Fan $ k $-norm. By establishing the equivalence between the primal (dual) strict Robinson constraint qualification (SRCQ) and the dual (primal) second-order sufficient condition (SOSC), we derive a series of complete characterizations of the robust isolated calmness of the Karush-Kuhn-Tucker (KKT) mapping for Ky Fan $ k $-norm regularized convex matrix optimization problems. The obtained results enrich the stability theory of the Ky Fan $ k $-norm regularized convex optimization problems and further enhance the usability of the related algorithms.
[1] |
K. C. Toh, L. N. Trefethen, The Chebyshev polynomials of a matrix, SIAM J. Matrix Anal. A., 20 (1998), 400–419. https://doi.org/10.1137/S0895479896303739 doi: 10.1137/S0895479896303739
![]() |
[2] |
P. Apkarian, D. Noll, Nonsmooth $H_{\infty}$ synthesis, IEEE T. Automat. Contr., 51 (2006), 71–86. https://doi.org/10.1109/TAC.2005.860290 doi: 10.1109/TAC.2005.860290
![]() |
[3] |
V. Bompart, D. Noll, P. Apkarian, Second-order nonsmooth optimization for $H_{\infty}$ synthesis, Numer. Math., 107 (2007), 433–454. https://doi.org/10.1007/s00211-007-0095-9 doi: 10.1007/s00211-007-0095-9
![]() |
[4] | J. L. Yuan, D. Y. Yang, D. Y. Xun, K. L. Teo, C. Z. Wu, A. Li, et al., Sparse optimal control of cyber-physical systems via PQA approach, Pac. J. Optim., 2024. |
[5] | A. Johansson, N. Engsner, C. Strannegård, P. Mostad, Improved spectral norm regularization for neural networks, In: Modeling Decisions for Artificial Intelligence, Cham: Springer, 2023,181–201. https://doi.org/10.1007/978-3-031-33498-6_13 |
[6] | R. D. Gao, W. K. Yang, X. Sun, Defying forgetting in continual relation extraction via batch spectral norm regularization, In: 2024 International Joint Conference on Neural Networks (IJCNN), 2024, 1–8. https://doi.org/10.1109/IJCNN60899.2024.10651110 |
[7] |
E. J. Candès, B. Recht, Exact matrix completion via convex optimization, Found. Comput. Math., 9 (2009), 717–772. https://doi.org/10.1007/s10208-009-9045-5 doi: 10.1007/s10208-009-9045-5
![]() |
[8] |
B. Recht, M. Fazel, P. A. Parrilo, Guaranteed minimum rank solutions to linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), 471–501. https://doi.org/10.1137/070697835 doi: 10.1137/070697835
![]() |
[9] |
G. A. Watson, On matrix approximation problems with Ky Fan $k$ norms, Numer. Algor., 5 (1993), 263–272. https://doi.org/10.1007/BF02210386 doi: 10.1007/BF02210386
![]() |
[10] |
S. Boyd, P. diaconis, P. A. Parrilo, L. Xiao, Fastest mixing Markov chain on graphs with symmetries, SIAM J. Optim., 20 (2009), 792–819. https://doi.org/10.1137/070689413 doi: 10.1137/070689413
![]() |
[11] |
Z. K. Yao, F. Y. Xu, G. P. Jiang, J. Y. Yao, Data-driven control of hydraulic manipulators by reinforcement learning, IEEE-ASME T. Mech., 29 (2024), 2673–2684. https://doi.org/10.1109/TMECH.2023.3336070 doi: 10.1109/TMECH.2023.3336070
![]() |
[12] |
X. T. Yang, Q. X. Zhu, H. Wang, Exponential stabilization of stochastic systems via novel event-triggered switching controls, IEEE T. Automat. Contr., 69 (2024), 7948–7955. https://doi.org/10.1109/TAC.2024.3406668 doi: 10.1109/TAC.2024.3406668
![]() |
[13] |
Q. X. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Lévy processes, IEEE T. Automat. Contr., 70 (2025), 1176–1183. https://doi.org/10.1109/TAC.2024.3448128 doi: 10.1109/TAC.2024.3448128
![]() |
[14] |
C. Ding, Variational analysis of the Ky Fan $k$-norm, Set-Valued Var. Anal., 25 (2017), 265–296. https://doi.org/10.1007/s11228-016-0378-3 doi: 10.1007/s11228-016-0378-3
![]() |
[15] | C. Ding, An introduction to a class of matrix optimization problems, Singapore: National University of Singapore, 2012. |
[16] | Y. L. Liu, S. H. Pan, Locally upper Lipschitz of the perturbed KKT system of Ky Fan k-norm matrix conic optimization problems, 2015. https://doi.org/10.48550/arXiv.1509.00681 |
[17] |
D. R. Han, D. F. Sun, L. W. Zhang, Linear rate convergence of the alternating direction method of multipliers for convex composite programming, Math. Oper. Res., 43 (2018), 622–637. https://doi.org/10.1287/moor.2017.0875 doi: 10.1287/moor.2017.0875
![]() |
[18] |
R. T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res., 1 (1976), 97–116. https://doi.org/10.1287/moor.1.2.97 doi: 10.1287/moor.1.2.97
![]() |
[19] |
Y. L. Zhang, L. W. Zhang, On the upper Lipschitz property of the KKT mapping for nonlinear semidefinite optimization, Oper. Res. Lett., 44 (2016), 474–478. https://doi.org/10.1016/j.orl.2016.04.012 doi: 10.1016/j.orl.2016.04.012
![]() |
[20] |
Y. Zhang, L. W. Zhang, J. Wu, K. Wang, Characterizations of local upper Lipschitz property of perturbed solutions to nonlinear second-order cone programs, Optimization, 66 (2017), 1079–1103. https://doi.org/10.1080/02331934.2017.1325887 doi: 10.1080/02331934.2017.1325887
![]() |
[21] |
C. Ding, D. F. Sun, L. W. Zhang, Characterization of the robust isolated calmness for a class of conic programming problems, SIAM J. Optim., 5 (2017), 67–90. https://doi.org/10.1137/16M1058753 doi: 10.1137/16M1058753
![]() |
[22] | D. R. Han, D. F. Sun, L. W. Zhang, Linear rate convergence of the alternating direction method of multipliers for convex composite quadratic and semi-definite programming, 2015. https://doi.org/10.48550/arXiv.1508.02134 |
[23] |
Y. Cui, D. F. Sun, A complete characterization of the robust isolated calmness of nuclear norm regularized convex optimization problems, J. Comput. Math., 36 (2018), 441–458. https://doi.org/10.4208/jcm.1709-m2017-0034 doi: 10.4208/jcm.1709-m2017-0034
![]() |
[24] | R. T. Rockafellar, R. J. B. Wets, Variational analysis, Berlin: Heidelberg, 1998. https://doi.org/10.1007/978-3-642-02431-3 |
[25] | J. F. Bonnans, A. Shapiro, Perturbation analysis of optimization problems, New York: Springer, 2000. https://doi.org/10.1007/978-1-4612-1394-9 |
[26] | R. T. Rockafellar, Convex analysis, Princeton university press, 1997. |
[27] | A. Beck, First-order methods in optimization, Society for Industrial and Applied Mathematics, 2017. |
[28] | J. von Neumann, Some matrix-inequalities and metrization of matric-space, 1937. |
[29] |
K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations I, P. Nat. Acad. Sci. USA, 35 (1949), 652–655. https://doi.org/10.1073/pnas.35.11.652 doi: 10.1073/pnas.35.11.652
![]() |
[30] |
L. W. Zhang, N. Zhang, X. T. Xiao, On the second-order directional derivatives of singular values of matrices and symmetric matrix-valued functions, Set-Valued Var., 21 (2013), 557–586. https://doi.org/557-586.10.1007/s11228-013-0237-4 doi: 10.1007/s11228-013-0237-4
![]() |
[31] | Z. R. Yin, X. Y. Chen, J. H. Zhang, The robust isolated calmness of spectral norm regularized convex matrix optimization problems, 2024. https://doi.org/10.48550/arXiv.2410.16697 |