Research article

Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral equations

  • Received: 15 December 2025 Revised: 30 January 2025 Accepted: 18 February 2025 Published: 06 March 2025
  • MSC : 26A33, 34B10, 45M10, 47H09, 47H10

  • In this research, we investigated the Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral constraints. We presented novel sufficient conditions for the uniqueness of the solution. Moreover, we analyzed the continuous dependence of the solution on some functions and parameters. Additionally, we proved the Hyers-Ulam stability of the problem. To demonstrate the applicability of our results, we included several examples. The present study was located in the space $ L_1[0, T] $. The techniques of Schauder's fixed point theorem and Kolmogorov's compactness criterion were the primary tools utilized in this work. These contributions offer a comprehensive framework for understanding the qualitative behavior of the fractional-order pantograph equation.

    Citation: Ahmed M. A. El-Sayed, Wagdy G. El-Sayed, Kheria M. O. Msaik, Hanaa R. Ebead. Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral equations[J]. AIMS Mathematics, 2025, 10(3): 4970-4991. doi: 10.3934/math.2025228

    Related Papers:

  • In this research, we investigated the Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral constraints. We presented novel sufficient conditions for the uniqueness of the solution. Moreover, we analyzed the continuous dependence of the solution on some functions and parameters. Additionally, we proved the Hyers-Ulam stability of the problem. To demonstrate the applicability of our results, we included several examples. The present study was located in the space $ L_1[0, T] $. The techniques of Schauder's fixed point theorem and Kolmogorov's compactness criterion were the primary tools utilized in this work. These contributions offer a comprehensive framework for understanding the qualitative behavior of the fractional-order pantograph equation.



    加载中


    [1] R. P. Agarwal, B. Xu, W. Zhang, Stability of functional equations in single variable, J. Math. Anal. Appl., 288 (2003), 852–869. https://doi.org/10.1016/j.jmaa.2003.09.032 doi: 10.1016/j.jmaa.2003.09.032
    [2] G. Ali, K. Shah, G. Rahman, Investigating a class of pantograph differential equations under multipoints boundary conditions with fractional order, Int. J. Appl. Comput. Math., 7 (2021), 1–13. https://doi.org/10.1007/s40819-020-00932-0 doi: 10.1007/s40819-020-00932-0
    [3] S. M. Al-Issa, A. M. A. El-Sayed, H. H. G. Hashem, An outlook on hybrid fractional modeling of a heat controller with multi-valued feedback control, Fractal Fract., 7 (2023), 759. https://doi.org/10.3390/fractalfract7100759 doi: 10.3390/fractalfract7100759
    [4] H. Alrabaiah, I. Ahmad, K. Shah, G. U. Rahman, Qualitative analysis of nonlinear coupled pantograph differential equations of fractional order with integral boundary conditions, Bound. Value Probl., 2020 (2020), 1–13. https://doi.org/10.1186/s13661-020-01432-2 doi: 10.1186/s13661-020-01432-2
    [5] C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373–380. https://doi.org/ 10.1155/S102558349800023X doi: 10.1155/S102558349800023X
    [6] V. A. Ambartsumyan, On the fluctuation of the brightness of the milkyway, Dokl. Akad. Nauk. SSSR., 44 (1944), 223–226.
    [7] K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6
    [8] H. Boularesa, Stability for pantograph fractional differential equations, Gen. Lett. Math.(GLM), 12 (2022), 54–163. https://doi.org/10.31559/glm2022.12.4.1 doi: 10.31559/glm2022.12.4.1
    [9] H. Brunner, Q. Huang, H. Xie, Discontinuous Galerkin methods for delay differential equations of pantograph type, SIAM J. Numer. Anal., 48 (2010), 1944–1967. https://doi.org/10.1137/090771922 doi: 10.1137/090771922
    [10] A. M. A. El-Sayed, M. M. El-Alem, I. Samy, A constrained problem of a nonlinear functional integral equation subject to the pantograph problem, AJST, 1 (2023), 80–83. https://dx.doi.org/10.21608/ajst.2024.257068.1023 doi: 10.21608/ajst.2024.257068.1023
    [11] A. M. A. El-Sayed, H. H. G. Hashem, S. M. Al-Issa, A comprehensive view of the solvability of non-local fractional orders pantograph equation with a fractal-fractional feedback control, AIMS Math., 9 (2024), 19276–19298. https://doi.org/10.3934/math.2024939 doi: 10.3934/math.2024939
    [12] F. M. Gaafar, Continuous and integrable solutions of a nonlinear Cauchy problem of fractional order with nonlocal conditions, AJST, 22 (2014), 341–347. https://doi.org/10.1016/j.joems.2013.12.008 doi: 10.1016/j.joems.2013.12.008
    [13] M. N. Gaston, A Cauchy problem for some fractional abstract differential equation with nonlocal conditions, Nonlinear Anal., 70 (2009), 1873–1876. https://doi.org/10.1016/j.na.2008.02.087 doi: 10.1016/j.na.2008.02.087
    [14] D. P. Gaver, An absorption probability problem, J. Math. Anal. Appl., 9 (1964), 384–393. https://doi.org/10.1016/0022-247x(64)90024-1 doi: 10.1016/0022-247x(64)90024-1
    [15] T. Griebel, The pantograph equation in quantum calculus, MS. Thesis, Missouri University of Science and Technology, 2017.
    [16] J. Huang, Y. Li, Hyers-Ulam stability of delay differential equations of first order, Math. Nachr., 289 (2016), 60–66. https://doi.org/10.1002/mana.201400298 doi: 10.1002/mana.201400298
    [17] Q. Huang, H. Xie, H. Brunner, Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type, Discrete. Cont. Dyn.-S, 36 (2016), 5423–5443. http://dx.doi.org/10.3934/dcds.2016039 doi: 10.3934/dcds.2016039
    [18] A. Iserles, Y. Liu, On pantograph integro-differential equations, J. Integral Equ. Appl., 6 (1994), 213–237.
    [19] H. Jafari, M. Mahmoudi, M. H. N. Skandari, A new numerical method to solve pantograph delay differential equations with convergence analysis, Adv. Differential Equ., 2021 (2021), 129. https://doi.org/10.1186/s13662-021-03293-0 doi: 10.1186/s13662-021-03293-0
    [20] Y. Jalilian, M. Ghasemi, On the solutions of a nonlinear fractional integro-differential equation of pantograph type, Mediterr. J. Math., 14 (2017), 194. https://doi.org/10.1007/s00009-017-0993-8 doi: 10.1007/s00009-017-0993-8
    [21] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, The Netherlands, 2006.
    [22] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Dover Publ. Inc., 1975.
    [23] K. D. Kucche, S. T. Sutar, On existence and stability results for nonlinear fractional delay differential equations, Bol. Soc. Parana. Mat., 36 (2018), 55–75. http://dx.doi.org/10.5269/bspm.v36i4.33603 doi: 10.5269/bspm.v36i4.33603
    [24] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models, London: Imperial College Press, 2010. https://doi.org/10.1142/9781848163300
    [25] R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1–77. https://doi.org/10.1016/S0370-1573(00)00070-3 doi: 10.1016/S0370-1573(00)00070-3
    [26] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York, Singapore: John Wiley & Sons Inc., 1993.
    [27] A. Moumen, R. Shafqat, Z. Hammouch, A. U. K. Niazi, M. B. Jeelani, Stability results for fractional integral pantograph differential equations involving two Caputo operators, AIMS Math., 8 (2023), 6009–6025. https://doi.org/10.3934/math.2023303 doi: 10.3934/math.2023303
    [28] Y. Muroya, E. Ishiwata, H. Brunner, On the attainable order of collocation methods for pantograph integrodifferential equations, J. Comput. Appl. Math., 152 (2003), 347–366. https://doi.org/10.1016/S0377-0427(02)00716-1 doi: 10.1016/S0377-0427(02)00716-1
    [29] J. R. Ockendon, A. B. Taylor, The dynamics of a current collection system for an electric locomotive, Proc. Roy. Soc. London A Math. Phys. Sci., 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
    [30] D. Otrocol, V. Ilea, Ulam stability for a delay differential equation, Open Math., 11 (2013), 1296–1303. https://doi.org/10.2478/s11533-013-0233-9 doi: 10.2478/s11533-013-0233-9
    [31] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [32] S. L. Ross, Differential equations, New York: John Willey & Sons, 1984.
    [33] A. G. M. Selvam, S. B. Jacob, Stability of nonlinear pantograph fractional differential equation with integral operator, AIP Conf. Proc., 2385 (2022), 130040. https://doi.org/10.1063/5.0070754 doi: 10.1063/5.0070754
    [34] V. Spiridonov, Universal superposition of coheret states and self similar potentials, Phys. Rev. A., 52 (1995), 1909–1935. https://doi.org/10.1103/physreva.52.1909 doi: 10.1103/physreva.52.1909
    [35] O. Tunç, C. Tunç, Ulam stabilities of nonlinear iterative integro-differential equations, RACSAM Rev. R. Acad. A, 117 (2023), 118. https://doi.org/10.1007/s13398-023-01450-6 doi: 10.1007/s13398-023-01450-6
    [36] O. Tunç, C. Tunç, G. Petruşel, J. C. Yao, On the Ulam stabilities of nonlinear integral equations and integro-differential equations, Math. Method. Appl. Sci., 47 (2024), 4014–4028. https://doi.org/10.1002/mma.9800 doi: 10.1002/mma.9800
    [37] V. V. Uchaikin, Fractional derivatives for physicists and engineers, Springer, 2013.
    [38] G. C. Wake, S. Cooper, H. K. Kim, B. V. Brunt, Functional differential equations for cell growth models with dispersion, Commun. Appl. Anal., 4 (2000), 561–573.
    [39] H. Xu, Analytical approximations for population growth model with fractional order, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1978–1983. https://doi.org/10.1016/j.cnsns.2008.07.006 doi: 10.1016/j.cnsns.2008.07.006
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(81) PDF downloads(20) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog