In the present paper, for a unital $ C^* $-algebra A, we introduce a version of $ \alpha_A $-admissible on $ C^* $-algebra-valued b-metric space, we proved some Banach and common fixed point theorems using $ \alpha_A $-admissible. Also, we give some non-trivial examples and an application to illustrate our results.
Citation: Saleh Omran, Ibtisam Masmali. $ \alpha $-Admissible mapping in $ C^{*} $-algebra-valued b-metric spaces and fixed point theorems[J]. AIMS Mathematics, 2021, 6(9): 10192-10206. doi: 10.3934/math.2021590
In the present paper, for a unital $ C^* $-algebra A, we introduce a version of $ \alpha_A $-admissible on $ C^* $-algebra-valued b-metric space, we proved some Banach and common fixed point theorems using $ \alpha_A $-admissible. Also, we give some non-trivial examples and an application to illustrate our results.
[1] | G. Abd-Elhamed, Fixed point results for $(\beta, \alpha)$-implicit contractions in two generalized b-metric spaces, J. Nonlinear Sci. Appl., 14 (2021), 39-47. |
[2] | A. Abdou, Y. Cho, R. Saadati, Distance type and common fixed point theorems in Menger probabilistic metric type spaces, Appl. Math. Comput., 265 (2015), 1145-1154. |
[3] | H. H. Alsulami, R. P. Agarwal, E. Karapinar, F. Khojaseh, A short note on $C^*$-valued contraction mappings, J. Inequalities Appl., 2016 (2016), 50. doi: 10.1186/s13660-016-0992-5 |
[4] | C. M. R. Andre, C. B. R. Martine, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Arn. Math. Soc, 132 (2003), 1435-1443. doi: 10.1090/S0002-9939-03-07220-4 |
[5] | S. Antal, U. C. Gairola, Generalized Suzuki type $\alpha-Z$-contraction in b-metric space, J. Nonlinear Sci. Appl., 13 (2020), 212-222. doi: 10.22436/jnsa.013.04.06 |
[6] | F. Borceux, J. Rosicky, G. Van den Bossche, Quantales and $C^*$-algebras, J. London Math. Soc., 40 (1989), 398-404. |
[7] | R. Chaharpashlou, D. O'Regan, C. Park, R. Saadati, $C^*$-Algebra valued fuzzy normed spaces with application of Hyers-Ulam stability of a random integral equation, Adv. Diff. Equ-Ny, 326 (2020). |
[8] | S. Chandok, D. Kumar, C. Park, $C^*$-Algebra-valued partial metric spaces and fixed point theorems, Proc. Indian Acad. Sci. (Math. Sci.), 129 (2019), 37. doi: 10.1007/s12044-019-0481-0 |
[9] | l. Ciric, V. Paraneh, N. Hussain, Fixed point results for weakly $\alpha$-Admissible pairs, Filomat, 30 (2016), 3697-3713. doi: 10.2298/FIL1614697C |
[10] | M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b-Simulation functions, Iranian J. Math. Sci. Inf., 11 (2016), 123. |
[11] | I. Gelfand, On the embedding of normed rings into the ring of operators in Hilbert space, Math. Sb., 12 (1943), 197-213. |
[12] | N. Hussain, A. M. Al-Solami, M. A. Kutbi, Fixed points $\alpha$-Admissible mapping in cone b-metric space over Bansch algebra, J. Math. Anal., (2017), 89-97. |
[13] | Z. Kadelburg, S. Radenovic, Fixed point result in $C^*$-algebra-valued metric space are direct consequences of their standard metric counterparts, Fixed Point Theory Appl., 2016 (2016), 53. doi: 10.1186/s13663-016-0544-1 |
[14] | C. Kongban, Po. Kumam, Quadruple random common fixed point results of generalized Lipschitz mappings in cone b-metric spaces over Banach algebras, J. Nonlinear Sci. Appl., 11 (2018), 131-149. |
[15] | D. Kruml, J. W. Pelletier, P. Resende, J. Rosicky, On quantales and spectra of $C^*$-algebras, Appl. Categ. Structures, 11 (2003), 543-560. doi: 10.1023/A:1026106305210 |
[16] | D. Kruml, P. Resende, On quantales that classify $C^*$-algebras, Cah. Topol. Geom. Differ. Categ., 45 (2004), 287-296. |
[17] | P. Lohawech, A. Kaewcharoen, Fixed point theorems for generalized JS-quasi contractions in complete partial b-metric spaces, J. Nonlinear Sci. Appl., 12 (2019), 728-739. doi: 10.22436/jnsa.012.11.04 |
[18] | Z. Ma, L. Jiang, H. Sun, $C^*$-algebra-valued metric space and related fixed point theorems, Fixed Point Theory Appl., 2014 (2014), 206. doi: 10.1186/1687-1812-2014-206 |
[19] | Z. Ma, L. Jiang, $C^*$-algebra-valued b-metric space and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 222. doi: 10.1186/s13663-015-0471-6 |
[20] | S. K. Malhotra, J. B. Sharma, S. Shukla, Fixed point of $\alpha$- admissible mapping in cone metric spaces with Banach algebra, Int. J. Anal. Appl., 9 (2015), 9-18. |
[21] | L. Mishra, V. Dewangan, V. Mishra, S. Karateke, Best proximity points of admissible almost generalized weakly contractive mappings with rational expressions on b-metric spaces, J. Math. Comput. Sci., 22 (2021), 97-109. |
[22] | N. Mlaiki, M. Asim, M. Imdad, $C^*$-algebra valued partial metric spaces and fixed point results with an application, Mathematics, 8 (2020), 1381. doi: 10.3390/math8081381 |
[23] | C. J. Mulvey, Suppl. Rend. Circ. Mat. Palermo Ser., 12 (1986), 99-104. |
[24] | G. J. Murphy, $C^*$-algebras and operator theory, Academic press, Inc, Boston, MA, 1990. |
[25] | R. Mustafa, S. Omran, Q. N. Nguyen, Fixed point theory using $\psi$ contractive mapping in algebra valued b-metric space, Mathematics, 9 (2021), 92. doi: 10.3390/math9010092 |
[26] | O. Ozer, S. Omran, Common fixed point in $C^*$-algebra-b-valued metric space, AIP conference proceeding, 1773 (2015), 05000. |
[27] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. doi: 10.1016/j.na.2011.10.014 |
[28] | B. Samet, The class of $(\alpha, \psi)$-type contractions in b-metric space and fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 92. doi: 10.1186/s13663-015-0344-z |
[29] | S. Sherman, Order in operator algebra, Amer. J. Math, 73 (1951), 227-232. |
[30] | T, Suzuki, Fixed point theorems for single- and set-valued F-contractions in b-metric spaces, J. Fixed Point Theory Appl., 20 (2018), 35. doi: 10.1007/s11784-018-0519-4 |
[31] | T, Suzuki, Basic inequality on a b-metric space and its applications, Suzuki J. Inequalities Appl., 2017 (2017), 256. doi: 10.1186/s13660-017-1528-3 |
[32] | J. Vujakovic, S. Mitrovic, Z. Mitrovic, S. Radenovic, On $F$-Contractions for Weak Admissible Mappings in Metric-Like Spaces, Mathematics, 8 (2020), 1629. doi: 10.3390/math8091629 |
[33] | Xi. Wu, L. Zhao, Fixed point theorems for generalized $\alpha- \psi $ type contractive mappings in b-metric spaces and applications, J. Math. Computer Sci., 18 (2018), 49-62. |
[34] | Q. Xin, L. Jiang, Z. Ma, Common fixed point theorems in $C^*$-algebra-valued metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 4617-4627. doi: 10.22436/jnsa.009.06.100 |
[35] | H. Yan, B. Yi-duo, S. Chang-ji, Some new theorems of $\alpha$-admissible mappings on c-distance in cone metric spaces over Banach algebras, IOP Conf., 563 (2019), 052021. |
[36] | L. Ye, C. Shen, Weakly (s, r)-contractive multi-valued operators on b-metric space, J. Nonlinear Sci. Appl., 11 (2018), 358-367. doi: 10.22436/jnsa.011.03.04 |