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1. Introduction

Consider the Ky Fan k-norm regularized convex matrix optimization problem as follows:

min
X∈Rm×n

h(AX) + ⟨C, X⟩ + ∥X∥(k),

s.t. BX − b ∈ P,
(1.1)

where h : Rd → R is a twice continuously differentiable function on dom h, which is also strictly
convex, A : Rm×n → Rd and B : Rm×n → Rl are two linear operators with m ≤ n, C ∈ Rm×n and b ∈ Rl
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are given data, P ⊆ Rl is a nonempty convex polyhedral cone, ∥ · ∥(k) denotes the matrix Ky Fan k-norm
for an integer k ∈ [1,m], i.e., the sum of k largest singular values of a given matrix. In particular, when
k = 1, ∥ · ∥(1) coincides with the spectral norm function ∥ · ∥2, i.e., the largest singular values of matrices;
when k = m, ∥ · ∥(m) is exactly the nuclear norm function ∥ · ∥∗, namely, the sum of singular value of
matrices. It is well known that problem (1.1) has a wide range of applications in various fields, such as
matrix Chebyshev polynomials [1], H∞ synthesis problems [2, 3], control problems [4], deep learning
and neural networks problems [5,6], matrix completion and rank minimization problems [7,8], matrix
approximation problems [9], and fastest mixing Markov chain problems [10], etc.

Given the extensive application background of Problem (1.1), efficiently solving such problems
has become a significant research focus. Stability analysis theory plays a crucial role in the
convergence analysis of optimization algorithms [11–13]. Therefore, it is essential to study the
stability properties of Ky Fan k-norm regularized optimization problems. Several studies in the
existing literature have explored the stability analysis of Ky Fan k-norm regularized optimization
problems. For example, Ding [14] studied the variational properties of the Ky Fan k-norm, laying the
foundation for analyzing the optimality conditions and stability theory of Ky Fan k-norm regularized
problems. Ding [15] provided a series of equivalent characterizations of the strong regularity of the
KKT system for linear matrix cone programming involving the Ky Fan k-norm. Liu and Pan [16]
gave sufficient conditions for the locally upper Lipschitz property of the KKT system for cone
optimization problems induced by the Ky Fan k-norm epigraph. However, research on other stability
properties, such as the characterization of isolated calmness, remains insufficiently comprehensive
and mature. Therefore, this paper innovatively provides a comprehensive set of equivalent
characterizations of the isolated calmness of the KKT mapping (ICKKTM) for Ky Fan k-norm
regularized optimization problems.

The isolated calmness (see Definition 2.1), as one of the most important stability properties, can
sometimes guarantee a linear convergence rate for some algorithms, rather than the generic sublinear
rate, such as the alternating direction method of multipliers [17] and the proximal augmented
Lagrangian method [18]. Numerous research works have been devoted to discovering the sufficient
and even necessary conditions for the ICKKTM for optimization problems (cf. e.g., [16, 19–21]). It is
highly worth mentioning that in [21], Ding, Sun, and Zhang studied the robust ICKKTM for a large
class of conic programming problems (when the constraint sets are C2-cone reducible), they proved
that the KKT mapping is robustly isolated calm if and only if both the SRCQ and the SOSC hold. In
addition, based on the special linear structure of problem (1.1) and its Lagrangian dual problem, more
characterizations of the ICKKTM can be given from the dual perspective. For instance, Han, Sun and
Zhang [22] found that for the convex composite quadratic semidefinite programming problem, the
primal (dual) SRCQ and the dual (primal) SOSC are equivalent. Furthermore, they obtained five
equivalent characterizations of the ICKKTM. Similarly, for the nuclear norm regularized convex
optimization problem, Cui and Sun [23] also proved that the primal (dual) SRCQ is equivalent to the
dual (primal) SOSC, thereby deriving a series of equivalent conditions of the ICKKTM. Motivated
by [23], a natural question emerges: that is, whether the conclusions regarding the nuclear norm
regularized problem can be extended to the Ky Fan k-norm regularized problem. We will give a
positive answer in this paper.

Compared to existing works, the contributions of this paper are summarized as follows.

1) We originally discovered an ingenious relationship among the critical cone of the Ky Fan k-norm
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function, the critical cone of its conjugate, and the “sigma term,” which has not been mentioned
in the existing literature. This relationship is essential for deriving the main results of this paper.
Although the mathematical derivation is not excessively complex, it represents a novel and
important finding.

2) We derived a more comprehensive set of equivalent characterizations of the ICKKTM for Ky Fan
k-norm regularized convex optimization problems from the dual perspective, thereby enriching
the stability analysis theory of Ky Fan k-norm regularized optimization problems.

3) The newly derived equivalent conditions are easier to verify in practical computations, which can
enhance the feasibility of algorithm design for solving related problems.

4) The Ky Fan k-norm regularized optimization problem studied in this paper is a broader class than
the nuclear norm regularized optimization problem. Therefore, the results we obtained have wider
applications.

The content of this paper is organized as below. In Section 2, we provide some notations and
preliminaries on the variational analysis of the Ky Fan k-norm function. We explore the connection
among the critical cones of the Ky Fan k-norm and its conjugate function as well as the “sigma term”
in Section 3, which forms the most essential part of this paper. In Section 4, we demonstrate that
the primal (dual) SRCQ and the dual (primal) SOSC are equivalent. Furthermore, we obtain several
equivalent characterizations for the ICKKTM. We conclude this paper in Section 5.

Below, we present some basic notations and symbols for matrices.

• For any positive integer t, we denote by [t] the index set {1, · · · , t}. For any Z ∈ Rm×n, the (i, j)-th
entry of Z is denoted as Zi j, where i ∈ [m], j ∈ [n]. Let µ ⊆ [m] and ν ⊆ [n] be two index sets.
We use Zν to represent the sub-matrix of Z, which is obtained by retaining only all columns in ν,
and use Zµν to represent the sub-matrix of Z, which is obtained by retaining only all rows in µ and
columns in ν.
• For any d ∈ Rm, Diag(d) represents the m×m diagonal matrix, where the i-th diagonal element is

di, i ∈ [m].
• Let “trace” represent the sum of diagonal elements in a given square matrix. For any two matrices

M and N in Rm×n, the inner product of M and N is written as ⟨M,N⟩ := trace(MT N).
• Denote by Sw the linear space consisting of all w × w real symmetric matrices, and denote by Sw

+

and Sw
− the cones of all w × w positive and negative semidefinite matrices, respectively.

2. Preliminaries

Let X and Y be two finite-dimensional real Euclidean spaces. We use the “X ⇒ Y” to denote a
set-valued mapping from X to Y [24, Page 148]. Let D ⊆ X be a non-empty closed convex set. For
any s ∈ D, the tangent cone (cf. [24, Definition 6.1]) of D at s is defined by
TD(s) :=

{
d ∈ X|∃sk → s with sk ∈ D and τk ↓ 0 s.t. (sk − s)/τk → d

}
. For a given x ∈ X, we define

ΠD(x) := arg min {∥d − x∥|d ∈ D} as the projection mapping onto D. For any closed convex cone
K ⊂ Y, denote by K◦ := {s ∈ Y|⟨s, z⟩ ≤ 0,∀z ∈ K} the polar of K. Given ρ > 0 and z ∈ X, define the
ball Bρ(z) := {z′ ∈ X | ∥z′ − z∥ ≤ ρ}. Given that f : X → (−∞,∞] is a proper closed convex function,
we use f ∗ to represent the conjugate of f and ∂ f to represent the subdifferential of f . For the sake of
convenience, we denote by θ the Ky Fan k-norm function in the subsequent text, i.e., θ(·) := ∥ · ∥(k).
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The following definition of isolated calmness, taken from [21, Definition 2], is the most important
concept in this paper.

Definition 2.1. The set-valued mapping Φ : X ⇒ Y is said to be isolated calm at ū for v̄ if v̄ ∈ Φ(ū)
and there exist a positive constant κ and neighborhoodsU of ū andV of v̄ such that

Φ(u) ∩V ⊂ {v̄} + κ∥u − ū∥BY ∀u ∈ U. (2.1)

Moreover, we say that Φ is robustly isolated calm at ū for v̄ if (2.1) holds and for each u ∈ U,
Φ(u) ∩V , ∅.

For any closed convex function l : X → (−∞,+∞], it is known from [25, Proposition 2.58] that l is
directionally epidifferentiable. We use l↓(x; ·) to represent the directional epiderivatives of l. Moreover,
if l↓(x; d) is finite for x ∈ dom l and d ∈ X, we define the lower second-order directional epiderivative
of l for any w ∈ X by

l↓↓− (x; d,w) := lim inf
τ↓0

w′→w

l(x + τd + 1
2τ

2w′) − l(x) − τl↓(x; d)
1
2τ

2
.

Let W ∈ Rm×n be any matrix and Op be the set of all p × p orthogonal matrices. We use σ1(W) ≥
σ2(W) ≥ · · · ≥ σm(W) to denote the singular values of W with multiplicity being taken into account.
Define σ(W) := (σ1(W), σ2(W), · · · , σm(W))T and Σ(W) := Diag (σ(W)). Suppose that W ∈ Rm×n has
the singular value decomposition (SVD) as follows:

W = U[Σ(W) 0]VT = U[Σ(W) 0][V1 V2]T = UΣ(W)VT
1 , (2.2)

where U ∈ Om and V = [V1 V2] ∈ On with V1 ∈ R
n×m and V2 ∈ R

n×(n−m). Define three index sets as
follows:

a := {i ∈ [m] | σi(W) > 0}, b := {i ∈ [m] | σi(W) = 0}, c := {m + 1, . . . , n}. (2.3)

We know from [26, Theorem 31.5] that (P,Q) is a solution of the generalized equation

0 ∈ −P + ∂θ(Q) ⇐⇒ 0 ∈ −Q + ∂θ∗(P),

if and only if
P − Proxθ(P + Q) = 0 ⇐⇒ Q − Proxθ∗(P + Q) = 0,

where Proxθ : Rm×n → Rm×n and Proxθ∗ : Rm×n → Rm×n are the Moreau-Yosida proximal mappings of
θ (cf., e.g., [27, Definition 6.1]) and θ∗, respectively, i.e.,

Proxθ(Y) := arg min
Y′∈Rm×n

{
θ(Y ′) +

1
2
∥Y ′ − Y∥2

}
, Y ∈ Rm×n.

Let W = P + Q, and assume that W admits the SVD as in (2.2). By [27, Theorem 7.29 and
Example 7.31], we know that

P = U[Σ(P) 0]VT , Q = U[Σ(Q) 0]VT .

AIMS Mathematics Volume 10, Issue 3, 4955–4969.



4959

Denote σ = σ(P) and q = σ(Q). According to [14, Lemma 3], we know that if σk > 0, there exist two
integers 0 ≤ s0 ≤ k − 1 and k ≤ s1 ≤ m such that

σ1 ≥ . . . ≥ σs0 > σs0+1 = . . . = σk = . . . = σs1 > σs1+1 ≥ . . . ≥ σm ≥ 0.

Then,
qi = 1, if i ∈ α; 0 ≤ qi ≤ 1, if i ∈ β and

∑
i∈β

qi = k − s0; qi = 0, if i ∈ γ,

where
α = {1, . . . , s0}, β = {s0 + 1, . . . , s1}, γ = {s1 + 1, . . . ,m}. (2.4)

If σk = 0, there exists an integer 0 ≤ s0 ≤ k − 1 such that

σ1 ≥ . . . ≥ σs0 > σs0+1 = . . . = σk = . . . = σm = 0.

Then,
qi = 1, if i ∈ α; 0 ≤ qi ≤ 1, if i ∈ β and

∑
i∈β

qi ≤ k − s0,

where
α = {1, . . . , s0}, β = {s0 + 1, . . . ,m}. (2.5)

For convenience, we subdivide the index set β into three index sets:

β1 := {i ∈ β | qi = 1}, β2 := {i ∈ β | 0 < qi < 1}, β3 := {i ∈ β | qi = 0}. (2.6)

Let P ∈ ∂θ(Q) (or equivalently Q ∈ ∂θ∗(P)). Define the critical cone of θ at P with respect to Q as

Cθ(P,Q) = {D ∈ Rm×n | θ′(P; D) = ⟨Q,D⟩}.

Likewise, define the critical cone of θ∗ at Q with respect to P as

Cθ∗(Q, P) = {D ∈ Rm×n | (θ∗)′(Q; D) = ⟨D, P⟩}.

For any two matrices Y,Z ∈ Rm×n, according to the well-known von Neumann’s trace inequality [28],
we have the following result:

⟨Y,Z⟩ ≤ σ(Y)Tσ(Z). (2.7)

For any two matrices Y,Z ∈ Sp, by Fan’s inequality [29], we have that

⟨Y,Z⟩ ≤ λ(Y)Tλ(Z), (2.8)

where λ(Y) represents the eigenvalue vector of Y with its elements arranged in non-increasing order.
For the sake of notational convenience, for any integer p > 0, we define a linear matrix operator

S : Rp×p → Sp by

S (N) :=
1
2

(N + NT ).

As the principal tools for the subsequent analysis, we need to utilize the characterizations of the
subdifferential of θ, the critical cones of θ and its conjugate function, as well as the characterization of
the sigma term being zero. These contents have already been provided in [14]. We summarize them as
follows.
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Lemma 2.1. Given P,Q ∈ Rm×n. Suppose that P ∈ ∂θ(Q) and W = P + Q admit the SVD as in (2.2).
For any D ∈ Rm×n, denote D̃ = UT DV. Then D ∈ Cθ(P,Q) is equivalent to the subsequent conditions:

(i) If σk(P) > 0, then there exists some τ ∈ R such that

λ|β1 |(S (D̃β1β1)) ≥ τ ≥ λ1(S (D̃β3β3))

and

S (D̃ββ) =


S (D̃β1β1) 0 0

0 τI|β2 | 0
0 0 S (D̃β3β3)

 ,
where I|β2 | is the |β2| × |β2| identity matrix.

(ii) If σk(P) = 0 and ∥Q∥∗ = k, then there exists some τ ≥ 0 such that

λ|β1 |(S (D̃β1β1)) ≥ τ ≥ σ1

(
[D̃bb D̃bc]

)
and [

D̃ββ D̃βc

]
=


S (D̃β1β1) 0 0 0

0 τI|β2 | 0 0
0 0 D̃bb D̃bc

 .
(iii) If σk(P) = 0 and ∥Q∥∗ < k, then S (D̃β1β1) ∈ S

|β1 |
+ and

[
D̃ββ D̃βc

]
=

 S (D̃β1β1) 0 0 0
0 0 0 0
0 0 0 0

 .
Lemma 2.2. Given P,Q ∈ Rm×n. Suppose that Q ∈ ∂θ∗(P) and W = P + Q admit the SVD as in (2.2).
Assume that ∥Q∥∗(k) = 1, where ∥ · ∥∗(k) denote the dual norm of ∥ · ∥(k). For any D ∈ Rm×n, denote
D̃ = UT DV. Then D ∈ Cθ∗(Q, P) is equivalent to the subsequent conditions:

(i) If σk(P) > 0, then trace(D̃ββ) = 0,

S (D̃α∪β1α∪β1) =
[

0 0
0 S (D̃β1β1)

]
with S (D̃β1β1) ∈ S

|β1 |
−

and [
D̃β3β3 D̃β3γ D̃β3c

D̃γβ3 D̃γγ D̃γc

]
=

[
S (D̃β3β3) 0 0

0 0 0

]
with S (D̃β3β3) ∈ S

|β3 |
+ ;

(ii) If σk(P) = 0 and ∥Q∥∗ = k, then trace(D̃β1∪β2β1∪β2) +
∥∥∥[D̃bb D̃bc]

∥∥∥
∗
≤ 0,

S (D̃α∪β1α∪β1) =
[

0 0
0 S (D̃β1β1)

]
with S (D̃β1β1) ∈ S

|β1 |
− ;

(iii) If σk(P) = 0 and ∥Q∥∗ < k, then

S (D̃α∪β1α∪β1) =
[

0 0
0 S (D̃β1β1)

]
with S (D̃β1β1) ∈ S

|β1 |
− .
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Since the Ky Fan k-norm function θ is convex and Lipschitz continuous, and the singular value
function in Rm×m is second-order directionally differentiable [30, Theorem 3.1], the lower second-
order directional epiderivative of θ coincides with the parabolic second-order directional derivative of
θ, i.e., for any P ∈ Rm×n, θ↓↓− (P; ·) = θ′′(P; ·). For any given P ∈ ∂θ(Q), ∀D ∈ Rm×n, denote

ψ∗(P,D)(Q) := (θ′′(P; D, ·))∗(Q)

as the conjugate of θ′′(P; D, ·) at Q. This can be regarded as the “sigma term” of problem (1.1).
Similarly, we denote

ϕ∗(Q,D)(P) := ((θ∗)′′(Q; D, ·))∗(P)

as the conjugate of (θ∗)′′(Q; D, ·) at P.
Ding [14, Proposition 16] provides the properties of the “sigma term” as well as the equivalent

characterizations in the case where the “sigma term” equals 0, which are presented as follows:

Lemma 2.3. Given that P = ∂θ(Q). For any D ∈ Rm×n, denote D̃ = UT DV = [D̃1 D̃2] with
D̃1 ∈ R

m×m and D̃2 ∈ R
m×(n−m). Then, ψ∗(P,D)(Q) ≤ 0, ϕ∗(Q,D)(P) ≤ 0. Moreover,

ψ∗(P,D)(Q) = 0 ⇐⇒ ϕ∗(Q,D)(P) = 0,

which is also equivalent to the subsequent conditions:

(i) If σk(P) > 0,

D̃ =


S (D̃1)αα S (D̃1)αβ1 0 0 0 0
S (D̃1)β1α S (D̃1)β1β1 S (D̃1)β1β2 S (D̃1)β1β3 0 0

0 S (D̃1)β2β1 S (D̃1)β2β2 S (D̃1)β2β3 0 0
0 S (D̃1)β3β1 S (D̃1)β3β2 D̃β3β3 D̃β3γ D̃β3c

0 0 0 D̃γβ3 D̃γγ D̃γc


.

(ii) If σk(P) = 0,

D̃ =


S (D̃1)αα S (D̃1)αβ1 0 0 0
S (D̃1)β1α D̃β1β1 D̃β1β2 D̃β1b D̃β1c

0 D̃β2β1 D̃β2β2 D̃β2b D̃β2c

0 D̃bβ1 D̃bβ2 D̃bb D̃bc

 .
3. The properties of critical cones

In this section, we present the relationships among the critical cone of the Ky Fan k-norm function,
the critical cone of its conjugate, and the “sigma term”, which are of vital significance in this paper.

Proposition 3.1. Assume that W ∈ Rm×n has the SVD as in (2.2). Denote P = Proxθ(W) and Q =
Proxθ∗(W). Suppose the index sets α, β, γ, β1, β2, β3, b, c are defined by (2.3), (2.4) or (2.5) and (2.6).
For any D ∈ Rm×n, denote D̃ = UT DV. Then the following conclusions hold:

(i) If σk(P) > 0, then ϕ∗(Q,D)(P) = 0 and D ∈ Cθ∗(Q, P) imply that D ∈ (Cθ(P,Q))◦.
(ii) If σk(P) = 0, ∥Q∥∗ = k, then ϕ∗(Q,D)(P) = 0 and D ∈ Cθ∗(Q, P) imply that D ∈ (Cθ(P,Q))◦.

AIMS Mathematics Volume 10, Issue 3, 4955–4969.



4962

(iii) If σk(P) = 0, ∥Q∥∗ < k, then ϕ∗(Q,D)(P) = 0 and D ∈ Cθ∗(Q, P) ⇐⇒ D ∈ (Cθ(P,Q))◦.

Proof. Consider the following three cases.
Case 1. σk(P) > 0. If ϕ∗(Q,D)(P) = 0 and D ∈ Cθ∗(Q, P), by part (i) of Lemma 2.2 and part (i) of
Lemma 2.3, we can obtain that

D̃ =


0 0 0 0 0 0
0 S (D̃β1β1) S (D̃1)β1β2 S (D̃1)β1β3 0 0
0 S (D̃1)β2β1 S (D̃β2β2) S (D̃1)β2β3 0 0
0 S (D̃1)β3β1 S (D̃1)β3β2 S (D̃β3β3) 0 0
0 0 0 0 0 0


(3.1)

and
S (D̃β1β1) ∈ S

|β1 |
− , S (D̃β3β3) ∈ S

|β3 |
+ and trace(D̃ββ) = 0. (3.2)

For any H ∈ Cθ(P,Q), from part (i) of Lemma 2.1, ∃τ ∈ ℜ s.t.

λ|β1 |(S (H̃β1β1)) ≥ τ ≥ λ1(S (H̃β3β3))

and

S (H̃ββ) =


S (H̃β1β1) 0 0

0 τI|β2 | 0
0 0 S (H̃β3β3)

 .
Thus, ∀H ∈ Cθ(P,Q) and D satisfies (3.1) and (3.2), according to Fan’s inequality (2.8), we have that

⟨H,D⟩ = ⟨H̃, D̃⟩ = ⟨H̃ββ, D̃ββ⟩ = ⟨H̃ββ, S (D̃ββ)⟩ = ⟨S (H̃ββ), D̃ββ⟩

= ⟨S (H̃β1β1), D̃β1β1⟩ + τtrace(D̃β2β2) + ⟨S (H̃β3β3), D̃β3β3⟩

≤ (λ(S (H̃β1β1)))
Tλ(D̃β1β1) + τtrace(D̃β2β2) + (λ(S (H̃β3β3)))

Tλ(D̃β3β3)

= (−λ(S (H̃β1β1)))
T (−λ(D̃β1β1)) + τtrace(D̃β2β2) + (λ(S (H̃β3β3)))

Tλ(D̃β3β3)

≤ τtrace(D̃β1β1) + τtrace(D̃β2β2) + τtrace(D̃β3β3)

= τtrace(D̃ββ)

= 0.

This implies that D ∈ (Cθ(P,Q))◦. The proof of the part (i) is complete.
Case 2. σk(P) = 0, ∥Q∥∗ = k. If ϕ∗(Q,D)(P) = 0 and D ∈ Cθ∗(Q, P), according to part (ii) of Lemma 2.2
and part (ii) of Lemma 2.3, we have that

D̃ =


0 0 0 0 0
0 D̃β1β1 D̃β1β2 D̃β1b D̃β1c

0 D̃β2β1 D̃β2β2 D̃β2b D̃β2c

0 D̃bβ1 D̃bβ2 D̃bb D̃bc

 (3.3)

and
S (D̃β1β1) ∈ S

|β1 |
− and trace(D̃β1∪β2β1∪β2) +

∥∥∥[D̃bb D̃bc]
∥∥∥
∗
≤ 0. (3.4)
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Therefore, ∀H ∈ Cθ(P,Q), based on part (ii) of Lemma 2.1, we know that there exists τ ≥ 0 such that

λ|β1 |(S (H̃β1β1)) ≥ τ ≥ σ1

(
[H̃bb H̃bc]

)
and [

H̃ββ H̃βc

]
=


S (H̃β1β1) 0 0 0

0 τI|β2 | 0 0
0 0 H̃bb H̃bc

 .
Hence, ∀H ∈ Cθ(P,Q) and D satisfies (3.3) and (3.4), by von Neumann’s trace inequality (2.7), we
have that

⟨H,D⟩ = ⟨H̃, D̃⟩ = ⟨H̃ββ, D̃ββ⟩ + ⟨H̃βc, D̃βc⟩

= ⟨S (H̃β1β1), S (D̃β1β1)⟩ + τtrace(D̃β2β2) + ⟨[H̃bb H̃bc], [D̃bb D̃bc]⟩

≤ (λ(S (H̃β1β1)))
Tλ(S (D̃β1β1)) + τtrace(D̃β2β2) + (σ([H̃bb H̃bc]))Tσ([D̃bb D̃bc])

= (−λ(S (H̃β1β1)))
T (−λ(S (D̃β1β1))) + τtrace(D̃β2β2) + (σ([H̃bb H̃bc]))Tσ([D̃bb D̃bc])

≤ τtrace(D̃β1β1) + τtrace(D̃β2β2) + τ
∥∥∥[D̃bb D̃bc]

∥∥∥
∗

≤ 0.

This means that D ∈ (Cθ(P,Q))◦. The proof of the part (ii) is complete.
Case 3. σk(P) = 0, ∥Q∥∗ < k. According to part (iii) of Lemma 2.2 and part (ii) of Lemma 2.3, we
know that ϕ∗(Q,D)(P) = 0 and D ∈ Cθ∗(Q, P) hold if and only if S (D̃β1β1) ∈ S

|β1 |
− and

D̃ =


0 0 0 0 0
0 D̃β1β1 D̃β1β2 D̃β1b D̃β1c

0 D̃β2β1 D̃β2β2 D̃β2b D̃β2c

0 D̃bβ1 D̃bβ2 D̃bb D̃bc

 .
In view of part (iii) of Lemma 2.1, this is equivalent to D ∈ (Cθ(P,Q))◦. This completes the proof. □

Remark 3.1. The conclusions in the converse directions of (i) and (ii) in Proposition 3.1 are not
always valid. That is because when the parameter τ within Cθ(P,Q) equals 0, we are unable to obtain
the conditions such as trace(D̃ββ) = 0 or trace(D̃β1∪β2β1∪β2) +

∥∥∥[D̃bb D̃bc]
∥∥∥
∗
≤ 0. However, there is a

situation where the conditions ϕ∗(Q,D)(P) = 0 and D ∈ Cθ∗(Q, P) are equivalent to D ∈ (Cθ(P,Q))◦ in
Proposition 3.1 when the index set β2 is empty. In particular, when k = m, that is, when θ is the nuclear
norm function, Cui and Sun [23, Proposition 4.2] have already presented this equivalent property.

By exchanging the positions of Cθ(P,Q) and Cθ∗(Q, P) in the above proposition, we can obtain the
following similar yet enhanced results.

Proposition 3.2. Assume that W ∈ Rm×n has the SVD as in (2.2). Denote P = Proxθ(W) and Q =
Proxθ∗(W). Suppose the index sets α, β, γ, β1, β2, β3, b, c are defined by (2.3), (2.4) or (2.5), and (2.6).
For any D ∈ Rm×n, denote D̃ = UT DV. Then the subsequent two conditions are equivalent:

(i) ψ∗(P,D)(Q) = 0 and D ∈ Cθ(P,Q).
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(ii) D ∈ (Cθ∗(Q, P))◦.

Proof. Case 1. σk(P) > 0. “(i) =⇒ (ii)”. It is easy to verify ψ∗(P,D)(Q) = 0 and D ∈ Cθ(P,Q) are
equivalent to

D̃ =


S (D̃1)αα S (D̃1)αβ1 0 0 0 0
S (D̃1)β1α S (D̃1)β1β1 0 0 0 0

0 0 τI|β2 | 0 0 0
0 0 0 D̃β3β3 D̃β3γ D̃β3c

0 0 0 D̃γβ3 D̃γγ D̃γc


, (3.5)

where τ is some real number that satisfies

λ|β1 |(S (D̃β1β1)) ≥ τ ≥ λ1(S (D̃β3β3)). (3.6)

Hence, for any D that satisfies (3.5) and (3.6), ∀H ∈ Cθ∗(Q, P), i.e., trace(H̃ββ) = 0,

S (H̃α∪β1α∪β1) =
[

0 0
0 S (H̃β1β1)

]
with S (H̃β1β1) ∈ S

|β1 |
−

and [
H̃β3β3 H̃β3γ H̃β3c

H̃γβ3 H̃γγ H̃γc

]
=

[
S (H̃β3β3) 0 0

0 0 0

]
with S (H̃β3β3) ∈ S

|β3 |
+ ,

we have that

⟨H,D⟩ = ⟨H̃, D̃⟩ = ⟨H̃β1β1 , S (D̃β1β1)⟩ + ⟨H̃β2β2 , τI|β2 |⟩ + ⟨S (H̃β3β3), D̃β3β3⟩

= ⟨H̃, D̃⟩ = ⟨H̃β1β1 , S (D̃β1β1)⟩ + ⟨H̃β2β2 , τI|β2 |⟩ + ⟨H̃β3β3 , S (D̃β3β3)⟩

≤ (λ(S (D̃β1β1)))
Tλ(H̃β1β1) + τtrace(H̃β2β2) + (λ(S (D̃β3β3)))

Tλ(H̃β3β3)

= (−λ(S (D̃β1β1)))
T (−λ(H̃β1β1)) + τtrace(H̃β2β2) + (λ(S (D̃β3β3)))

Tλ(H̃β3β3)

≤ τtrace(H̃β1β1) + τtrace(H̃β2β2) + τtrace(H̃β3β3)

= τtrace(H̃ββ)

= 0.

This means that D ∈ (Cθ∗(Q, P))◦. Through reversing the prior arguments, it is possible to prove the
converse of this statement.
Case 2. σk(P) = 0, |Q∥∗ = k. Obviously, both (i) and (ii) are equivalent to

D̃ =


S (D̃1)αα S (D̃1)αβ1 0 0 0
S (D̃1)β1α S (D̃β1β1) 0 0 0

0 0 τI|β2 | 0 0
0 0 0 D̃bb D̃bc

 ,
where τ ≥ 0 and satisfies

λ|β1 |(S (D̃β1β1)) ≥ τ ≥ σ1

(
[D̃bb D̃bc]

)
.
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This result can be obtained in a similar way as in part (ii) of proposition 3.1. For simplicity, the detailed
proof is omitted here.
Case 3. σk(P) = 0, |Q∥∗ < k. According to part (iii) of Lemma 2.1, part (iii) of Lemma 2.2, and
part (ii) of Lemma 2.3, we obtain that either ψ∗(P,D)(Q) = 0 with D ∈ Cθ(P,Q) or D ∈ (Cθ∗(Q, P))◦ is
equivalent to S (D̃β1β1) ∈ S

|β1 |
+ and

D̃ =


S (D̃1)αα S (D̃1)αβ1 0 0 0
S (D̃1)β1α S (D̃β1β1) 0 0 0

0 0 0 0 0
0 0 0 0 0

 .
The proof is complete. □

4. Equivalent conditions

In this section, from the dual perspective, we will establish several equivalent characterizations of
the robust ICKKTM for problem (1.1). The key tools we use are Propositions 3.1 and 3.2. Indeed,
when k = m, the similar results have already been provided in [23]. As a result, we will only make a
brief statement here.

The Lagrangian dual of problem (1.1) is presented below:

max
y,w,S

−⟨b, y⟩ − δP◦(y) − h∗(w),

s.t. B∗y + A∗w + S +C = 0, ∥S ∥∗(k) ≤ 1,
(4.1)

where (y,w, S ) ∈ Rl × Rd × Rm×n, B∗ and A∗ represent the adjoint of B and A, respectively. The KKT
conditions for problem (1.1) and problem (4.1) are given by

A∗∇h(AX) +C + S + B∗y = 0,

P◦ ∋ y ⊥ BX − b ∈ P,

S ∈ ∂θ(X),

(X, y, S ) ∈ Rm×n × Rl × Rm×n (4.2)

and 
B∗y + A∗w + S +C = 0,

P◦ ∋ y ⊥ BX − b ∈ P,

AX ∈ ∂h∗(w), X ∈ ∂θ∗(S ),

(y,w, S , X) ∈ Rl × Rd × Rm×n × Rm×n, (4.3)

respectively. We useMP(X) ⊆ Rl × Rm×n to represent the set of Lagrangian multipliers with respect to
X for problem (1.1), namely,MP(X) := {(y, S ) ∈ Rl × Rm×n | (X, y, S ) satisfies (4.2)}. We denote by
MD(y,w, S ) the set of Lagrangian multipliers with respect to (y,w, S ) for problem (4.1), i.e.,
MD(y,w, S ) := {X ∈ Rm×n | (y,w, S , X) satisfies (4.3)}. Let (y, z) ∈ Rl × Rl satisfy P◦ ∋ y ⊥ z ∈ P.
Define the critical cone of P at z for y as CP(z, y) := TP(z) ∩ y⊥ and the critical cone of P◦ at y for z as
CP◦(y, z) := TP◦(y) ∩ z⊥, respectively.

Let X ∈ Rm×n be an optimal solution of problem (1.1) and (ȳ, S ) ∈ MP(X). The primal SOSC is
said to hold at X with respect to (ȳ, S ) if

⟨AD,∇2h(AX)AD⟩ − ψ∗
(X,D)

(S ) > 0, ∀D ∈ C(X)\{0}, (4.4)
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where C(X) := CP(BX−b, ȳ)∩Cθ(X, S ). We say that the primal SRCQ holds at X with respect to (ȳ, S ),
if (

B
IRm×n

)
Rm×n +

(
CP(BX − b, ȳ)
Cθ(X, S )

)
=

(
Rl

Rm×n

)
. (4.5)

Similarly, let (ȳ, w̄, S ) ∈ Rl × Rd × Rm×n be an optimal solution of problem (4.1) and X ∈ MD(ȳ, w̄, S ).
We say that the dual SOSC holds at (ȳ, w̄, S ) with respect to X, if

⟨Hw, (∇h∗)′(w̄; Hw)⟩ − φ∗
(S ,HS )

(X) > 0, ∀(Hy,Hw,HS ) ∈ C(ȳ, w̄, S )\{0}, (4.6)

where C(ȳ, w̄, S ) is the critical cone defined as

C(ȳ, w̄, S ) :=
{

(Dy,Dw,DS ) ∈ Rl × Rd × Rm×n |
B∗Dy + A∗Dw + DS = 0,

Dy ∈ CP◦(ȳ, BX − b), DS ∈ Cθ∗(S , X)

}
.

The dual SRCQ is said to hold at (ȳ, w̄, S ) with respect to X if

A∗Rd + B∗CP◦(ȳ, BX − b) + Cθ∗(S , X) = Rm×n. (4.7)

The KKT conditions (4.2) for problem (1.1) can be equivalently expressed as the nonsmooth equation

G(X, y, S ) = 0,

where G : Rm×n × Rl × Rm×n → Rm×n × Rl × Rm×n is defined by

G(X, y, S ) :=


A∗∇h(AX) +C + S + B∗y

BX − b − ΠP(BX − b + y)

X − Proxθ(X + S )

 , (X, y, S ) ∈ Rm×n × Rl × Rm×n.

Denote the KKT mapping for problem (1.1) by

S KKT(δ) := {(X, y, S ) ∈ Rm×n × Rl × Rm×n | G(X, y, S ) = δ}.

The Robinson constraint qualification (RCQ) is said to hold at X ∈ Rm×n for problem (1.1) if

BRm×n + TP(BX − b) = Rl. (4.8)

At this point, we are fully prepared to present the most crucial conclusion within this paper, namely, a
series of equivalent characterizations of the ICKKTM for problem (1.1).

Theorem 4.1. Let X ∈ Rm×n and (ȳ, w̄, S ) ∈ Rl × Rd × Rm×n be optimal solutions of problem (1.1)
and (4.1), respectively. Assume that (ȳ, S ) ∈ MP(X), X ∈ MD(ȳ, w̄, S ) and the RCQ (4.8) holds at X.
Then the subsequent conditions are equivalent:

(a) The KKT mapping S KKT is robustly isolated calm at the origin for (X, ȳ, S ).
(b) The primal SOSC (4.4) holds at X for (ȳ, S ) and the primal SRCQ (4.5) holds at X for (ȳ, S ).
(c) The primal SOSC (4.4) holds at X for (ȳ, S ) and the dual SOSC (4.6) holds at (ȳ, w̄, S ) for X.
(d) The dual SRCQ (4.7) holds at (ȳ, w̄, S ) for X and the dual SOSC (4.6) holds at (ȳ, w̄, S ) for X.
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(e) The dual SRCQ (4.7) holds at (ȳ, w̄, S ) for X and the primal SRCQ (4.5) holds at X for (ȳ, S ).

Proof. Since the Ky Fan k-norm function ∥·∥(k) isC2-cone reducible [15, Proposition 4.3], “(a)⇐⇒ (b)”
can be directly derived from [23, Proposition 3.3]. Besides, by Proposition 3.1 and [31, Theorem 4.1],
we can obtain that the primal SRCQ (4.5) and the dual SOSC (4.6) are equivalent. Then we have
“(b) ⇐⇒ (c)”. Similarly, the equivalence of the primal SOSC (4.4) and the dual SRCQ (4.7) can also
be derived from Proposition 3.2 and [23, Theorem 5.1]. It follows that “(b)⇐⇒ (e)” and “(c)⇐⇒ (d)”.
In summary, we can conclude that “(a)⇐⇒ (b)⇐⇒ (c)⇐⇒ (d)⇐⇒ (e)”. □

Remark 4.1. Although the conditions ϕ∗(Q,D)(P) = 0 and D ∈ Cθ∗(Q, P) in Proposition 3.1 are not
always equivalent to D ∈ (Cθ(P,Q))◦, this does not affect the equivalence between the primal
SRCQ (4.5) and the dual SOSC (4.6) in the proof of the above theorem. For further details, one may
refer to [31, Theorem 4.1].

5. Conclusions

This paper focuses on establishing a more comprehensive set of equivalent conditions of the robust
ICKKTM for Ky Fan k-norm regularized convex matrix optimization problems. In other words, we
extend the results for nuclear norm regularized convex optimization problems in [23] to Ky Fan
k-norm regularized convex optimization problems. Among the newly obtained equivalent conditions,
the SRCQ is more easily verified than the SOSC. Therefore, the results presented in this paper not
only enrich the stability analysis theory of the Ky Fan k-norm regularized convex optimization
problems but also enhance the feasibility of designing related algorithms. The most crucial point is
the establishment of Propositions 3.1 and 3.2. Therefore, exploring what kind of θ, that is, seeking the
axiomatic properties of θ satisfying the results in Propositions 3.1 and 3.2, is a topic of our future
interest. Additionally, integrating these theoretical results into algorithm design to efficiently solve
optimization problems remains one of our future research directions.
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