Research article

Some fixed point results for $ \alpha $-admissible extended $ \mathcal{Z} $-contraction mappings in extended rectangular $ b $-metric spaces

  • Received: 08 August 2021 Accepted: 16 November 2021 Published: 06 December 2021
  • MSC : 47H10, 54H25

  • In this paper, we introduce $ \alpha $-admissible extended $ \mathcal{Z} $-contraction in the extended rectangular $ b $-metric spaces, then we provide some other conditions in Theorem 3.1, which are different from that in Chifu et al. [1], and obtain the existence and uniqueness of fixed point in such spaces. Moreover, some examples are given to show the validity of our main theorems, and we give some corollaries related to our main results. As an application, we apply our main results to solve the existence of solutions for a class of boundary value problems of second order ordinary differential equations.

    Citation: Yan Sun, Xiao-lan Liu, Jia Deng, Mi Zhou. Some fixed point results for $ \alpha $-admissible extended $ \mathcal{Z} $-contraction mappings in extended rectangular $ b $-metric spaces[J]. AIMS Mathematics, 2022, 7(3): 3701-3718. doi: 10.3934/math.2022205

    Related Papers:

  • In this paper, we introduce $ \alpha $-admissible extended $ \mathcal{Z} $-contraction in the extended rectangular $ b $-metric spaces, then we provide some other conditions in Theorem 3.1, which are different from that in Chifu et al. [1], and obtain the existence and uniqueness of fixed point in such spaces. Moreover, some examples are given to show the validity of our main theorems, and we give some corollaries related to our main results. As an application, we apply our main results to solve the existence of solutions for a class of boundary value problems of second order ordinary differential equations.



    加载中


    [1] C. Chifu, E. Karapınar, On contraction via similation functions on extended $b$-metric sapces, Miskolc Math. Notes, 21 (2020), 127–141. doi: 10.18514/mmn.2020.2871. doi: 10.18514/mmn.2020.2871
    [2] S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11.
    [3] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Func. An. Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37.
    [4] V. Berinde, Generalized contractions in quasimetric spaces, Seminar Fixed Point Theory, 3 (1993), 3–9.
    [5] D. Gopal, P. Agarwal, P. Kumam, Metric structures and fixed point theory, 1 Ed., New York: Chapman and Hall/CRC, 2021. doi: 10.1201/9781003139607.
    [6] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in $b$-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153–2163. doi: 10.1007/s11784-016-0400-2. doi: 10.1007/s11784-016-0400-2
    [7] E. Karapınar, A short survey on the recent fixed point results on $b$-metric spaces, Constr. Math. Anal., 1 (2018), 15–44. doi: 10.33205/cma.453034. doi: 10.33205/cma.453034
    [8] A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math., 57 (2000), 31–37.
    [9] T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 1–7. doi: 10.3390/math5020019. doi: 10.3390/math5020019
    [10] B. Alqahtani, A. Fulga, E. Karapınar, Common fixed point results on an extended $b$-metric space, J. Inequal. Appl., 2018 (2018), 1–15. doi: 10.1186/s13660-018-1745-4. doi: 10.1186/s13660-018-1745-4
    [11] B. Alqahtani, A. Fulga, E. Karapınar, Non-unique fixed point results in extended $b$-metric space, Mathematics, 6 (2018), 1–11. doi: 10.3390/math6050068. doi: 10.3390/math6050068
    [12] B. Alqahtani, A. Fulga, E. Karapınar, V. Rakočević, Contractions with rational inequalities in the extended $b$-metric space, J. Inequal. Appl., 2019 (2019), 1–11. doi: 10.1186/s13660-019-2176-6. doi: 10.1186/s13660-019-2176-6
    [13] Z. D. Mitrovi, H. Işık, S. Radenović, The new results in extended $b$-metric spaces and applications, Int. J. Nonlinear Anal. Appl., 11 (2020), 473–482. doi: 10.22075/ijnaa.2019.18239.1998. doi: 10.22075/ijnaa.2019.18239.1998
    [14] M. Asim, M. Imdad, S. Radenović, Fixed point resuls in extended rectangular $b$-metric spaces with an application, U.P.B. Sci. Bull., Series A, 81 (2019), 43–50.
    [15] T. Abdeljawad, E. Karapınar, S. K. Panda, N. Mlaiki, Solutions of boundary value problems on extended-Branciari $b$-distance, J. Inequal. Appl., 2020 (2020), 1–16. doi: 10.1186/s13660-020-02373-1. doi: 10.1186/s13660-020-02373-1
    [16] R. Jain, H. K. Nashine, R. George, Z. D. Mitrović, On extended Branciari $b$-distance spaces and applications to fractional differential equations, J. Funct. Space., 2021 (2021), 1–10. doi: 10.1155/2021/9949147. doi: 10.1155/2021/9949147
    [17] K. Rana, A. K. Garg, Kannan-type fixed point results in extended rectangular $b$-metric spaces, Adv. Math., 9 (2020), 5491–5499. doi: 10.37418/amsj.9.8.19. doi: 10.37418/amsj.9.8.19
    [18] B. Nurwahyu, M. S. Khan, N. Fabiano, S. Radenović, Common fixed point on generalized weak contraction mappings in extended rectangular $b$-metric spaces, Filomat, 2021.
    [19] H. Aydi, Z. D. Mitrović, S. Radenović, M. De La Sen, On a common Jungck type fixed point result in extended rectangular $b$-metric spaces, Axioms, 9 (2020), 1–6. doi: 10.3390/axioms9010004. doi: 10.3390/axioms9010004
    [20] F. Khojasteh, S. Shukla, S. Redenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194. doi: 10.2298/fil1506189k. doi: 10.2298/fil1506189k
    [21] O. Alqahtani, E. Karapınar, A bilateral contraction via simulation function, Filomat, 33 (2019), 4837–4843. doi: 10.2298/FIL1915837A. doi: 10.2298/FIL1915837A
    [22] M. Cvetković, E. Karapınar, V. Rakočević, Fixed point results for admissible $\mathcal{Z}$-contractions, Fixed Point Theory, 19 (2018), 515–526. doi: 10.24193/fpt-ro.2018.2.41. doi: 10.24193/fpt-ro.2018.2.41
    [23] M. A. Alghamdi, S. Gulyaz-Ozyurt, E. Karapınar, A note on extended $\mathcal{Z}$-contraction, Mathematics, 8 (2020), 1–14. doi: 10.3390/math8020195. doi: 10.3390/math8020195
    [24] R. Alsubaie, B. Alqahtani, E. Karapınar, A. F. R. L. De Hierro, Extended simulation function via rational expressions, Mathematics, 8 (2020), 1–29. doi: 10.3390/math8050710. doi: 10.3390/math8050710
    [25] R. George, S. Radenović, K. P. Reshma, S. Shukla, Rectangular $b$-metric space and contraction principles, J. Nonlinear Sci. Appl., 8 (2015), 1005–1013. doi: 10.22436/jnsa.008.06.11. doi: 10.22436/jnsa.008.06.11
    [26] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal.-Theor., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014. doi: 10.1016/j.na.2011.10.014
    [27] O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014), 1–12. doi: 10.1186/1687-1812-2014-190. doi: 10.1186/1687-1812-2014-190
    [28] M. Arshad, E. Ameer, E. Karapınar, Generalized contractions with triangular $\alpha$-orbital admissible mapping on Branciari metric spaces, J. Inequal. Appl., 2016 (2016), 1–21. doi: 10.1186/s13660-016-1010-7. doi: 10.1186/s13660-016-1010-7
    [29] V. Berinde, Sequences of operators and fixed points in quasimetric spaces, Stud. Univ. Babes-Bolyai Math., 16 (1996), 23–27.
    [30] L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. doi: 10.1090/s0002-9939-1974-0356011-2. doi: 10.1090/s0002-9939-1974-0356011-2
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1836) PDF downloads(141) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog