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the Hyers-Ulam stability of the problem. To demonstrate the applicability of our results, we included
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1. Introduction

Fractional-order differential and integral equations play a significant role in a variety of fields,
including physics, engineering, and biomedical engineering. These equations are widely applied in
numerous scientific and engineering models [24–26,37,39]. In mathematical analysis, nonlocal integral
conditions are often employed when analyzing differential equations, particularly when dealing with
equations that involve restrictions or objectives. Existing research has mainly focused on the existence
and uniqueness of solutions to such equations, which are often based on continuity or boundedness
conditions. Fixed point theorems have been demonstrated to be effective techniques for analyzing
the solvability of these equations as described in monographs and papers (see [7, 12, 13, 20] and the
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references therein).
Stability analysis is a complex and diverse field with strong theoretical foundations and numerous

applications in engineering, economics, biology, physics, and other disciplines. An equation or issue
can be used to model a physical process if a small change in it results in a commensurate small change
in the outcome. This indicates that the equation or problem is stable.

There are various concepts of stability of differential equations, one of which is the Hyers-Ulam
stability. This concept pertains to the stability of solutions to differential equations under small
perturbations or approximations, specifically addressing the behavior of solutions when the equation
is subject to minor errors. The Hyers-Ulam stability provides a framework for determining whether
approximate solutions to a differential equation can be corrected or approximated by actual solutions
that remain within a controlled deviation. Several authors investigated the Hyers-Ulam stability of
differential equations [3, 23, 35, 36].

Another concept in stability theory is continuous dependency [32], which examines how
mathematical solutions behave under various conditions. Hyers-Ulam stability measures the problem’s
resilience to interruptions, whereas continuous dependency investigates how modest parameter changes
affect the problem’s unique solution.

The pantograph equation is a particular type of delay differential equation derived from
electrodynamics that was initially developed by investigating an electric locomotive [15, 29]. The
term pantograph was first introduced in Ockendon and Taylor’s research [29], which investigated
the electric locomotive’s catenary system. Their goal was to formulate an equation to analyze the
movement of the pantograph head on an electric locomotive powered by an overhead trolley wire. The
behavior of the pantograph differential equation is significant in a variety of fields of study. It has
various applications, including the current-collecting system [29], cell growth models [38], the ruin
problem in risk theory [14], quantum theory [34], light fusion in spiral galaxies [6], and industrial
applications. Multiple studies have examined the pantograph equation with different boundary
conditions or derivatives [10, 11, 18, 19]. The authors investigated the existence, uniqueness, and
stability of the solution of the pantograph equation. Numerical methods for the pantograph equations
were studied in [9, 17, 28] and the references therein.

Fractional pantograph equations have received significant attention due to their importance in
numerous fields. This type of equation is motivated by the need to model the non-integer and memory-
dependent interactions between the pantograph head and the catenary system, offering a more precise
description of the system’s dynamics, particularly when accounting for complex forces, vibrations,
and elastic properties. Several authors have studied this type of equation; for instance, Balachandran
et al. [7] considered nonlinear fractional pantograph equations with initial and nonlocal conditions and
obtained some of the existence results by using the Banach and Krasnoselskii fixed point theorems.
In [4], Alrabaiah et al. studied the qualitative analysis of nonlinear coupled pantograph differential
equations of fractional order with integral boundary conditions. In [2], the authors introduced fractional
pantograph differential equations and investigated a class of pantograph differential equations involving
Riemann-Liouville derivatives with multi-point boundary conditions; they established the existence
and Ulam stability of the problem. In addition, Selvam and Jacob [33] analyzed the Ulam-Hyers
stability of the nonlinear pantograph fractional differential equation involving the Atangana-Baleanu
derivative. Jalilian and Ghasemi [20] examined a pantograph-type fractional integro-differential
equation with appropriate initial conditions. Boularesa [8] investigated sufficient conditions for the
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asymptotic stability of the zero solution of pantograph Caputo fractional differential equations of
fractional order using Krasnoselskii’s fixed point theorem in a weighted Banach space. In [27], the
authors studied the existence and uniqueness of solutions, as well as the Ulam-Hyers stability, of
a fractional-order pantograph differential equation involving two Caputo operators. They employed
Banach’s fixed point theorem and the Leray-Schauder alternative to establish the existence and
uniqueness of solutions. In [3], El-Sayed and Al-Issa studied a pantograph equation of fractional orders
under fractal-fractional feedback control. They proved the existence of solutions and the continuous
dependence of the unique solution on some parameters; additionally, they also proved the Hyers-Ulam
stability of the problem.

Inspired by recent literature, our focus is on investigating the constraint problem of the Riemann-
Liouville fractional-order pantograph differential equation

RDαx(t) = f (t, x(t), λ1x(γ1t)), a.e. t ∈ (0,T ] (1.1)

subject to the nonlocal and weighted pantograph integral constraints

I1−αx(t)|t=0 = x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds. (1.2)

Remark 1. We can investigate the problem under the following condition:

t1−αx(t)|t=0 =
1

Γ(α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds) t ∈ (0,T ]. (1.3)

This condition is equivalent to the condition given in (1.2), as shown in ([21], Lemma 3.5).

For the mathematical formulation of the problem, RDα refers to the Riemann-Liouville fractional
derivative of order α ∈ (0, 1) and γi ∈ (0, 1), i = 1, 2. x(t) represents the state of the system at time t,
which is the unknown function. The function f (t, x(t), λ1x(γ1t)) is a nonlinear function involving the
state variable x(t) and the delayed term λ1x(γ1t), where λ1 and γ1 are parameters. Moreover, the
operator I1−α is the fractional integral operator of order 1−α, β is a constant, and h(s, x(s), λ2x(γ2s)) is
a nonlinear function depending on x(t) and the delayed term λ2x(γ2t), where λ2 and γ2 are parameters.
The present study was based on Kolmogorov’s compactness criterion [31] and Schauder’s fixed point
theorem [31].

Our aim in this study is to investigate the existence of solution x ∈ L1[0,T ] of the constrained
problems (1.1) and (1.2) or (1.1) and (1.3). Sufficient conditions for the uniqueness of the solution
will be given. Furthermore, the continuous dependence of the unique solution on the initial data x0,
the functions f , h, and the parameters λi, i = 1, 2, will be proved. The Hyers-Ulam stability of the
problem will be established. To further explain our findings, we provide some examples.

We outline the main contributions of this paper as follows:

• We examine the Riemann-Liouville fractional-order differential equation (1.1) of pantograph
type under either of the two equivalent conditions, (1.2) and (1.3), and derive the corresponding
equivalent integral equation.
• We investigate the qualitative properties of the solution of the problem, including the existence,

uniqueness, and stability.

AIMS Mathematics Volume 10, Issue 3, 4970–4991.



4973

• We provide some examples to further clarify our results.

This study enhances the qualitative analysis of a fractional-order pantograph differential equation
with nonlocal and weighted pantograph integral constraints. The article is structured as follows:
Section 2 presents the appropriate assumptions and proves the existence of the solution of the
fractional-order problem (1.1) with the constraints (1.2) or (1.3); moreover, the suitable assumptions
and proofs for the uniqueness of the solution will be provided. In Section 3, we investigate the stability
analysis of the problem; we test the possibility of the solution resisting disturbances through the study
of the continuous dependency on the initial data x0, the functions f and h, and the parameters λi,
i = 1, 2. In addition, we examine the problem’s resistance to interruptions through the Hyers-Ulam
stability of the problem. In Section 4, we present some instances to illustrate the results and clarify the
assumptions of the problem. Finally, Section 5 provides a conclusion.

2. Existence results

Let L1 = L1(I), I = [0,T ] be the class of Lebesgue integrable functions, with the standard norm

‖x‖1 =

∫ T

0
|x(t)|dt.

In this paper, the integrals are considered in the sense of Lebesgue integration. Now consider the
following assumptions:

(i) h, f : I ×R×R→ R are Carathéodory functions [3], and there exist integrable functions ai : I →
R, i = 1, 2, and positive constants K and L such that

| f (t, x, y)| ≤ |a1(t)| + L (|x| + |y|) and |h(t, x, y)| ≤ |a2(t)| + K (|x| + |y|)
∀ t ∈ I, x, y ∈ R.

(ii)

Tα

Γ(α + 1)
(β K( 1 +

λ2

γ2
) + L( 1 +

λ1

γ1
)) < 1.

Now, we have the following lemma.

Lemma 1. The solution of the constrained problem (1.1) and (1.2) or (1.1) and (1.3) can be expressed
by the fractional-order delay integral equation

x(t) =
tα−1

Γ(α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds ) + Iα f (t, x(t), λ1x(γ1t)). (2.1)

Proof. Let x ∈ L1(I) be a solution of the constrained problems (1.1) and (1.2) or (1.1) and (1.3), and
then we have

d
dt

I1−α x(t) = f (t, x(t), λ1x(γ1t)).
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By integrating the above, we obtain

I1−α x(t) − I1−α x(t)|t=0 =

∫ t

0
f (s, x(s), λ1x(γ1s))ds

I1−α x(t) = I1−α x(t)|t=0 +

∫ t

0
f (s, x(s), λ1x(γ1s))ds

and from (1.2), we get

I1−α x(t) = x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds +

∫ t

0
f (s, x(s), λ1x(γ1s))ds.

Operating with Iα, then

I x(t) =
tα

Γ(1 + α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds) + Iα+1 f (t, x(t), λ1x(γ1t)).

By differentiation, we obtain

x(t) =
tα−1

Γ(α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds) + Iα f (t, x(t), λ1x(γ1t)).

Conversely, from (2.1), we have

I1−α x(t) = x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds + I f (t, x(t), λ1x(γ1t)).

By differentiation, we get

d
dt

I1−α x(t) =
d
dt

(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds) +

d
dt

I f (t, x(t), λ1x(γ1t))

and
RDα x(t) = f (t, x(t), λ1x(γ1t)),

and then we deduced (1.1) and also

I1−αx(t)|t=0 = x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds.

Now consider problems (1.1) and (1.3), and then

d
dt

I1−α x(t) = f (t, x(t), λ1x(γ1t)),

with

t1−α x(t)|t=0 =
1

Γ(α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds).

Integrating the preceding gives

I1−α x(t) −C =

∫ t

0
f (s, x(s), λ1x(γ1s))ds,
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I1−α x(t) = C + I f (t, x(t), λ1x(γ1t)).

Operating with Iα on both sides yields

I x(t) =
Ctα

Γ(α + 1)
+ Iα+1 f (t, x(t), λ1x(γ1t)).

Differentiate the above, and we have

x(t) =
Ctα−1

Γ(α)
+ Iα f (t, x(t), λ1x(γ1t))

and
t1−α x(t) =

C
Γ(α)

+ t1−α Iα f (t, x(t), λ1x(γ1t)).

From this, we arrive at

t1−α x(t)|t=0 =
C

Γ(α)
.

This leads to
1

Γ(α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds) =

C
Γ(α)

.

As a result, we obtain (2.1). Conversely, let x ∈ L1(I) be a solution of (2.1). Then we have

t1−α x(t) =
1

Γ(α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds) + t1−α Iα f (t, x(t), λ1x(γ1t)),

t1−α x(t)|t=0 =
1

Γ(α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds)

and

I1−α x(t) =
1

Γ(α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds) + I1−αIα f (t, x(t), λ1x(γ1t)).

Consequently, we get
d
dt

I1−α x(t) = f (t, x(t), λ1x(γ1t)).

Now, consider the following existence theorem.

Theorem 1. Let the assumptions (i) and (ii) be satisfied. Then there exists at least one solution x ∈
L1(I) of the problems (1.1) and (1.2) or (1.1) and (1.3).

Proof. Let the set Qr be defined by

Qr = {x ∈ L1(I) : ‖x‖1 ≤ r}, r =

Tα

Γ(α+1) (|x0| + β ‖a2‖ + ‖a1‖)

1 − Tα

Γ(α+1) (β K(1 + λ2
γ2

) + L (1 + λ1
γ1

))
.

Define the operator F by

Fx(t) =
tα−1

Γ(α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds) +

∫ t

0

(t − s)α−1

Γ(α)
f (s, x(s), λ1x(γ1s))ds.
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Now, let x ∈ Qr, and then

|Fx(t)| = |
tα−1

Γ(α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds) +

∫ t

0

(t − s)α−1

Γ(α)
f (s, x(s), λ1x(γ1s))ds|

≤
tα−1

Γ(α)
|x0| +

β tα−1

Γ(α)

∫ T

0
|h(s, x(s), λ2x(γ2s)))|ds +

∫ t

0

(t − s)α−1

Γ(α)
| f (s, x(s), λ1x(γ1s))|ds.

Then∫ T

0
|Fx(t)|dt ≤

∫ T

0
(

tα−1

Γ(α)
|x0| +

β tα−1

Γ(α)

∫ T

0
|h(s, x(s), λ2x(γ2s))|ds

+

∫ t

0

(t − s)α−1

Γ(α)
| f (s, x(s), λ1x(γ1s))|ds)dt

≤

∫ T

0

tα−1

Γ(α)
|x0|dt +

∫ T

0

∫ T

0

β tα−1

Γ(α)
dt |h(s, x(s), λ2x(γ2s))|ds

+

∫ T

0

∫ t

0

(t − s)α−1

Γ(α)
| f (s, x(s), λ1x(γ1s))|dsdt

≤

∫ T

0

tα−1

Γ(α)
|x0|dt +

∫ T

0

∫ T

0

β tα−1

Γ(α)
dt |h(s, x(s), λ2x(γ2s))|ds

+

∫ T

0
| f (s, x(s), λ1x(γ1s))|

∫ T

s

(t − s)α−1

Γ(α)
dtds

≤
Tα

Γ(α + 1)
|x0| +

β Tα

Γ(α + 1)

∫ T

0
|h(s, x(s), λ2x(γ2s))|ds

+
Tα

Γ(α + 1)

∫ T

0
| f (s, x(s), λ1x(γ1s))|ds

≤
Tα

Γ(α + 1)
|x0| +

β Tα

Γ(α + 1)
(
∫ T

0
|a2 (s)|ds + K(

∫ T

0
|x(s)|ds + λ2

∫ T

0
|x(γ2s))|ds)

+
Tα

Γ(α + 1)
(
∫ T

0
|a1 (s)|ds + L(

∫ T

0
|x(s)|ds + λ1

∫ T

0
|x(γ1s)|ds))

≤
Tα

Γ(α + 1)
|x0| +

β Tα

Γ(α + 1)
(
∫ T

0
|a2 (s)|ds + K(

∫ T

0
|x(s)|ds +

λ2

γ2

∫ T

0
|x(θ)|dθ))

+
Tα

Γ(α + 1)
(
∫ T

0
|a1 (s)|ds + L(

∫ T

0
|x(s)|ds +

λ1

γ1

∫ T

0
|x(τ)|dτ))

≤
Tα

Γ(α + 1)
|x0| +

β Tα

Γ(α + 1)
(‖a2‖1 + Kr( 1 +

λ2

γ2
)) +

Tα

Γ(α + 1)
(‖a1‖1 + Lr( 1 +

λ1

γ1
)).

Thus,

‖Fx‖1 ≤
Tα

Γ(α + 1)
(|x0| + β ‖a2‖ + ‖a1‖) +

Tα

Γ(α + 1)
(β Kr( 1 +

λ2

γ2
) + Lr( 1 +

λ1

γ1
))

= r

Tα

Γ(α + 1)
(|x0| + β ‖a2‖ + ‖a1‖) = r (1 −

Tα

Γ(α + 1)
(β K( 1 +

λ2

γ2
) + L(1 +

λ1

γ1
))).
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Hence the operator F : L1(I)→ L1(I) and {Fx} is uniformly bounded on Qr. Now, let x ∈ Qr, and then

‖(Fx)h − Fx‖1 =

∫ T

0
|(Fx)h (t) − (Fx)(t)|dt

=

∫ T

0
|
1
h

∫ t+h

t
(Fx)(s)ds − (Fx)(t)|dt

=

∫ T

0

1
h

∫ t+h

t
|(Fx)(s) − (Fx)(t)|ds dt.

Since Fx ∈ L1[0,T ], then
‖(Fx)h − Fx‖1 → 0 when h→ 0.

This means that (Fx)h → (Fx) uniformly in L1(I). Thus {Fx} is relatively compact [31]. Hence F is a
compact operator. Now, let {xn} ⊂ Qr, and xn → x, and then

Fxn(t) =
tα−1

Γ(α)
(x0 + β

∫ T

0
h(s, xn(s), λ2xn(γ2s))ds) +

∫ t

0

(t − s)α−1

Γ(α)
f (s, xn(s), λ1xn(γ1s))ds,

lim
n→∞

Fxn(t) = lim
n→∞

tα−1

Γ(α)
(x0 + β

∫ T

0
h(s, xn(s), λ2xn(γ2s))ds)

+ lim
n→∞

∫ t

0

(t − s)α−1

Γ(α)
f (s, xn(s), λ1xn(γ1s))ds.

Applying the Lebesgue-dominated convergence theorem [22], then from assumption (i), we get

lim
n→∞

Fxn(t) =
tα−1

Γ(α)
(x0 + β

∫ T

0
h(s, lim

n→∞
xn(s), λ2 lim

n→∞
xn(γ2s))ds)

+

∫ t

0

(t − s)α−1

Γ(α)
f (s, lim

n→∞
xn(s), λ1 lim

n→∞
xn(γ1s))ds

=
tα−1

Γ(α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds) +

∫ t

0

(t − s)α−1

Γ(α)
f (s, x(s), λ1x(γ1s))ds

= Fx(t).

This means that Fxn(t)→ Fx(t). Hence the operator F is continuous. Now by the Schauder fixed point
theorem [31], there exists at least one solution x ∈ L1(I) of (2.1). Consequently, there exists at least
one solution x ∈ L1(I) of the problems (1.1) and (1.2) or (1.1) and (1.3).

2.1. Uniqueness of the solution

Consider the following assumptions:

(i)∗ f , h:I × R × R → R are measurable in t ∈ I, ∀ x, y ∈ R, and satisfy the Lipschitz condition such
that

| f (t, x, y) − f (t, x̄, ȳ| ≤ L (|x − x̄| + |y − ȳ|) (2.2)
|h(t, x, y) − h(t, x̄, ȳ| ≤ K (|x − x̄| + |y − ȳ|), ∀ t ∈ I, x, y ∈ R.
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Theorem 2. Let the assumptions (i)∗ and (ii) be satisfied, and then the solution of problems (1.1)
and (1.2) or (1.1) and (1.3) is unique.

Proof. Assumption (i) of Theorem (2) can be deduced from (i∗), and then the solution of problems (1.1)
and (1.2) or (1.1) and (1.3) exists. Now let x1, x2 be two solutions of (2.1), and then

|x2(t) − x1(t)|

= |
tα−1

Γ(α)
(x0 + β

∫ T

0
h(s, x2(s), λ2x2(γ2s))ds) +

∫ t

0

(t − s)α−1

Γ(α)
f (s, x2(s), λ1x2(γ1s))ds

−
tα−1

Γ(α)
(x0 + β

∫ T

0
h(s, x1(s), λ2x1(γ2s))ds) −

∫ t

0

(t − s)α−1

Γ(α)
f (s, x1(s), λ1x1(γ1s))ds|

≤
β tα−1

Γ(α)

∫ T

0
|h(s, x2(s), λ2x2(γ2s)) − h(s, x1(s), λ2x1(γ2s))|ds

+

∫ t

0

(t − s)α−1

Γ(α)
| f (s, x2(s), λ1x2(γ1s)) − f (s, x1(s), λ1x1(γ1s))|ds

≤
β tα−1

Γ(α)

∫ T

0
K(|x2(s) − x1(s)| + λ2|x2(γ2s) − x1(γ2s)|)ds

+

∫ t

0

(t − s)α−1

Γ(α)
L(|x2(s) − x1(s)| + λ1|x2(γ1s) − x1(γ1s)|)ds.

Then ∫ T

0
|x2(t) − x1(t)|dt

≤

∫ T

0
(
β tα−1

Γ(α)

∫ T

0
K(|x2(s) − x1(s)| + λ2|x2(γ2s) − x1(γ2s)|)ds

+

∫ t

0

(t − s)α−1

Γ(α)
L(|x2(s) − x1(s)| + λ1|x2(γ1s) − x1(γ1s)|)ds)dt

≤

∫ T

0

β tα−1

Γ(α)

∫ T

0
K(|x2(s) − x1(s)| + λ2|x2(γ2s) − x1(γ2s)|)dsdt

+

∫ T

0

∫ t

0

(t − s)α−1

Γ(α)
L(|x2(s) − x1(s)| + λ1|x2(γ1s) − x1(γ1s)|)dsdt

≤

∫ T

0

β tα−1

Γ(α)

∫ T

0
K(|x2(s) − x1(s)| + λ2|x2(γ2s) − x1(γ2s)|)dsdt

+

∫ T

0

∫ T

s

(t − s)α−1

Γ(α)
L(|x2(s) − x1(s)| + λ1|x2(γ1s) − x1(γ1s)|)dtds

≤
β Tα

Γ(α + 1)

∫ T

0
K(|x2(s) − x1(s)| + λ2|x2(γ2s) − x1(γ2s)|)ds

+

∫ T

0

Tα

Γ(α + 1)
L(|x2(s) − x1(s)| + λ1|x2(γ1s) − x1(γ1s)|)ds,

≤
β Tα

Γ(α + 1)
K(
∫ T

0
|x2(s) − x1(s)|ds + λ2

∫ T

0
|x2(γ2s) − x1(γ2s)|ds)
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+
Tα

Γ(α + 1)
L(
∫ T

0
|x2(s) − x1(s)|ds + λ1

∫ T

0
|x2(γ1s) − x1(γ1s)|ds)

≤
β Tα

Γ(α + 1)
K(
∫ T

0
|x2(s) − x1(s)|ds +

λ2

γ2

∫ T

0
|x2(τ) − x1(τ)|dτ)

+
Tα

Γ(α + 1)
L(
∫ T

0
|x2(s) − x1(s)|ds +

λ1

γ1

∫ T

0
|x2(τ) − x1(τ)|dτ)

≤
β Tα

Γ(α + 1)
K(‖x2 − x1‖1 +

λ2

γ2
‖x2 − x1‖1) +

Tα

Γ(α + 1)
L(‖x2 − x1‖1 +

λ1

γ1
‖x2 − x1‖1)

≤
Tα

Γ(α + 1)
‖x2 − x1‖1((L(1 +

λ1

γ1
) + β K(1 +

λ2

γ2
))

≤ ‖x2 − x1‖1
Tα

Γ(α + 1)
(L(1 +

λ1

γ1
) + β K(1 +

λ2

γ2
)).

Hence

‖x2 − x1‖1 (1 −
Tα

Γ(α + 1)
(L(1 +

λ1

γ1
) + β K(1 +

λ2

γ2
)) ≤ 0.

Since
Tα

Γ(α + 1)
(L(1 +

λ1

γ1
) + β K(1 +

λ2

γ2
)) < 1,

this implies that
‖x2 − x1‖1 ≤ 0

and hence ‖x2 − x1‖1 = 0. Then x1 = x2 and the solution of (2.1) is unique. Consequently the solution
of problems (1.1) and (1.2) or (1.1) and (1.3) is unique.

3. Stability analysis

We investigate the stability of the problem using two approaches: The continuous dependence of
the solution on some parameters and functions, and the Hyers-Ulam stability.

3.1. Continuous dependence

Theorem 3. Let the assumptions of Theorem 2 be satisfied, and then the unique solution x ∈ L1(I)
of (1.1) and (1.2) or (1.1) and (1.3) depends continuously on x0, f , h, λ1, and λ2 in the sense that
∀ε > 0 ∃ δ(ε) such that

max{|λ1 − λ
∗
1|, |λ2 − λ

∗
2|, |x0 − x∗0|, | f (t, x, y) − f ∗(t, x, y)|, |h(t, x, y) − h∗(t, x, y)|} < δ,

and then
‖x − x∗‖1 < ε,

where x∗ is the unique solution of

x∗(t) =
tα−1

Γ(α)
(x∗0 + β

∫ T

0
h∗(s, x∗(s), λ∗2x∗(γ2s))ds) +

∫ t

0

(t − s)α−1

Γ(α)
f ∗(s, x∗(s), λ∗1x∗(γ1s))ds.
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Proof.

|x(t) − x∗(t)|

= |
tα−1

Γ(α)
(x0 + β

∫ T

0
h(s, x(s), λ2x(γ2s))ds) +

∫ t

0

(t − s)α−1

Γ(α)
f (s, x(s), λ1x(γ1s))ds

−
tα−1

Γ(α)
(x∗0 + β

∫ T

0
h∗(s, x∗(s), λ∗2x∗(γ2s))ds) −

∫ t

0

(t − s)α−1

Γ(α)
f ∗(s, x∗(s), λ∗1x∗(γ1s))ds|

≤
tα−1

Γ(α)
|x0 − x∗0| +

β tα−1

Γ(α)

∫ T

0
|h(s, x(s), λ2x(γ2s)) − h∗(s, x∗(s), λ∗2x∗(γ2s))|ds

+

∫ t

0

(t − s)α−1

Γ(α)
| f (s, x(s), λ1x(γ1s)) − f ∗(s, x∗(s), λ∗1x∗(γ1s))|ds

≤
tα−1

Γ(α)
|x0 − x∗0| +

β tα−1

Γ(α)

∫ T

0
(|h(s, x(s), λ2x(γ2s)) − h(s, x∗(s), λ∗2x∗(γ2s))

+ h(s, x∗(s), λ∗2x∗(γ2s)) − h∗(s, x∗(s), λ∗2x∗(γ2s))|)ds

+

∫ t

0

(t − s)α−1

Γ(α)
(| f (s, x(s), λ1x(γ1s)) − f (s, x∗(s), λ∗1x∗(γ1s))

+ f (s, x∗(s), λ∗1x∗(γ1s)) − f ∗(s, x∗(s), λ∗1x∗(γ1s))|)ds

≤
tα−1

Γ(α)
|x0 − x∗0| +

β tα−1

Γ(α)

∫ T

0
(|h(s, x∗(s), λ∗2x∗(γ2s)) − h∗(s, x∗(s), λ∗2x∗(γ2s))|

+ |h(s, x(s), λ2x(γ2s)) − h(s, x∗(s), λ∗2x∗(γ2s))|)ds

+

∫ t

0

(t − s)α−1

Γ(α)
(| f (s, x∗(s), λ∗1x∗(γ1s)) − f ∗(s, x∗(s), λ∗1x∗(γ1s))|

+ | f (s, x(s), λ1x(γ1s)) − f (s, x∗(s), λ∗1x∗(γ1s))|)ds

≤
tα−1

Γ(α)
|x0 − x∗0| +

β tα−1

Γ(α)

∫ T

0
(|h(s, x∗(s), λ∗2x∗(γ2s)) − h∗(s, x∗(s), λ∗2x∗(γ2s))|

+ K(|x(s) − x∗(s)| + |λ2x(γ2s) − λ∗2x∗(γ2s)|))ds

+

∫ t

0

(t − s)α−1

Γ(α)
(| f (s, x∗(s), λ∗1x∗(γ1s)) − f ∗(s, x∗(s), λ∗1x∗(γ1s))|

+ L(|x(s) − x∗(s)| + |λ1x(γ1s) − λ∗1x∗(γ1s)|))ds

≤
δ tα−1

Γ(α)
+
β tα−1

Γ(α)

∫ T

0
(δ + K(|x(s) − x∗(s)| + |λ2x(γ2s) − λ2x∗(γ2s) + λ2x∗(γ2s) − λ∗2x∗(γ2s)|))ds

+

∫ t

0

(t − s)α−1

Γ(α)
(δ + L(|x(s) − x∗(s)| + |λ1x(γ1s) − λ∗1x∗(γ1s) + λ1x∗(γ1s) − λ∗1x∗(γ1s)|))ds

≤
δ tα−1

Γ(α)
+
β tα−1

Γ(α)

∫ T

0
(δ + K(|x(s) − x∗(s)| + |x∗(γ2s)||λ2 − λ

∗
2| + λ2|x(γ2s) − x∗(γ2s)|))ds

+

∫ t

0

(t − s)α−1

Γ(α)
[δ + L(|x(s) − x∗(s)| + |x∗(γ1s)||λ1 − λ

∗
1| + λ1|x(γ1s) − x∗(γ1s)|)]ds

≤
δ tα−1

Γ(α)
+
β tα−1

Γ(α)

∫ T

0
(δ + K(|x(s) − x∗(s)| + |x∗(γ2s)|δ + λ2|x(γ2s) − x∗(γ2s)|))ds

+

∫ t

0

(t − s)α−1

Γ(α)
(δ + L(|x(s) − x∗(s)| + |x∗(γ1s)|δ + λ1|x(γ1s) − x∗(γ1s)|))ds,
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and then∫ T

0
|x(t) − x∗(t)|dt

≤

∫ T

0
(
δ tα−1

Γ(α)
+
β tα−1

Γ(α)

∫ T

0
(δ + K(|x(s) − x∗(s)| + |x∗(γ2s)|δ + λ2|x(γ2s) − x∗(γ2s)|))ds

+

∫ t

0

(t − s)α−1

Γ(α)
(δ + L(|x(s) − x∗(s)| + |x∗(γ1s)|δ + λ1|x(γ1s) − x∗(γ1s)|))ds)dt

≤
δ tα−1

Γ(α)
+
β tα−1

Γ(α)

∫ T

0
(δ + K(|x(s) − x∗(s)| + |x∗(γ2s)|δ + λ2|x(γ2s) − x∗(γ2s)|))dsdt

+

∫ T

0

∫ T

s

(t − s)α−1

Γ(α)
(δ + L(|x(s) − x∗(s)| + |x∗(γ1s)|δ + λ1|x(γ1s) − x∗(γ1s)|))dtds

≤

∫ T

0
(
δ tα−1

Γ(α)
+
β tα−1

Γ(α)

∫ T

0
(δ + K(|x(s) − x∗(s)| + |x∗(γ2s)|δ + λ2|x(γ2s) − x∗(γ2s)|))dsdt

+

∫ T

0

Tα

Γ(α + 1)
(δ + L(|x(s) − x∗(s)| + |x∗(γ1s)|δ + λ1|x(γ1s) − x∗(γ1s)|))ds

≤

∫ T

0

δ tα−1

Γ(α)
dt +

∫ T

0

β tα−1

Γ(α)
dt(
∫ T

0
δ ds + K(

∫ T

0
|x(s) − x∗(s)|ds

+ δ

∫ T

0
|x∗(γ2s)|ds + λ2

∫ T

0
|x∗(γ2s) − x∗(γ2s)|ds))

+
Tα

Γ(α + 1)
(
∫ T

0
δ ds + L(

∫ T

0
|x(s) − x∗(s)|ds + δ

∫ T

0
|x∗(γ1s)|ds + λ1

∫ T

0
|x(γ1s) − x∗(γ1s)|ds))

≤ δ

∫ T

0

tα−1

Γ(α)
dt +

∫ T

0

β tα−1

Γ(α)
dt(
∫ T

0
δ ds + K(

∫ T

0
|x(s) − x∗(s)|ds

+
δ

γ2

∫ T

0
|x∗(τ)|dτ +

λ2

γ2

∫ T

0
|x(τ) − x∗(τ)|dτ))

+
Tα

Γ(α + 1)
(
∫ T

0
δ ds + L(

∫ T

0
|x(s) − x∗(s)|ds +

δ

γ1

∫ T

0
|x∗(τ)|dτ +

λ1

γ1

∫ T

0
|x(τ) − x∗(τ)|dτ)).

Then

‖x(t) − x∗(t)‖1 ≤
δ Tα

Γ(α + 1)
+

β Tα

Γ(α + 1)
(Tδ + K(‖x − x∗‖1 +

δ

γ2
‖x∗‖1 +

λ2

γ2
‖x − x∗‖1))

+
Tα

Γ(α + 1)
(Tδ + L(‖x − x∗‖1 +

δ

γ1
‖x∗‖1 +

λ1

γ1
‖x − x∗‖1))

≤
δ Tα

Γ(α + 1)
+

Tα

Γ(α + 1)
(Tβ δ + β K(‖x − x∗‖1 +

δ

γ2
r +

λ2

γ2
‖x − x∗‖1))

+
Tα

Γ(α + 1)
(Tδ + L(‖x − x∗‖1 +

δ

γ1
r +

λ1

γ1
‖x − x∗‖1))

≤
δ Tα

Γ(α + 1)
+

Tα

Γ(α + 1)
(Tβ δ + Tδ +

Kβ δ
γ2

r +
Lδ
γ1

r)

+
Tα

Γ(α + 1)
‖x − x∗‖1(L + β K(1 +

λ2

γ2
) +

Lλ1

γ1
).
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Hence

‖x(t) − x∗(t)‖1 ≤
δ Tα

Γ(α+1) (1 + Tβ + T +
Kβ
γ2

r + L
γ1

r)

1 − Tα

Γ(α+1) (β K(1 + λ2
γ2

) + L(1 + λ1
γ1

))
.

Then

‖x(t) − x∗(t)‖1 ≤ ε.

This finalizes the proof.

3.2. Hyres-Ulam stability

Many authors have studied and further developed the definition of Hyers-Ulam stability across
various types of problems, see [1, 5, 16, 30]. In light of these definitions and based on the equivalence
between the problems (1.1) and (1.2) or (1.1) and (1.3) and the integral Eq (2.1), we present the next
definition of the Hyers-Ulam stability of the problems (1.1) and (1.2) or (1.1) and (1.3) as follows:

Definition 1. Let the solution x ∈ L1(I) of (1.1) and (1.2) or (1.1) and (1.3) exist, and then the
constrained problems (1.1) and (1.2) or (1.1) and (1.3) are Hyers-Ulam stable if ∀ε > 0 ∃ δ(ε) such
that for any δ−approximate solution xs satisfies

|
tα−1

Γ(α)
(x0 + β

∫ T

0
h(θ, x(θ), λ2x(γ2θ))dθ) +

∫ t

0

(t − θ)α−1

Γ(α)
f (θ, x(θ), λ1x(γ1θ))dθ − xs(t)| < δ, (3.1)

and then ‖x − xs‖1 < ε.

Theorem 4. Let the assumptions of Theorem 2 be satisfied, and then the constrained problems (1.1)
and (1.2) or (1.1) and (1.3) are Hyers-Ulam stable.

Proof. From (3.1), we have

−δ <
tα−1

Γ(α)
(x0 + β

∫ T

0
h(θ, xs(θ), λ2xs(γ2θ))dθ) +

∫ t

0

(t − θ)α−1

Γ(α)
f (θ, xs(θ), λ1xs(γ1θ))dθ) − xs(t) < δ.

Now we have

|x(t) − xs(t)|

= |
tα−1

Γ(α)
(x0 + β

∫ T

0
h(θ, x(θ), λ2x(γ2θ))dθ) +

∫ t

0

(t − θ)α−1

Γ(α)
f (θ, x(θ), λ1x(γ1θ))dθ − xs(t)|

≤ |
tα−1

Γ(α)
(x0 + β

∫ T

0
h(θ, x(θ), λ2x(γ2θ))dθ) +

∫ t

0

(t − θ)α−1

Γ(α)
f (θ, x(θ), λ1x(γ1θ))dθ

−
tα−1

Γ(α)
(x0 + β

∫ T

0
h(θ, xs(θ), λ2xs(γ2θ))dθ) −

∫ t

0

(t − θ)α−1

Γ(α)
f (θ, xs(θ), λ1xs(γ1θ))dθ

+
tα−1

Γ(α)
(x0 + β

∫ T

0
h(θ, xs(θ), λ2xs(γ2θ))dθ) +

∫ t

0

(t − θ)α−1

Γ(α)
f (θ, xs(θ), λ1xs(γ1θ))dθ − xs(t)|

≤ δ + |
β tα−1

Γ(α)

∫ T

0
h(θ, x(θ), λ2x(γ2θ))dθ +

∫ t

0

(t − θ)α−1

Γ(α)
f (θ, x(θ), λ1x(γ1θ))dθ

AIMS Mathematics Volume 10, Issue 3, 4970–4991.



4983

−
β tα−1

Γ(α)

∫ T

0
h(θ, xs(θ), λ2xs(γ2θ))dθ −

∫ t

0

(t − θ)α−1

Γ(α)
f (θ, xs(θ), λ1xs(γ1θ))dθ|

≤ δ +
β tα−1

Γ(α)

∫ T

0
|h(θ, x(θ), λ2x(γ2θ)) − h(θ, xs(θ), λ2xs(γ2θ))|dθ

+

∫ t

0

(t − θ)α−1

Γ(α)
| f (θ, x(θ), λ1x(γ1θ)) − f (θ, xs(θ), λ1xs(γ1θ))|dθ

≤ δ +
β tα−1

Γ(α)

∫ T

0
(K(|x(θ) − xs(θ)| + λ2|x(γ2θ) − xs(γ2θ)|))dθ

+

∫ t

0

(t − θ)α−1

Γ(α)
(L(|x(θ) − xs(θ)| + λ1|x(γ1θ) − xs(γ1θ)|))dθ,

and then ∫ T

0
|x(t) − xs(t)|dt

≤

∫ T

0
[δ +

β tα−1

Γ(α)

∫ T

0
(K(|x(θ) − xs(θ)| + λ2|x(γ2θ) − xs(γ2θ)|))dθ

+

∫ t

0

(t − θ)α−1

Γ(α)
(L(|x(θ) − xs(θ)| + λ1|x(γ1θ) − xs(γ1θ)|))dθ]dt

≤ δ T +

∫ T

0

β tα−1

Γ(α)
dt
∫ T

0
(K(|x(θ) − xs(θ)| + λ2|x(γ2θ) − xs(γ2θ)|))dθ

+

∫ T

0

∫ T

θ

(t − θ)α−1

Γ(α)
(L(|x(θ) − xs(θ)| + λ1|x(γ1θ) − xs(γ1θ)|))dtdθ

≤ δ T +
β Tα

Γ(α + 1)

∫ T

0
(K(|x(θ) − xs(θ)| + λ2|x(γ2θ) − xs(γ2θ)|))dθ

+

∫ T

0

Tα

Γ(α + 1)
L(|x(θ) − xs(θ)| + λ1|x(γ1θ) − xs(γ1θ)|)dθ

≤ δ T +
β Tα

Γ(α + 1)
K(
∫ T

0
|x(θ) − xs(θ)|dθ + λ2

∫ T

0
|x(γ2θ) − xs(γ2θ)|dθ)

+
Tα

Γ(α + 1)
L(
∫ T

0
|x(θ) − xs(θ)|dθ + λ1

∫ T

0
|x(γ1θ) − xs(γ1θ)|dθ)

≤ δ T +
β Tα

Γ(α + 1)
K(
∫ T

0
|x(θ) − xs(θ)|dθ +

λ2

γ2

∫ T

0
|x(τ) − xs(τ)|dτ)

+
Tα

Γ(α + 1)
L(
∫ T

0
|x(θ) − xs(θ)|dθ +

λ1

γ1

∫ T

0
|x(τ) − xs(τ)|dτ)

≤ δ T +
β Tα

Γ(α + 1)
K(‖x − xs‖1 +

λ2

γ2
‖x − xs‖1)

+
Tα

Γ(α + 1)
L(‖x − xs‖1 +

λ1

γ1
‖x − xs‖1)

≤ T +
Tα

Γ(α + 1)
‖x − xs‖1(β K +

βλ2K
γ2

+ L +
Lλ1

γ1
),
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‖x − xs‖1 ≤
δ T

1 − Tα

Γ(α+1) (L(1 + λ1
γ1

) + β K(1 + λ2
γ2

))
.

Thus

‖x − xs‖1 ≤ ε.

4. Examples

Example 1. Consider the following fractional-order-pantograph differential equation:

RD
1
5 x(t) =

e−t

t + 1
+

1
8

(x(t) +
1
2

x(
1
4

t)), a.e. t ∈ (0, 3] (4.1)

subject to the nonlocal and weighted pantograph integral constraints

I
4
5 x(t)|t=0 =

1
7

+
1
6

∫ 3

0
(

s
s2 + 1

sins +
1
4

(x(s) +
1
3

x(
1
5

s)))ds (4.2)

or

t
4
5 x(t)|t=0 =

1
Γ( 1

5 )
(
1
7

+
1
6

∫ 3

0
(

s
s2 + 1

sins +
1
4

(x(s) +
1
3

x(
1
5

s)))ds). (4.3)

This problem can be expressed by the fractional-order integral equation

x(t) =
t
−4
5

Γ( 1
5 )

(
1
7

+
1
6

∫ 3

0
(

s
s2 + 1

sins +
1
4

(x(s) +
1
3

x(
1
5

s)))ds) + I
1
5

e−t

t + 1
+

1
8

(x(t) +
1
2

x(
1
4

t)). (4.4)

Set

f (t, x(t), λ1x(γ1t)) =
e−t

t + 1
+

1
8

(x(t) +
1
2

x(
1
4

t)),

| f (t, x, y)| ≤
1

t + 1
+

1
8

(|x| + |y|).

Similarly,

h(t, x(t), λ2x(γ2t)) =
t

t2 + 1
sint +

1
4

(x(t) +
1
3

x(
1
5

t)),

|h(t, x, y)| ≤
t

t2 + 1
+

1
4

(|x| + |y|),

where

a1(t) =
1

t + 1
and ‖a1‖ =

∫ 3

0

1
s + 1

ds = ln(4),

a2(t) =
t

t2 + 1
and ‖a2‖ =

∫ 3

0

s
s2 + 1

ds =
ln(10)

2
.

Now, we have T = 3, α = 1
5 , x0 = 1

7 , λ1 = 1
2 , γ1 = 1

4 , λ2 = 1
3 , γ2 = 1

5 , β = 1
6 , L = 1

8 , K = 1
4 , and r =

6.85831695596841.
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Then
Tα

Γ(α + 1)
(L(1 +

λ1

γ1
) + β K(1 +

λ2

γ2
)) = 0.6595341610293 < 1.

Now all the conditions of Theorem 1 are satisfied, and then the problems (4.1) and (4.2) or (4.1)
and (4.3) have at least one solution x ∈ L1[0, 3]. Moreover,

| f (t, x, y) − f (t, x̄, ȳ| ≤
1
8

(|x − x̄| + |y − ȳ|), (4.5)

|h(t, x, y) − h(t, x̄, ȳ| ≤
1
4

(|x − x̄| + |y − ȳ|), ∀ t ∈ I, x, y ∈ R.

Then the solution of the problems (4.1) and (4.2) or (4.1) and (4.3) is unique.
Example 2. Consider the following fractional order-pantograph differential equation:

RD
1
2 x(t) =

e−tsint
1 + 10t

+
1
12

(x(t) +
1

12
x(

1
8

t)), a.e. t ∈ (0,
1
2

] (4.6)

subject to the nonlocal and weighted pantograph integral constraints

I
1
2 x(t)|t=0 =

1
8

+
1

16

∫ 1
2

0
(
sins

7
+

1
9

(x(s) +
1
9

x(
1
3

s)))ds, (4.7)

or

t
1
2 x(t)|t=0 =

1
Γ(1

2 )
(
1
8

+
1

16

∫ 1
2

0
(
sins

7
+

1
9

(x(s) +
1
9

x(
1
3

s)))ds). (4.8)

This problem can be expressed by the fractional-order integral equation

x(t) =
t
−1
2

Γ( 1
2 )

(
1
8

+
1

16

∫ 1
2

0
(
sins

7
+

1
9

(x(s) +
1
9

x(
1
3

s))ds) + I
1
2

e−tsint
1 + 10t

+
1

12
(x(t) +

1
12

x(
1
8

t)). (4.9)

Set
f (t, x(t), λ1x(γ1t)) =

e−tsint
1 + 10t

+
1

12
(x(t) +

1
12

x(
1
8

t)),

| f (t, x, y)| ≤
1

1 + 10t
+

1
12

(|x| + |y|).

Also
h(t, x(t), λ2x(γ2t)) =

sint
7

+
1
9

(x(t) +
1
9

x(
1
3

t)),

|h(t, x, y)| ≤
1
7

+
1
9

(|x| + |y|),

where

a1(t) =
1

1 + 10t
and ‖a1‖ =

∫ 1
2

0

1
1 + 10s

ds =
ln(6)
10

,

a2(t) =
1
7

and ‖a2‖ =

∫ 1
2

0

1
7

ds =
1
14
.
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Now, we have T = 1
2 , α = 1

2 , x0 = 1
8 , λ1 = 1

12 , γ1 = 1
8 , λ2 = 1

9 , γ2 = 1
3 , β = 1

16 , L = 1
12 , K =

1
9 , and r = 0.39494809573195.

Then
Tα

Γ(α + 1)
(L(1 +

λ1

γ1
) + β K(1 +

λ2

γ2
)) = 0.118205120118943 < 1.

Now all the conditions of Theorem 1 are satisfied, then and the problems (4.6) and (4.7) or (4.6)
and (4.8) have at least one solution x ∈ L1[0, 1

2 ]. Moreover,

| f (t, x, y) − f (t, x̄, ȳ| ≤
1

12
(|x − x̄| + |y − ȳ|), (4.10)

|h(t, x, y) − h(t, x̄, ȳ| ≤
1
9

(|x − x̄| + |y − ȳ|), ∀ t ∈ I, x, y ∈ R.

Then the solution of problems (4.6) and (4.7) or (4.6) and (4.8) is unique.
Example 3. Consider the following fractional-order pantograph differential equation:

RD
1
4 x(t) =

e−t

8 − t
+

1
14

(x(t) +
1
2

x(
1
5

t)), a.e. t ∈ (0, 1] (4.11)

subject to the nonlocal and weighted pantograph integral constraints

I
3
4 x(t)|t=0 =

1
9

+
1
6

∫ 1

0
(s2e−scos2s +

1
6

(x(s) +
1
7

x(
1
3

s)))ds, (4.12)

or

t
3
4 x(t)|t=0 =

1
Γ(1

4 )
(
1
9

+
1
6

∫ 1

0
(s2e−scos2s +

1
6

(x(s) +
1
7

x(
1
3

s)))ds). (4.13)

This problem can be expressed by the fractional-order integral equation

x(t) =
t
−3
4

Γ(1
4 )

(
1
9

+
1
6

∫ 1

0
(s2e−scos2s +

1
6

(x(s) +
1
7

x(
1
3

s)))ds) + I
1
4

e−t

8 − t
+

1
14

(x(t) +
1
2

x(
1
5

t)). (4.14)

Set
f (t, x(t), λ1x(γ1t)) =

e−t

8 − t
+

1
14

(x(t) +
1
2

x(
1
5

t)),

| f (t, x, y)| ≤
1

8 − t
+

1
14

(|x| + |y|),

and
h(t, x(t), λ2x(γ2t)) = t2e−tcos2t +

1
6

(x(t) +
1
7

x(
1
3

)),

|h(t, x, y)| ≤ t2 +
1
6

(|x| + |y|),

where

a1(t) =
1

8 − t
and ‖a1‖ =

∫ 1

0

1
8 − s

ds = ln(8) − ln(7),

AIMS Mathematics Volume 10, Issue 3, 4970–4991.



4987

a2(t) = t2 and ‖a2‖ =

∫ 1

0
s2ds =

1
3
.

Now, we have T = 1, α = 1
4 , x0 = 1

9 , λ1 = 1
2 , γ1 = 1

5 , λ2 = 1
7 , γ2 = 1

3 , β = 1
6 , L = 1

14 , K = 1
6 , and r =

0.486765614502368.
Then

Tα

Γ(α + 1)
(L(1 +

λ1

γ1
) + β K(1 +

λ2

γ2
)) = 0.331197306814979 < 1.

Now all the conditions of Theorem 1 are satisfied, then and the problems (4.11) and (4.12) or (4.11)
and (4.13) have at least one solution x ∈ L1[0, 1]. Moreover,

| f (t, x, y) − f (t, x̄, ȳ| ≤
1

14
(|x − x̄| + |y − ȳ|), (4.15)

|h(t, x, y) − h(t, x̄, ȳ| ≤
1
6

(|x − x̄| + |y − ȳ|), ∀ t ∈ I, x, y ∈ R.

Then the solution of the problems (4.11) and (4.12) or (4.11) and (4.13) is unique.
Example 4. Consider the following fractional-order pantograph differential equation:

RD
1

10 x(t) =
1 + 2t

15
+

1
9

(
x2(t)

1 + |x(t)|
+

e−tsinx( 1
4 t)

3
), a.e. t ∈ (0, 1] (4.16)

subject to the nonlocal and weighted pantograph integral constraints

I
9
10 x(t)|t=0 =

1
6

+
1
4

∫ 1

0
(
e−5ssin(5(s + 1))

5 − s
+

1
16

(ln(1 + |x(s)|) +
1
2

x( 1
2 s)

1 + |x( 1
2 s)|

))ds, (4.17)

or

t
9

10 x(t)|t=0 =
1

Γ( 1
10 )

(
1
6

+
1
4

∫ 1

0
(
e−5ssin(5(s + 1))

5 − s
+

1
16

(ln(1 + |x(s)|) +
1
2

x(1
2 s)

1 + |x( 1
2 s)|

))ds). (4.18)

This problem can be expressed by the fractional-order integral equation

x(t) =
t
−9
10

Γ( 1
10 )

(
1
6

+
1
4

∫ 1

0
(
e−5ssin(5(s + 1))

5 − s
+

1
16

(ln(1 + |x(s)|) +
1
2

x( 1
2 s)

1 + |x( 1
2 s)|

))ds)

+ I
1
10

1 + 2t
15

+
1
9

(
x2(t)

1 + |x(t)|
+

e−tsinx(1
4 t)

3
). (4.19)

Set

f (t, x(t), λ1x(γ1t)) =
1 + 2t

15
+

1
9

(
x2(t)

1 + |x(t)|
+

e−tsinx( 1
4 t)

3
),

| f (t, x, y)| ≤ 1 + 2t +
1
9

(|x| + |y|).

Also

h(t, x(t), λ2x(γ2t)) =
e−5tsin(5(t + 1))

5 − t
+

1
16

(ln(1 + |x(t)|) +
1
2

x(1
2 t)

1 + |x(1
2 t)|

),
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|h(t, x, y)| ≤
1

5 − t
+

1
16

(|x| + |y|),

where

a1(t) = 1 + 2t and ‖a1‖ =

∫ 1

0
(1 + 2s)ds = 2,

a2(t) =
1

5 − t
and ‖a2‖ =

∫ 1

0

1
5 − s

ds = ln(5) − ln(4).

Now, we have T = 1, α = 1
10 , x0 = 1

6 , λ1 = 1
3 , γ1 = 1

4 , λ2 = 1
2 , γ2 = 1

2 , β = 1
4 , L = 1

9 , K =
1
16 , and r = 3.36281387755.
Then

Tα

Γ(α + 1)
(L(1 +

λ1

γ1
) + β K(1 +

λ2

γ2
)) = 0.3053650330255 < 1.

Now all the conditions of Theorem 1 are satisfied, then and the problems (4.16) and (4.17) or (4.16)
and (4.18) have at least one solution x ∈ L1[0, 1].

5. Conclusions

Fractional-order derivatives, which extend the concept of classical derivatives to non-integer
orders, can raise a variety of theoretical and practical problems. Several theoretical frameworks and
methodologies are used to establish the existence and uniqueness of fractional differential equation
solutions. Stability analysis is a broad and diverse field with strong theoretical foundations and various
applications in engineering, economics, biology, physics, and other disciplines. Hyers-Ulam stability
assesses a problem’s resilience to interruptions, while continuous dependency analyzes how modest
parameter changes impact the problem’s unique solution. In this investigation, the Riemann-Liouville
fractional-order pantograph differential equation is constrained by nonlocal and weighted pantograph
integral equations. We discussed the existence of an integrable solution of the Riemann-Liouville
fractional-order differential equation (1.1) subject to each one of the nonlocal and weighted pantograph
integral constraints (1.2) or (1.3) by applying the technique of Schauder’s fixed point theorem and
Kolmogorov’s compactness criterion. Moreover, we established sufficient conditions to guarantee the
uniqueness of the solution. We also studied the continuous dependence on the functions f , h and
the parameters λi, i = 1, 2. Moreover, we thoroughly investigated the Hyers-Ulam stability of the
constrained problems (1.1) and (1.2) or (1.1) and (1.3). Finally, some examples were provided to
illustrate our results.
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