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Abstract: In this research, we investigated the Riemann-Liouville fractional-order pantograph
differential equation constrained by nonlocal and weighted pantograph integral constraints. We
presented novel sufficient conditions for the uniqueness of the solution. Moreover, we analyzed the
continuous dependence of the solution on some functions and parameters. Additionally, we proved
the Hyers-Ulam stability of the problem. To demonstrate the applicability of our results, we included
several examples. The present study was located in the space L,[0, T']. The techniques of Schauder’s
fixed point theorem and Kolmogorov’s compactness criterion were the primary tools utilized in this
work. These contributions offer a comprehensive framework for understanding the qualitative behavior
of the fractional-order pantograph equation.
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1. Introduction

Fractional-order differential and integral equations play a significant role in a variety of fields,
including physics, engineering, and biomedical engineering. These equations are widely applied in
numerous scientific and engineering models [24—-26,37,39]. In mathematical analysis, nonlocal integral
conditions are often employed when analyzing differential equations, particularly when dealing with
equations that involve restrictions or objectives. Existing research has mainly focused on the existence
and uniqueness of solutions to such equations, which are often based on continuity or boundedness
conditions. Fixed point theorems have been demonstrated to be effective techniques for analyzing
the solvability of these equations as described in monographs and papers (see [7, 12, 13,20] and the
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references therein).

Stability analysis is a complex and diverse field with strong theoretical foundations and numerous
applications in engineering, economics, biology, physics, and other disciplines. An equation or issue
can be used to model a physical process if a small change in it results in a commensurate small change
in the outcome. This indicates that the equation or problem is stable.

There are various concepts of stability of differential equations, one of which is the Hyers-Ulam
stability. This concept pertains to the stability of solutions to differential equations under small
perturbations or approximations, specifically addressing the behavior of solutions when the equation
is subject to minor errors. The Hyers-Ulam stability provides a framework for determining whether
approximate solutions to a differential equation can be corrected or approximated by actual solutions
that remain within a controlled deviation. Several authors investigated the Hyers-Ulam stability of
differential equations [3,23, 35, 36].

Another concept in stability theory is continuous dependency [32], which examines how
mathematical solutions behave under various conditions. Hyers-Ulam stability measures the problem’s
resilience to interruptions, whereas continuous dependency investigates how modest parameter changes
affect the problem’s unique solution.

The pantograph equation is a particular type of delay differential equation derived from
electrodynamics that was initially developed by investigating an electric locomotive [15,29]. The
term pantograph was first introduced in Ockendon and Taylor’s research [29], which investigated
the electric locomotive’s catenary system. Their goal was to formulate an equation to analyze the
movement of the pantograph head on an electric locomotive powered by an overhead trolley wire. The
behavior of the pantograph differential equation is significant in a variety of fields of study. It has
various applications, including the current-collecting system [29], cell growth models [38], the ruin
problem in risk theory [14], quantum theory [34], light fusion in spiral galaxies [6], and industrial
applications. Multiple studies have examined the pantograph equation with different boundary
conditions or derivatives [10, 11, 18, 19]. The authors investigated the existence, uniqueness, and
stability of the solution of the pantograph equation. Numerical methods for the pantograph equations
were studied in [9,17,28] and the references therein.

Fractional pantograph equations have received significant attention due to their importance in
numerous fields. This type of equation is motivated by the need to model the non-integer and memory-
dependent interactions between the pantograph head and the catenary system, offering a more precise
description of the system’s dynamics, particularly when accounting for complex forces, vibrations,
and elastic properties. Several authors have studied this type of equation; for instance, Balachandran
et al. [7] considered nonlinear fractional pantograph equations with initial and nonlocal conditions and
obtained some of the existence results by using the Banach and Krasnoselskii fixed point theorems.
In [4], Alrabaiah et al. studied the qualitative analysis of nonlinear coupled pantograph differential
equations of fractional order with integral boundary conditions. In [2], the authors introduced fractional
pantograph differential equations and investigated a class of pantograph differential equations involving
Riemann-Liouville derivatives with multi-point boundary conditions; they established the existence
and Ulam stability of the problem. In addition, Selvam and Jacob [33] analyzed the Ulam-Hyers
stability of the nonlinear pantograph fractional differential equation involving the Atangana-Baleanu
derivative. Jalilian and Ghasemi [20] examined a pantograph-type fractional integro-differential
equation with appropriate initial conditions. Boularesa [8] investigated sufficient conditions for the
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asymptotic stability of the zero solution of pantograph Caputo fractional differential equations of
fractional order using Krasnoselskii’s fixed point theorem in a weighted Banach space. In [27], the
authors studied the existence and uniqueness of solutions, as well as the Ulam-Hyers stability, of
a fractional-order pantograph differential equation involving two Caputo operators. They employed
Banach’s fixed point theorem and the Leray-Schauder alternative to establish the existence and
uniqueness of solutions. In [3], EI-Sayed and Al-Issa studied a pantograph equation of fractional orders
under fractal-fractional feedback control. They proved the existence of solutions and the continuous
dependence of the unique solution on some parameters; additionally, they also proved the Hyers-Ulam
stability of the problem.

Inspired by recent literature, our focus is on investigating the constraint problem of the Riemann-
Liouville fractional-order pantograph differential equation

RD*x(t) = f(t, x(t), Lix(y11)), a.e. t€ (0,T] (1.1)

subject to the nonlocal and weighted pantograph integral constraints

T
F”ﬂmﬂ=m+ﬁf‘M&mﬁbﬂnmw. (1.2)
0
Remark 1. We can investigate the problem under the following condition:
1 T
IHW@L0=——%%+BJNh@J@LbMﬂﬂM@ 1€(0,T]. (1.3)
['(a) 0

This condition is equivalent to the condition given in (1.2), as shown in ([21], Lemma 3.5).

For the mathematical formulation of the problem, ®D? refers to the Riemann-Liouville fractional
derivative of order @ € (0, 1) and y; € (0, 1), i = 1,2. x(¢) represents the state of the system at time ¢,
which is the unknown function. The function f(z, x(¢), 4;x(;¢)) is a nonlinear function involving the
state variable x(f) and the delayed term A;x(y,f), where A; and v, are parameters. Moreover, the
operator /'~ is the fractional integral operator of order 1 —, S is a constant, and A(s, x(s), 12x(y25)) is
a nonlinear function depending on x(¢) and the delayed term A,x(y,t), where A, and vy, are parameters.
The present study was based on Kolmogorov’s compactness criterion [31] and Schauder’s fixed point
theorem [31].

Our aim in this study is to investigate the existence of solution x € L;[0,T] of the constrained
problems (1.1) and (1.2) or (1.1) and (1.3). Sufficient conditions for the uniqueness of the solution
will be given. Furthermore, the continuous dependence of the unique solution on the initial data x,
the functions f, h, and the parameters A;, i = 1, 2, will be proved. The Hyers-Ulam stability of the
problem will be established. To further explain our findings, we provide some examples.

We outline the main contributions of this paper as follows:

e We examine the Riemann-Liouville fractional-order differential equation (1.1) of pantograph
type under either of the two equivalent conditions, (1.2) and (1.3), and derive the corresponding
equivalent integral equation.

o We investigate the qualitative properties of the solution of the problem, including the existence,
uniqueness, and stability.
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e We provide some examples to further clarify our results.

This study enhances the qualitative analysis of a fractional-order pantograph differential equation
with nonlocal and weighted pantograph integral constraints. The article is structured as follows:
Section 2 presents the appropriate assumptions and proves the existence of the solution of the
fractional-order problem (1.1) with the constraints (1.2) or (1.3); moreover, the suitable assumptions
and proofs for the uniqueness of the solution will be provided. In Section 3, we investigate the stability
analysis of the problem; we test the possibility of the solution resisting disturbances through the study
of the continuous dependency on the initial data x,, the functions f and h, and the parameters A;,
i = 1, 2. In addition, we examine the problem’s resistance to interruptions through the Hyers-Ulam
stability of the problem. In Section 4, we present some instances to illustrate the results and clarify the
assumptions of the problem. Finally, Section 5 provides a conclusion.

2. Existence results

Let L, = Li(I), I = [0, T] be the class of Lebesgue integrable functions, with the standard norm

T
||x||1=f0 |x(r)ld.

In this paper, the integrals are considered in the sense of Lebesgue integration. Now consider the
following assumptions:

(1) h,f : IXRXR — R are Carathéodory functions [3], and there exist integrable functions a; : [ —
R, i =1, 2, and positive constants K and L such that

lf(t,x, )| < lay (@] + L (|x| + |yl) and |h(t, x,y)| < |az(2)| + K (x| + [y])
Vtel, x,yeR.
(ii)
T Ay A1
Tarp P K )L+ <1

Now, we have the following lemma.

Lemma 1. The solution of the constrained problem (1.1) and (1.2) or (1.1) and (1.3) can be expressed
by the fractional-order delay integral equation

a-1
I'(a)

Proof. Let x € Li(I) be a solution of the constrained problems (1.1) and (1.2) or (1.1) and (1.3), and
then we have

x(1) =

T
(XO +ﬁf h(s’ X(S), /IZX(YQS))dS ) + Ia/f(t’ X(t), /llx(% t)) (21)
0

d
Ell_a x(t) = f(t, x(1), A, x(y11)).
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By integrating the above, we obtain
t
I x(t) = 1" x(D)l=0 = f f (s, x(s), A1x(y18))ds
0

Il—a X(l’)

I'™ x(Dli=o + f f(s, x(s), L1 x(y19))ds
0

and from (1.2), we get

T ‘
' x(t) = xo+p fo h(s, x(s), A2 x(y25))ds + fo f(s, x(s), A1 x(y; 5))ds.

Operating with /¢, then

Ix0 =ty

T
(xo +8 f h(s, x(5), A2x(y28))ds) + 1" f(1, x(1), 1 x(y11)).
0

By differentiation, we obtain
a—1

x(t) = @)

T
(X0 +ﬁf0 h(s, x(s), Lox(y28))ds) + I f(t, x(1), 21 x(y10)).

Conversely, from (2.1), we have

T
I x(1) = x0 + B f h(s, x(s5), A2x(y28))ds + I f(t, x(1), A1 x(y11).
0

By differentiation, we get

d d T d
Ell‘“ x(1) = 7 (xo +p fO h(s, x(s), Lx(y25))ds) + o7 1 f(t, x(1), 1 x(y11))

and
RDOZ X(t) = f(t’ X(t), /llx(ylt))’
and then we deduced (1.1) and also

T
I x(®)li-0 = x0 + B f (s, x(s), ox(y29))ds.
0

Now consider problems (1.1) and (1.3), and then

d

o170 = [ X0, dix(ni)),
with

1 T
17 xX(0)li=o = =—— (%o +ﬁf h(s, x(s), L2x(y25))ds).
['(a) 0

Integrating the preceding gives

I'* x()-C = f S (s, x(s), A1 x(y15))ds,
0
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'™ x(1) = C + 1 f(t, x(0), Lix(y11).
Operating with /* on both sides yields

a

[a+1)

Differentiate the above, and we have

Ix(t) = + I £, x(0), L1 x(n1)).

oz 1
an—c()+1%ﬂrﬂnﬂmWn»
and c
17 x(r) = @ + 1701 £t x(0), A x(y10)).
From this, we arrive at
R pp—.
XU )|t=0 = F(a’)

This leads to
C
Ixﬂﬁﬁfh@mMMWW@ru

As aresult, we obtain (2.1). Conversely, let x € L,(I) be a solution of (2.1). Then we have

T
17 x(t) = L(360 +p f (s, x(5), Aax(y28))ds) + 1'% I* £(t, x(t), 11 x(y11)),
I'(@) 0

1 T
17 x(t)]i=0 = =——(x0 + 8 f h(s, x(s), A2x(y25))ds)
I'(@) 0

and

1™ x(r) = m(Xo +p f h(s, x(5), Aax(y28))ds) + I'=1 f(t, x(), L x(y11)).

Consequently, we get

d —-a
7! " x(0) = f(5,x(0), L x(y11)).
Now, consider the following existence theorem.

Theorem 1. Let the assumptions (i) and (ii) be satisfied. Then there exists at least one solution x €
Li(I) of the problems (1.1) and (1.2) or (1.1) and (1.3).

Proof. Let the set Q, be defined by

Tazn (ol + B llaall + llaull)

O,={xeLi):|lxlh <r}, r=

I~ B KA+ 22 + L (1 + 3 ))
Define the operator F by
ta—l T t (l _ s)a—l
Fx(r) = (xo + B f h(s, x(s), 22x(y25))ds) + f ——— f(5,x(5), Lix(y15))ds.
I'(a) 0 0 ['(a)
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Now, let x € Q,, and then

IFx(0l = | M()Co +5 f h(s, x(5), Lx(y25))ds) + f - I );1f<s,x<s>,alxms>>ds|
t"‘l B! (= 5)!
< F(a)|x0|+ @ j(; Ih(s, x(s), 22x(y25)))lds + T 1£ (s, x(s5), 11 x(y15))|ds.
Then

IA

T T 1o 1 ﬁ @ 1
Fx(t)|d h A d
j(; |Fx(t)ldt (F( )I @) f 1h(s, x(s), A2x(y28))lds

a—1
(l F(S)) |f(s, X(S), /llx(')/l s))lds)dt

T a 1 ﬁta—l
‘fo F( )lxoldt +f f @) dt |h(s, x(s), L2 x(y25))|ds

a—1
’ f P |/ (s, x(s), A1 x(y19))ld sdt

IA

['(a)
T "1 T Tﬁta—l
< fo T )Ixoldt fo . T@ )dt |h(s, x(5), A2x(y25))|ds
a— 1
; f 1£(s, x(5), A, x(y1 )] f - )
I'la +1)| Xol +
T
+ F(a+1)£ | £ (s, x(5), A1x(y15)lds
T ﬁTa T T T
= Tar D Tar ' fo laz ()lds + K( fo x(s)lds + 2o fo x(y25))lds)

T® T T T
+ m(j; |a1 (S)ldS + L(\fOV |)C(S)|dS + A4 f(; |x(y1 S)|ds))

T ﬁ T« T T /12 T
Tar D Ta+ ) fo la (s)lds + K( fo x($)ds + fo [x(6)ld6))

T« T T 1 T
T+ 1)( f lar (s)lds + L( fo Ix(s)lds + y—i fO |x(1)|dT))

IA

a 18 a /12 a /11
T+ 1) |xol + T+ 1)(||612||1 +Kr( 1+ Z)) + Tast 1)(||611||1 +Lr(1+ W ).
Thus,
IExd < ; (%ol + B llazll + llaill) + - (,8Kr(1+ﬁ)+ Lr(1+£))
I ? 1 [(e+1) ¥ "
= r
. G R Ay R SRS J P
T+ D) (xol + B llazll + llail) = r( Tt 1)([3 (1+ 72)+ (1+ " )).
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Hence the operator F : Li(I) — L(I) and {Fx} is uniformly bounded on Q,. Now, let x € Q,, and then

T
I(Fx)n = Fxll; fO |(Fx), (1) = (Fx)(0)ldt

T 1 1+h
f lE f (Fx)(s)ds — (Fx)(t)|dt
0 t

T 1 t+h
f 7 f |(Fx)(s) — (Fx)(t)|ds dt.
0 t

Since Fx € L1[0,T], then
[(Fx), — Fx|ly = 0 when h — 0.

This means that (Fx), — (Fx) uniformly in L;(/). Thus {Fx} is relatively compact [31]. Hence F'is a
compact operator. Now, let {x,} C Q,, and x, — x, and then

a—1 T t e a1
Fx () = t (xo + 8 f h(s, Xa(5), 22X, (y25))ds) + f uf (8, Xa(8), A1 Xa(y15))ds,
['(a) 0 o T
lim Fx,(t) = llm 1:2 )(xo +,Bf h(s, x,(8), A2x,(v25))ds)
e im [T o s
Applying the Lebesgue-dominated convergence theorem [22], then from assumption (i), we get
a—1 T
lim Fx,(t) = @ )(xo +8 f h(s, lim x,(s), A, lim x,,(y25))ds)
+f(t W(l' (91,4, lim 5,1 9)d
@) f(s im x,(s), 41 lim x,(y15))ds
= h( (8), 12x(y25))ds) + [w( (), ix(y15))d
= F() 8, x(8), 22x(y25))ds . T@) f(s,x(s), A1 x(y15))ds
= Fx(@).

This means that Fx,(f) — Fx(t). Hence the operator F is continuous. Now by the Schauder fixed point
theorem [31], there exists at least one solution x € L;(/) of (2.1). Consequently, there exists at least
one solution x € L; (/) of the problems (1.1) and (1.2) or (1.1) and (1.3).

2.1. Uniqueness of the solution

Consider the following assumptions:

(@) f,h:I Xx RX R — R are measurable in ¢ € I, ¥ x, y € R, and satisfy the Lipschitz condition such
that

IA

|f(f’x’)’)_f(l’7_c,)_’| L(|X—J_C|+|y_)_’|) (22)
|h(t, x,y) = h(t, %5 < K(x-xl+[y-y), Vrel, x, yeR.
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Theorem 2. Let the assumptions (i) and (ii) be satisfied, and then the solution of problems (1.1)

and (1.2) or (1.1) and (1.3) is unique.

Proof. Assumption (i) of Theorem (2) can be deduced from (i*), and then the solution of problems (1.1)

and (1.2) or (1.1) and (1.3) exists. Now let x|, x, be two solutions of (2.1), and then

|2 () = x1(0)]

a-1 T
= (0 +B f (s, X2(5), A a(y25)ds) +
() 0

a—1

T
@ )(xO +,3f h(s, x1(s), A2x1(y25))ds) — . T
t(z 1

F( ) f |h(s, x2(5), A2x2(y25)) — h(s, x1(5), A2 x1(y25)lds
(l s)a 1
['a )

1o 1
- ﬁF( ) K9~ 50+ Ahtras) - 1sds
(l )a—l

(@)

(= 5!
o T
T (t—s5)*!

IA

£ (s, x2(5), A12x02(y19)) = f(5, x1(5), A1 X1 (y15))lds

L(|x2(s) = x1($)| + Ai|x2(y18) — x1(y18))dss.

Then

T
f lx2(#) — x1(D)ldt
0

IA

T ﬂta_l T
f (r( s K(|x2(s) = x1(8)| + Aa|x2(y28) — x1(y25)|)ds

(I S)a—l
I'(a@)

-1 T
< f ﬁrm) [ Klaa(s) = 000+ tlan(ra) = szt
0

+

L(|x2(s) = x1(s)| + Ai|x2(y18) — x1(y15)Dds)dt

a—1
" f © X )) L(lxa(s) = 51 ()] + ilxa(18) = xi (1 )dsd

a 1
< f ﬂ f K(|x2(s) = x1(8)| + Aa2|x2(y25) — x1(y25))d sdt
o I'@) Jo

T 0T (= gy
fo T ) @l ibeis) —xis)hdids

f K(|x2(s) = x1(8)| + 2| x2(y28) — x1(y25))ds

+

(1

<
= r( +1)

T T(y
+ f ( )L(IXz(S) — x1(9 + lxa(y15) = x1(y15)Dds,
0

K( f xas) = 21 ()l + s f ba(y5) = x1(y25)lds)

IA

r( +1)

S (s, x2(5), A1 x2(y15))ds

f(s, x1(5), A1x1(y15))ds|
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., ( = L f s(s) = 2 (s + f Bo(ns) — 111 9)ids)
< - ( A 1)1« f [xa(s) — xi(s)lds + iL f a(1) = 31 (DldT)
+ r( ey L( f 1x2(5) — x1(s)|ds + — f |X2(7) — x1(7)ldT)
S KOl =l + s = sl + oLl = xlh + 5 s = )
S e A S+ p R+ )
< lx — xﬂh%(l{l + %) +B K(1 + %))
Hence
I = xql; (1 = F(a: 1)(L(l + %) +B K(1 + %)) < 0.
Since o N N
Fazt 1)(L(l + 771) + B K(1 + 772)) <1,

this implies that
X2 = x1llh <0

and hence ||x, — x1||; = 0. Then x; = x; and the solution of (2.1) is unique. Consequently the solution
of problems (1.1) and (1.2) or (1.1) and (1.3) is unique.

3. Stability analysis

We investigate the stability of the problem using two approaches: The continuous dependence of
the solution on some parameters and functions, and the Hyers-Ulam stability.

3.1. Continuous dependence

Theorem 3. Let the assumptions of Theorem 2 be satisfied, and then the unique solution x € L(I)
of (1.1) and (1.2) or (1.1) and (1.3) depends continuously on xy, f, h, Ay, and A, in the sense that
Ve > 03 6(e) such that

maX“/ll - /lT', |/12 - /l;|’ |X() - XSL |f(ta x,)’) - f*(t7 X,)’)L |h(ta X,)’) - h*(t’ X,Y)H <0

and then
llx — x"[l; <,

where x* is the unique solution of

a—

I'(a)

! _ a1
()c0 +,8f h*(s, x"(s), Lx*(y28))ds) + %f*(s, x(8), A1 x"(y18))ds.

*= ) T@
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Proof.
|x(r) — x" ()]

T t e -l
(xo+ 58 f h(s, x(5), A2x(y25))ds) + f U= fs, x(5), 1ixnis)ds
0 0 ['(@)

a—1

I'(a)

a—1 T t e a1
o8 fo (s, 5" (5), A5 (as)ds) — [ L=

o Do)
a—1 a—1 T

@ )IXO — Xl + '[i,z—a) ; |h(s, X(5), 22x(y25)) — I (s, X7(5), 4, (y29))ld's

(r—s)*! e e
+ f |fCs, x(s), A1x(y18) — (s, X°(5), A1 X" (y15)|ds
t(l

I (s, x7°(8), 41X (y18)ds|

IA

['(a)
1 . Bal

|xg — xol + =

IA

@ @) f (Ih(s, x(s), L2x(y25)) — h(s, x*(s), L,x"(y25))
+  h(s, x7(s), X (y25)) = h'(s, X" (), L,x" (y29)))ds
t a1
U, (£ s, x(s), Lix(y15)) = f(s, X°(5), A} x*(y15))
o I
+  f(s,x7°(s), ]x"(y18)) = f7(s, X" (5), X" (y15))ds
a—1 a—1 T
li(a)le — x| + ﬁl"z—a) fo (Jh(s, x*(5), 3x"(y28)) — h* (s, x*(s5), X" (y29))|
+  |h(s, x(s), Aax(y2s)) — h(s, X" (s), L,x"(y25))ds
! _ a1
¢ r(s) (1fCs, x"(8), 1x"(y18) = (s, x7°(s5), A]x"(y15)
@)
+ 1f(s, x(5), 1 x(y18)) = f(s, x7(s), A1 x"(yi5))ds
a—1 a—1 T
;(a)m — X+ ﬁria) fo (s, x(5), A5 (725)) — (5, % (5), " (y29))]
+  K(|x(s) = x* ()| + [A2x(y25) = X (y25)])ds

4 _ -1
0 ‘ r(2> (f (5, 2" (5), 12" (1)) = (5, % (5), i (1)

+ L(|x(s) - X(S)|+|/11X(715) X (y19))ds

a—1
< 61{&) @) f (0 + K(Ix(s) = X" ()| + [2x(y28) — Lx*(y28) + X" (y25) — L,xX (v25)))ds
a—1
+ - I )) (0 + L(x(s) = x"()| + |41 x(y18) — A[x"(y18) + 41X (y18) — X" (y19)])ds
< oo LA f 6 + K(x(s) = ()] + [ a9l — 5] + Blx(yas) — x* (as)))d
= F(a) F( ) X(s X (s X (Y28 2 > 21X(Y2 S X (Y2S S
! _ a1
+ [ G F(S)) [6 + L(x(s) — X' ()] + [ sl = AL + lx(yis) — x (o s)Dds
0
a—1 a—1
‘Srza) rz ) f (6 + K(x(s) — ()] + X' (72916 + lx(yas) — X (yas)))dls
! _ a1
= 54 Lx(s) = ()] + [ 1916 + Lk s) = ¥ (1 $)))ds,
o I
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and then

T
f |x(t) — x*(¢)|dt

a—1 a—1
f (FZoz) ri ) f (6 + K(1x(s) = " ()] + ¥ (2916 + Aalx(725) = " (v25)))ds

(1 - 5)"!
o T(a)
St 1 B @ 1
f@ = T@

a—1
+ f f - ) (6 + L(x(s) = X'(5)| + [¥" (1916 + Ailx(y1s) = x* (1 9))drdss

IA

+

(0 + L(x(s) = x"($)] + [x"(y19)I0 + Ai]x(y15) — X“(y15))ds)dt

IA

f (6 + K(Ix(s) = X (9] + X" (72916 + A2x(y25) — X" (y25)))d sdt

IA

a—1 [ 1
f iy * ﬁna) fo (6 + K(Ix(s) — X' (8)] + X" (29)l6 + lx(yas) = x* (ras)))dsdt

T®
+ f T (0 + L(|x(s) = x*()] + [x*(y19)I0 + A1 |x(y15) — x*(y15))ds
o I'l@+1)

T 51 Tﬁta_l T T *
fo @) dl+j(: f@) dt(fo 6ds+K(f0 Ix(s) — x*(s)|ds

T T
+ 0 f X" (y28)lds + A» f X" (y28) — X" (y25)lds))
0 0

IA

T« T T T T
+ (f ods+ L(f Ix(s) — x"(s)lds + 5f Ix*(y19)lds + A4 f |x(y15) — x*(y19)lds))
Ila+1) Jo 0 0 0
T ta—l T ﬂ toz—l T T .
< (5[) F(a)dt + I) @) dt(fo‘ ods+ K(‘f0 [x(s) — x*(s)|ds

5 T % /12 r *
., 8 f (e + 2 f x(1) = " (D)ld))
Y2 Jo Y2 Jo

T« T T S T 1 T
+ (f ods+ L(f |x(s) — x"(s)|ds + — f |x"(7)|dT + il f |x(7) — x*(7)|d7)).
0 0 Y1 Jo Y1 Jo

IN'a+1)
Then
oT* BTe ) y
1 —x(t < + 76+ K(|x = x"|ly + —|Ix*[l; + =lx — x*
llx(2) = x* (Dl e+ D T+ 1)( (lx = x*{ly yzllx Il yzllx x1)
« 0 e
+ TS + L(|x — x*||; + —||x"|l; + —||lx — x*
T+ 1)( (lx = x™{ly ylllx Il ylllx x'1[1)
oT”* T% 0 A
< + 86+ B K(lx—x*|ly + —r+ —|lx — x*
« 0 A
+ TS+ L(lx— x|, + —r+ Zjx - x*
F(a + 1)( (”x X ”1 71 r ’}/1 ||.x X ||1))
oT* T¢ KB o6 Lo
< + TpO+T6+ P r+—r)
I'a+1) TI(ae+1) 0 Y1
« A LA,
+ [[x = x*|i/(L+BK(1+—)+—).
T(a+1) (L+p v
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Hence

K|
F(a+1)(1+T,8+T+ Lr+ Lr)
I - 7B K +12)+L(1+ﬂl))

F(a+l

lx() = x*OIl, <

Then
lx(®) — x" Il < e

This finalizes the proof.

3.2. Hyres-Ulam stability

Many authors have studied and further developed the definition of Hyers-Ulam stability across
various types of problems, see [1,5, 16,30]. In light of these definitions and based on the equivalence
between the problems (1.1) and (1.2) or (1.1) and (1.3) and the integral Eq (2.1), we present the next
definition of the Hyers-Ulam stability of the problems (1.1) and (1.2) or (1.1) and (1.3) as follows:

Definition 1. Let the solution x € Li(I) of (1.1) and (1.2) or (1.1) and (1.3) exist, and then the
constrained problems (1.1) and (1.2) or (1.1) and (1.3) are Hyers-Ulam stable if Ye > 0 3 6(€) such
that for any 6—approximate solution x; satisfies

a— t -0 a-1
RARPN f 10, x0), ax(ra0nde) + | =D 6, x(60), xyi0)d6 - () <6, (3.1)
@) ) T@

and then ||x — x4||; < €.

Theorem 4. Let the assumptions of Theorem 2 be satisfied, and then the constrained problems (1.1)
and (1.2) or (1.1) and (1.3) are Hyers-Ulam stable.

Proof. From (3.1), we have

a— t _ pya-1
-0 < (xO +B f h(8, x5(0), 12x4(y20))d0) + €O S0, x,(0), 1 x,(y10))dO) — x(1) < 6.
I'(@) o I
Now we have
|x(2) — x5(D]
a—1 T t (t _ e)a—l
= | (xO +B f h(6, x(6), A2x(y20))d0) + f ———— f(0, x(0), 11 x(y10))d6 — x,(1)]
I'(a) o D@
! L (t—0)*!
< =0+ f h(6, x(6), 12 x(y20))d0) + f ——— [f(6, x(6), 1, x(y10))d6
(@) o @)
a—1 ! -0 a-1
- ftots f 6,560, o rs00)d) ~ | % £6,3,6), 1y x,(716)de
a—1 t Sy a-1
+ (xo + 88 f h(0, x,(6), 12x,(y20))d6) + Uil S0, x5(0), A1 x4(y16))d0 — x,(2)|
I'(a) 0 0 I'(a)
a-1 ! -0 a-1
< 0+ |'L;a) ; h(0, x(6), 1, x(y,60))d6 + f(; % f(8, x(6), 1, x(y,6))d6
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! (t _ 0)(1—1
I'(@)

ﬂ t(z—l
I'(a)

T
h(8, x(6), A2x5(y20))d6 — f 110, x5(0), 21x5(y16))d0)|
0 0

a—1
< 5+€;)~[IMwaLbﬂyﬁD—hWJK@uhnWﬁDMH
0
a—1
+ i I )) 1/ (6, x(6), 11 x(y10)) — [ (6, x5(0), 1.x5(y16))ldO
[ 1
< 0+ '8 f (K(1x(6) = x5(0)] + 2| x(y20) — x,(y20)]))d6
I'(@) Jo
(1- )"
(L(x(0) = x,(O)] + A1 [x(y10) — x5(v10)]))d6,
o I'a)
and then

T
fLW%m@W
0

T ﬁ ta—l T
< f [6 + f (K(1x(0) = x,(O)] + A2|x(y20) — x,(y260)]))dO
0 0

I'(@)
Tt - 6)“‘1
+ (L(|x(0) — x5(O)| + A1]x(y10) — x,(y10)]))dO]dt
o Ta)
T ﬁ ta—] T
< 0T+ f dt f (K(|x(0) — x,(0)| + A2|x(y20) — x,(y20)]))dO
o I'(@) 0

T T (l _ 0)(1—1
+ f f (L(|x(6) — x5(O)| + A1|x(y10) — x5(y10)])dtd6
o Jo (@)

IA

T T(y
+ f L(Ix(8) — x,(0)] + 4, |x(716) — x,(16)))d6
0

INa+1)
ﬁ a T T
< I)K( f |x(0) — x,(O)]dO + A, f |x(y26) — x4(y20)|d6)
+ F( n 1) (f |x(6) — x5(0)ldO + A, f |x(y160) — x5(y10)|d6)
< + r(a n I)K( fo |x(0) — x,(0)|d6 + v j; lx(1) — x,(7)|d7)
T /11 T
T T+ 1)L( fo x(6) — x,(0)Id6 + W fo Ix(T) = x,(7)|d7)
BT A
< 0T+ T+ 1)K(le =Xl + )72||x = Xl
a /11
+ T+ 1)L(le — Xl + - [l = xgll1)
T BLK LA,
< T+ o 1)||x—xS||1(BK+ - +L+ " =1,
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oT
”x_ xs”l < Ta by H
1- —r(a+1)(L(1 + y—]) +B K( + %))

Thus
lx—xli < e

4. Examples

Example 1. Consider the following fractional-order-pantograph differential equation:

| | 1 1
Rpys - _ (=
D5 x(1) ) + 8()c(t) + 2x(4t)), ae. te (0,3] 4.1
subject to the nonlocal and weighted pantograph integral constraints
11 1 11
I%x(t)ltzo =5 + 6\[0 (szi- 1sins + Z(x(s) + §x(§S)))dS 4.2)
4.3)

or
s I D B S | 1 1
ISX(I)lt:Q = @(? + g‘fo‘ (mSlnS + Z(X(S) + gX(gS)))dS)
This problem can be expressed by the fractional-order integral equation

-t

IS U B AU R | bl g et €] 1 1 ‘s
)C(t) = @(5 + gﬁ (SZT sins + Z(X(S) + §X(§S))) S) + PR + g(X([) + E)C(Zt)) ( . )

-t

Set
ol 11
S, x(0), 41 x(y11) = i g(x(t) + Ex(zt)),
|f(t, x, 9| < L + l(|3€| + D).
tr+1 8
Similarly,
h(t, 3(0), Aox(yat)) = —— sint + ~(x(t) + x(21)).
211 4 35
) < = + 2 + D,
?+1 4
where
1 ]
a(t) = 1 and |lay|| = L T 1a’s = In(4),
3
)= and |l = fo S ds = 1“(210).

Now, we have T = 3, @ = 1,

6.85831695596841.
Volume 10, Issue 3, 4970-4991.
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Then
TQ/

INa+1)
Now all the conditions of Theorem 1 are satisfied, and then the problems (4.1) and (4.2) or (4.1)
and (4.3) have at least one solution x € L;[0, 3]. Moreover,

P! A
(L(1 + )+ B K1 + 22)) = 0.6595341610293 < 1.
Y1 Y2

IA

1
|f(t,xa)7)_f(t’)_@)_’| g(lx_xl + |y_)_]|)’ (45)

|h(t? X, )’) - h(t7 X-’ )_)l

IA

1
Z(lx—)'c|+|y—)7|), Vtel, x, yeR.

Then the solution of the problems (4.1) and (4.2) or (4.1) and (4.3) is unique.
Example 2. Consider the following fractional order-pantograph differential equation:

—(x(t) + —x( 1), a.e. te(0, l] 4.6)

Rpy; £ =
XD =1 Tor 1278 2

subject to the nonlocal and weighted pantograph integral constraints

P x(f)o = f (”’” é(x(s)%x(%s»)ds, 4.7)

or

1 2 sins 1 1 1
12x()|=0 = F( ) 8 16[ §(X(S)+§X(§S)))dS)~ (4.8)

This problem can be expressed by the fractional-order integral equation

7 1 : sins 1 1 1 1 e"si t
x(1) = F(%)(g + — (— §(x(s) + §x(§s))ds) + I2 T —( (1) + Ex(st)). 4.9)

Set

¢ sint —( ) + —x(=1),

S x(@0), ix(nD) = T 1278

lf @, x, y)l < + E(IXI +1yD).

~ 1+ 10¢
Also

1 1
h(t, x(1), 22x(y21)) = —+ ((t)+ X3

1
lh(t, x,y)| < 7 + §(|x| + [yD,

where 1

P In(6)
d = ds = ,
and |la| fo 1+10s° " 10

«® =1 or

i
2] 1

1
a(t) = 7 and ||ay|| = f(; 5 ds = (7R
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Now, we have T = 1, a = 1,

é, and r = 0.39494809573195.

oo|—
-

X0 =

Then

T(a + 1)

Now all the conditions of Theorem 1 are satisfied, then and the problems (4.6) and (4.7) or (4.6)
and (4.8) have at least one solution x € L;[0, %]. Moreover,

(L1 + ﬁ) +B K(1 + Q)) =0.118205120118943 < 1.
Y1 Y2

1
|f(t’x7y)_f(t7x’)_)l E(|X—J_C|+|y_)_’|), (410)

IA

1
|h(t,x,)’)—h(t,)_5,)_’| < §(|x_x'|+|y_)_}|)’ VIEI, x,)’ER'

Then the solution of problems (4.6) and (4.7) or (4.6) and (4.8) is unique.
Example 3. Consider the following fractional-order pantograph differential equation:

e—t

R1i
D*x(t) =
L2 = 2=

1 1 1
, + ﬁ(x(t) + Ex(gt)), ae. te (0,1] 4.11)

subject to the nonlocal and weighted pantograph integral constraints

3 | Y A | 1 1
I3 x(t)|;=0 = 5 + gj; (se”’cos”s + g(x(s) + ?x(gs)))ds, 4.12)

or

t%x(t)ltzo m(g 6f(se cos’s + (x(s)+ x(%s)))ds). 4.13)

This problem can be expressed by the fractional-order integral equation

3

x(1) = —( + — f(se cos*s + (x(s)+ lx(ls)))ds)+1%

—t

e 1 1 1
, + ﬁ(x(t) + Ex(gt)). (4.14)

F( )9 6 8 —

Set

3D, hxi0) = 2+ L) + 2x iy

A = e T T 14 25
1 1
lf(, x,y)| < S + ﬁ(m + [yD,
and
s 4 2 1 1 1
h(t, x(1), L,x(y2t)) = t"e 'cos™t + g(x(t) + ?x(g)),
1
h(t, x,y)| < £ + 8(|X| + IyD,

where

1 L |
a;(t) = ——  and lai|| = f ds = In(8) — In(7),
8 -1 0 8 - S
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1
1
a() =17 and |al = f s*ds = —.
0 3
Now, wehave T =1, a:i, xozé, A :%, ylzé, /12:%, y2:%, ,B:é, L:ﬁ, K:é, andr =
0.486765614502368.
Then
T A A
(L(1+ =)+ B K(1+—))=0.331197306814979 < 1.
[(a+1) Y1 Y2

Now all the conditions of Theorem 1 are satisfied, then and the problems (4.11) and (4.12) or (4.11)
and (4.13) have at least one solution x € L;[0, 1]. Moreover,

1

ey = f x5 < g7 (e= X+ 1y =30, (4.15)
1

At x,y) = h(t. %51 < = (x—X+ly=3). Viel x yeRr.

Then the solution of the problems (4.11) and (4.12) or (4.11) and (4.13) is unique.
Example 4. Consider the following fractional-order pantograph differential equation:

—f 1
1+2t 1 X0 e”'sinx(51)

R-L
D1 x(t) = —
MW= 5o T 3

), a.e. te (0,1] (4.16)

subject to the nonlocal and weighted pantograph integral constraints

1
17 x()|1zo = —+ f ¢ S”’(S(”l)) —(1n(1+|x(s)|)+l M))ds, (4.17)

S- 1+ [x(35)|
or
> sm(S(s + 1)) x(%s)
10 xX(0)=0 = ) 6 4f( (ln(1+IX( N + T%S)l))dS)- (4.18)

This problem can be expressed by the fractional-order integral equation

sm(S(s + 1)) 1 1 x(%s)
x(1) = F( 0) G+3 f ( (e 4y i R
L 1+2t 1 X0 e sinx(11)
Tt s e T T 3 (4.19)
Set p (1 :
o l+2r 1 (®) e”'sinx(;t
f(t’ X(t),/ll.X(’)/lt)) - 1 9(1 + |X(1)| + 3 )
lf@x, I <1+2t+ §(|X| + [yD.
Also |
e, 1), Apx(yany) = SO+ 1) —<1n(1 + (o)) +l L
5-t + |x ( "
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1 1
It x. 9l < 5+ 7 (X + D,

where

1
a () =1+2t and |lai|| = f (1+2s8)ds =2,
0

1 !
a(t) = —— and |lay| = f ds = In(5) — In(4).
5 -1 0 5 - S

L
10°

W=
=
Il
INES
o~
&)
Il
=
<2
[§)
Il
=
=
Il
N
h
Il
o~
Il

Now, we have T = 1, a =
L and r = 3.36281387755.

E s
Then

X0 =

T
INa+1)

Now all the conditions of Theorem 1 are satisfied, then and the problems (4.16) and (4.17) or (4.16)
and (4.18) have at least one solution x € L;[0, 1].

A p)
(L + )+ B KA + 22)) = 0.3053650330255 < 1.
Y1 Y2

5. Conclusions

Fractional-order derivatives, which extend the concept of classical derivatives to non-integer
orders, can raise a variety of theoretical and practical problems. Several theoretical frameworks and
methodologies are used to establish the existence and uniqueness of fractional differential equation
solutions. Stability analysis is a broad and diverse field with strong theoretical foundations and various
applications in engineering, economics, biology, physics, and other disciplines. Hyers-Ulam stability
assesses a problem’s resilience to interruptions, while continuous dependency analyzes how modest
parameter changes impact the problem’s unique solution. In this investigation, the Riemann-Liouville
fractional-order pantograph differential equation is constrained by nonlocal and weighted pantograph
integral equations. We discussed the existence of an integrable solution of the Riemann-Liouville
fractional-order differential equation (1.1) subject to each one of the nonlocal and weighted pantograph
integral constraints (1.2) or (1.3) by applying the technique of Schauder’s fixed point theorem and
Kolmogorov’s compactness criterion. Moreover, we established sufficient conditions to guarantee the
uniqueness of the solution. We also studied the continuous dependence on the functions f, 4 and
the parameters A;, i = 1, 2. Moreover, we thoroughly investigated the Hyers-Ulam stability of the
constrained problems (1.1) and (1.2) or (1.1) and (1.3). Finally, some examples were provided to
illustrate our results.
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