In this paper, we introduce $ \alpha $-admissible extended $ \mathcal{Z} $-contraction in the extended rectangular $ b $-metric spaces, then we provide some other conditions in Theorem 3.1, which are different from that in Chifu et al. [
Citation: Yan Sun, Xiao-lan Liu, Jia Deng, Mi Zhou. Some fixed point results for $ \alpha $-admissible extended $ \mathcal{Z} $-contraction mappings in extended rectangular $ b $-metric spaces[J]. AIMS Mathematics, 2022, 7(3): 3701-3718. doi: 10.3934/math.2022205
In this paper, we introduce $ \alpha $-admissible extended $ \mathcal{Z} $-contraction in the extended rectangular $ b $-metric spaces, then we provide some other conditions in Theorem 3.1, which are different from that in Chifu et al. [
[1] | C. Chifu, E. Karapınar, On contraction via similation functions on extended $b$-metric sapces, Miskolc Math. Notes, 21 (2020), 127–141. doi: 10.18514/mmn.2020.2871. doi: 10.18514/mmn.2020.2871 |
[2] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[3] | I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Func. An. Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37. |
[4] | V. Berinde, Generalized contractions in quasimetric spaces, Seminar Fixed Point Theory, 3 (1993), 3–9. |
[5] | D. Gopal, P. Agarwal, P. Kumam, Metric structures and fixed point theory, 1 Ed., New York: Chapman and Hall/CRC, 2021. doi: 10.1201/9781003139607. |
[6] | R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in $b$-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153–2163. doi: 10.1007/s11784-016-0400-2. doi: 10.1007/s11784-016-0400-2 |
[7] | E. Karapınar, A short survey on the recent fixed point results on $b$-metric spaces, Constr. Math. Anal., 1 (2018), 15–44. doi: 10.33205/cma.453034. doi: 10.33205/cma.453034 |
[8] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math., 57 (2000), 31–37. |
[9] | T. Kamran, M. Samreen, Q. U. Ain, A generalization of $b$-metric space and some fixed point theorems, Mathematics, 5 (2017), 1–7. doi: 10.3390/math5020019. doi: 10.3390/math5020019 |
[10] | B. Alqahtani, A. Fulga, E. Karapınar, Common fixed point results on an extended $b$-metric space, J. Inequal. Appl., 2018 (2018), 1–15. doi: 10.1186/s13660-018-1745-4. doi: 10.1186/s13660-018-1745-4 |
[11] | B. Alqahtani, A. Fulga, E. Karapınar, Non-unique fixed point results in extended $b$-metric space, Mathematics, 6 (2018), 1–11. doi: 10.3390/math6050068. doi: 10.3390/math6050068 |
[12] | B. Alqahtani, A. Fulga, E. Karapınar, V. Rakočević, Contractions with rational inequalities in the extended $b$-metric space, J. Inequal. Appl., 2019 (2019), 1–11. doi: 10.1186/s13660-019-2176-6. doi: 10.1186/s13660-019-2176-6 |
[13] | Z. D. Mitrovi, H. Işık, S. Radenović, The new results in extended $b$-metric spaces and applications, Int. J. Nonlinear Anal. Appl., 11 (2020), 473–482. doi: 10.22075/ijnaa.2019.18239.1998. doi: 10.22075/ijnaa.2019.18239.1998 |
[14] | M. Asim, M. Imdad, S. Radenović, Fixed point resuls in extended rectangular $b$-metric spaces with an application, U.P.B. Sci. Bull., Series A, 81 (2019), 43–50. |
[15] | T. Abdeljawad, E. Karapınar, S. K. Panda, N. Mlaiki, Solutions of boundary value problems on extended-Branciari $b$-distance, J. Inequal. Appl., 2020 (2020), 1–16. doi: 10.1186/s13660-020-02373-1. doi: 10.1186/s13660-020-02373-1 |
[16] | R. Jain, H. K. Nashine, R. George, Z. D. Mitrović, On extended Branciari $b$-distance spaces and applications to fractional differential equations, J. Funct. Space., 2021 (2021), 1–10. doi: 10.1155/2021/9949147. doi: 10.1155/2021/9949147 |
[17] | K. Rana, A. K. Garg, Kannan-type fixed point results in extended rectangular $b$-metric spaces, Adv. Math., 9 (2020), 5491–5499. doi: 10.37418/amsj.9.8.19. doi: 10.37418/amsj.9.8.19 |
[18] | B. Nurwahyu, M. S. Khan, N. Fabiano, S. Radenović, Common fixed point on generalized weak contraction mappings in extended rectangular $b$-metric spaces, Filomat, 2021. |
[19] | H. Aydi, Z. D. Mitrović, S. Radenović, M. De La Sen, On a common Jungck type fixed point result in extended rectangular $b$-metric spaces, Axioms, 9 (2020), 1–6. doi: 10.3390/axioms9010004. doi: 10.3390/axioms9010004 |
[20] | F. Khojasteh, S. Shukla, S. Redenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194. doi: 10.2298/fil1506189k. doi: 10.2298/fil1506189k |
[21] | O. Alqahtani, E. Karapınar, A bilateral contraction via simulation function, Filomat, 33 (2019), 4837–4843. doi: 10.2298/FIL1915837A. doi: 10.2298/FIL1915837A |
[22] | M. Cvetković, E. Karapınar, V. Rakočević, Fixed point results for admissible $\mathcal{Z}$-contractions, Fixed Point Theory, 19 (2018), 515–526. doi: 10.24193/fpt-ro.2018.2.41. doi: 10.24193/fpt-ro.2018.2.41 |
[23] | M. A. Alghamdi, S. Gulyaz-Ozyurt, E. Karapınar, A note on extended $\mathcal{Z}$-contraction, Mathematics, 8 (2020), 1–14. doi: 10.3390/math8020195. doi: 10.3390/math8020195 |
[24] | R. Alsubaie, B. Alqahtani, E. Karapınar, A. F. R. L. De Hierro, Extended simulation function via rational expressions, Mathematics, 8 (2020), 1–29. doi: 10.3390/math8050710. doi: 10.3390/math8050710 |
[25] | R. George, S. Radenović, K. P. Reshma, S. Shukla, Rectangular $b$-metric space and contraction principles, J. Nonlinear Sci. Appl., 8 (2015), 1005–1013. doi: 10.22436/jnsa.008.06.11. doi: 10.22436/jnsa.008.06.11 |
[26] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal.-Theor., 75 (2012), 2154–2165. doi: 10.1016/j.na.2011.10.014. doi: 10.1016/j.na.2011.10.014 |
[27] | O. Popescu, Some new fixed point theorems for $\alpha$-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014), 1–12. doi: 10.1186/1687-1812-2014-190. doi: 10.1186/1687-1812-2014-190 |
[28] | M. Arshad, E. Ameer, E. Karapınar, Generalized contractions with triangular $\alpha$-orbital admissible mapping on Branciari metric spaces, J. Inequal. Appl., 2016 (2016), 1–21. doi: 10.1186/s13660-016-1010-7. doi: 10.1186/s13660-016-1010-7 |
[29] | V. Berinde, Sequences of operators and fixed points in quasimetric spaces, Stud. Univ. Babes-Bolyai Math., 16 (1996), 23–27. |
[30] | L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. doi: 10.1090/s0002-9939-1974-0356011-2. doi: 10.1090/s0002-9939-1974-0356011-2 |