
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(3): 3701–3718.
DOI: 10.3934/math.2022205
Received: 08 August 2021
Accepted: 16 November 2021
Published: 06 December 2021

Research article

Some fixed point results for α-admissible extendedZ-contraction mappings
in extended rectangular b-metric spaces

Yan Sun1, Xiao-lan Liu1,2,3,*, Jia Deng1 and Mi Zhou4

1 College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong,
Sichuan 643000, China

2 Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and
Internet of Things, Zigong, Sichuan 643000, China

3 South Sichuan Center for Applied Mathematics, Zigong, Sichuan 643000, China
4 School of Science and Technology, University of Sanya, Sanya, Hainan 572022, China

* Correspondence: Email: stellalwp@163.com.
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1. Introduction

Over the past decades, several generalizations of the standard metric have been made by researchers
in the field of fixed point theory. Distinct types generalized metric spaces possess different properties,
these spaces play important roles for the corresponding fixed point theorems by all kinds of
contractions. In 1993, Czerwik [2] introduced and studied b-metric spaces, which is an interesting
metric-type space. Indeed, this notion was considered earlier by different authors, e.g. Bakhtin [3],
Berinde [4] and so on. Some fixed point results in b-metric spaces were studied by many investigators
(for example, see [5–7] and references therein). In 2000, Branciari [8] defined a generalized metric by
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replacing the triangular inequality with more general inequality, namely, quadrilateral inequality. Note
that the generalized metric space is also announced as rectangular metric space or Branciari distance
space. In 2017, Kamran et al. [9] presented a type of generalized b-metric space and termed it as
extended b-metric spaces, by replacing the coefficient of b-metric with binary function. These kinds
of new spaces have inspired many authors, they got several fixed point results via certain contractive
conditions in extended b-metric spaces (for example, see [10–13] and references therein). In 2019,
Asim et al. [14] proposed a new type of metric space namely extended rectangular b-metric space, this
idea originated from combining [8] with [9]. They got some fixed point results in such spaces and
applied these results to solving the Fredholm integral equation. Recently, a few scholars have studied
extended rectangular b-metric spaces (for example, see [15–19] and references therein).

In 2015, an interesting results were raised by Khojasteh et al. [20] in which the notion of the Z-
contraction produced by simulation functions was defined. They proved the existence and uniqueness
of the fixed point of Z-contraction mappings in complete metric spaces. As a new generalization
of Banach contraction, it unified lots of famous nonlinear contractions in the fixed point theory. In
recent years, many investigators have studied such contraction conditions (for example, see [21–24]
and references therein). Very recently, Chifu et al. [1] presented the notion of an admissible extended
Z-contraction mappings and attained the fixed point results of an admissible extended Z-contraction
mappings in the setting of extended b-metric spaces.

Inspired by the above research results, we decided to further investigate the fixed point theory in
extended rectangular b-metric spaces. In this paper, we introduce α-admissible extendedZ-contraction
mappings in extended rectangular b-metric spaces, we utilize conditions different from Chifu et al. [1]
and get some fixed point results in such spaces. Finally, we give some examples and corollaries related
to our main results.

2. Preliminaries

In the beginning, we recall the basic definitions of some metric-type spaces, which will be used in
the following.

In 1993, Czerwik [2] formally proposed b-metric spaces.

Definition 2.1. [2] Let X be a non-empty set and s > 1 be a given real number. A function d : X×X →
[0,∞) is said to be a b-metric if it satisfies the following conditions:
(d1) d(x, y) = 0⇔ x = y;
(d2) d(x, y) = d(y, x), for all x, y ∈ X;
(d3) d(x, y) 6 s[d(x, z) + d(z, y)], for all x, y, z ∈ X.
Then (X, d) is said to be a b-metric space, and s is called the coefficient of b-metric.

In 2000, Branciari [8] defined a generalized metric by replacing the triangular inequality with
quadrilateral inequality.

Definition 2.2. [8] Let X be a non-empty set. A function dr : X×X → [0,∞) is said to be a rectangular
metric, for all x, y ∈ X and all distinct z,w ∈ X \ {x, y}, if it satisfies the following conditions:
(d1) dr(x, y) = 0⇔ x = y;
(d2) dr(x, y) = dr(y, x), for all x, y ∈ X;
(d3) dr(x, y) 6 dr(x, z) + dr(z,w) + dr(w, y).
Then (X, dr) is said to be a rectangular metric space.
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In 2017, Kamran et al. [9] presented extended b-metric space by replacing the coefficient of b-metric
with binary function θ.

Definition 2.3. [9] Let X be a non-empty set and θ : X × X → [1,∞). A function dθ : X × X → [0,∞)
is said to be an extended b-metric, if it satisfies the following conditions:
(dθ1) dθ(x, y) = 0⇔ x = y;
(dθ2) dθ(x, y) = dθ(y, x), for all x, y ∈ X;
(dθ3) dθ(x, y) 6 θ(x, y)[dθ(x, z) + dθ(z, y)], for all x, y, z ∈ X.
Then (X, dθ) is said to be an extended b-metric space with θ(x, y).

In 2019, Asim et al. [14] defined a new type of metric space namely extended rectangular b-metric
space, which can be considered as a generalization of extended b-metric space, this idea originated
from combining [8] with [9].

Definition 2.4. [14] Let X be a non-empty set and ξ : X×X → [1,∞). A function dξ : X×X → [0,∞)
is said to be an extended rectangular b-metric, for all x, y ∈ X and all distinct z,w ∈ X \ {x, y}, if dξ
satisfies the following conditions:
(dξ1) dξ(x, y) = 0⇔ x = y;
(dξ2) dξ(x, y) = dξ(y, x);
(dξ3) dξ(x, y) 6 ξ(x, y)[dξ(x, z) + dξ(z,w) + dξ(w, y)].
Then (X, dξ) is said to be an extended rectangular b-metric space.

Remark 2.1. If θ(x, y) = s for s > 1, then an extended b-metric reduced to a b-metric space [2]. If
ξ(x, y) = s for s > 1, then an extended rectangular b-metric becomes a rectangular b-metric [25]. The
relationship between these types of metric spaces can be found in [14].

Example 2.1. [14] Let X = {1, 2, 3, 4, 5}. Define ξ : X × X → [1,∞) by

ξ(x, y) = x + y + 1, for all x, y ∈ X.

Define dξ : X × X → [0,∞) by

dξ(x, x) = 0, for all x ∈ X;
dξ(x, y) = dξ(y, x), for all x, y ∈ X;
dξ(1, 3) = dξ(2, 5) = 70, dξ(1, 4) = 1000 and dξ(1, 5) = 2000;
dξ(1, 2) = dξ(2, 3) = dξ(3, 4) = 60, dξ(3, 5) = dξ(4, 5) = dξ(2, 4) = 400.

It’s obvious that dξ is an extended rectangular b-metric.

Remark 2.2. Note that, a b-metric is not a continuous function in general. For more details, refer
to Kamran et al. [9]. So, any combination of b-metric, including the extended b-metric, extended
rectangular b-metric is not continuous. For this reason, in the proofs, we do not use the continuity of
the distance function.

Some topological properties of extended rectangular b-metric spaces, such as Cauchy sequence,
convergence and completeness can be defined as follows:
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Definition 2.5. [14] Let (X, dξ) be an extended rectangular b-metric space.
(1) A sequence {xn} in X is said to be a Cauchy sequence if lim

n→∞
dξ(xn, xn+p) = 0, for all p ∈ N;

(2) A sequence {xn} in X is said to be convergent to x if lim
n→∞

dξ(xn, x) = 0;
(3) (X, dξ) is said to be complete if every Cauchy sequence in X convergent to some point in X.

Lemma 2.1. [14] Let (X, dξ) be an extended rectangular b-metric space and {xn} be a Cauchy sequence
such that xm , xn whenever m , n. Then {xn} converges at most one point.

In 2015, Khojasteh et al. [20] defined a new family of contractions by the following simulation
functions.

Definition 2.6. [20] Let ζ : R+ × R+ → R be a given mapping. Then ζ is called a simulation function
if it satisfies the following conditions:
(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(u, v) < v − u, for u, v > 0;
(ζ3) If {un}, {vn} are sequences in (0,∞) such that lim

n→∞
un = lim

n→∞
vn > 0, then

lim sup
n→∞

ζ(un, vn) < 0.

We denote the set of all simulation functions byZ.

Example 2.2. [20] Let ζi : R+ × R+ → R, i = 1, 2, 3, be defined as follows:

(1) ζ1(u, v) = λv − u for all u, v ∈ R+, where λ ∈ [0, 1);

(2) ζ2(u, v) = η(v) − ω(u) for all u, v ∈ R+, where η, ω : [0,∞) are two continuous functions such that
η(u) = ω(u) = 0 if and only if u = 0 and η(u) < u 6 ω(u) for all u > 0;

(3) ζ3(u, v) = v − ϕ(v) − u for all u, v ∈ R+, where ϕ : R+ → R+ is a continuous function such that
ϕ(u) = 0 if and only if u = 0.

Definition 2.7. [20] Let (X, d) be a metric space, T : X → X be a mapping and ζ ∈ Z. Then T is
called aZ-contraction with respect to ζ if the following condition holds:

ζ(d(T x,Ty), d(x, y)) > 0,

where x, y ∈ X, with x , y.

Theorem 2.1. [20] EveryZ-contraction on a complete metric space has a unique fixed point.

In 2012, α-admissible mappings firstly introduced by Samet et al. [26]. In 2014, Popescu [27]
raised the concepts of α-orbit admissible mappings and triangular α-orbit admissible mappings based
on α-admissible mappings. Later, some authors studied some fixed point results by using the concept
of triangular α-orbit admissible mappings (for example, see [7, 28]).

Definition 2.8. [27] Let T : X → X be a mapping and α : X × X → R+ be a function. Then T is said
to be α-orbit admissible if

α(x,T x) > 1⇒ α(T x,T 2x) > 1, for all x ∈ X.
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Definition 2.9. [27] Let T : X → X be a mapping and α : X × X → R+ be a function. Then T is said
to be triangular α-orbit admissible if it satisfies the following conditions:
(i) T is α-orbit admissible;
(ii) α(x, y) > 1 and α(y,Ty) > 1⇒ α(x,Ty) > 1, for all x, y ∈ X.
Obviously, every triangular α-orbit admissible mapping is also α-orbit admissible mapping.

In 2020, Chifu et al. [1] attained the fixed point results of α-admissible extended Z-contraction
mappings in extended b-metric spaces. Now, we recall the definition of (b)-comparison functions.

Definition 2.10. [29] Let s > 1 be a real number. A function φ : [0,∞) → [0,∞) is called a (b)-
comparison function, if it satisfies the following conditions:
(i) φ is increasing;

(ii) There exists a convergent nonnegative series
∞∑

k=1
vk such that sk+1φk+1(t) 6 askφk(t)+vk, for all k > k0

and t > 0, where k0 ∈ N, a ∈ [0, 1).

We denotes the collection of all (b)-comparison functions by Φb.

Definition 2.11. [1] Let (X, dθ) be an extended b-metric space and θ : X × X → [1,∞). A mapping
T : X → X is called an admissible extendedZ-contraction if there exists a ζ ∈ Z such that

ζ(α(x, y)dθ(T x,Ty), φ(M(x, y))) > 0, for all x, y ∈ X,

where φ ∈ Φb and
M(x, y) = max{dθ(x, y), dθ(x,T x), dθ(y,Ty)}.

Theorem 2.2. [1] Let (X, dθ) be a complete extended b-metric space and T : X → X be a mapping.
Suppose there exists a sequence {qn}n∈N, qn > 1 for all n ∈ N such that θ(xn, xm) < qn for all m > n. If
T is an admissible extendedZ-contraction satisfying
(i) T is triangular α-orbital admissible;
(ii) There exists x0 ∈ X such that α(x0,T x0) > 1;
(iii) T is continuous,
then T has a fixed point x, and we have T ny→ x for each y ∈ X.

In 1974, Ćirić [30] considered the concept of orbit and proved some fixed point results.

Definition 2.12. [30] Let (X, dξ) be an extended rectangular b-metric space and T be a given mapping.
We define

O(x;∞) = {x,T x, · · · ,T nx, · · · }, for all x ∈ X, n ∈ N.

Then we call the set O(x;∞) is the orbit of T at x, in short O(x).

Definition 2.13. [14] Let (X, dξ) be an extended rectangular b-metric space, {xn} ⊂ O(x0). A mapping
T : X → X is called orbitally continuous if lim

k→∞
xnk = x for some x ∈ X implies that lim

k→∞
T (xnk) = T x.

Moreover, (X, dξ) is called T -orbitally complete if every Cauchy sequence which is obtained in O(x)
converges to some point in X.
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3. Main results

In this section, we prove that the results of Chifu et al. [1] are still available if we replace conditions
of Theorem 2.2 with some new conditions, and we extend the notion of admissible extended Z-
contraction to extended rectangular b-metric spaces.

Let Ψ be the set of all increasing functions ψ : [0,∞)→ [0,∞) satisfying the following condition:

lim
n→∞

ψn(t) = 0, for all t > 0.

Remark 3.1. It is obvious that if ψ ∈ Ψ, then ψ(t) < t for all t > 0.

Definition 3.1. Let (X, dξ) be an extended rectangular b-metric space and ξ : X × X → [1,∞). A
mapping T : X → X is called an α-admissible extended Z-contraction, if there exists a ζ ∈ Z

such that
ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) > 0 (3.1)

for x, y ∈ X, where ψ ∈ Ψ and

M(x, y) = max{dξ(x, y), dξ(T x, x), dξ(y,Ty)}.

Remark 3.2. (a) Note that ψ in (3.1) is weaker than φ in Definition 2.11. Clearly, every (b)-comparison
function is a member of Ψ, so there must be Φb ⊆ Ψ, i.e., we expand the scope of the set Φb;
(b) If T is an α-admissible extendedZ-contraction in an extended rectangular b-metric space, then we
have

α(x, y)dξ(T x,Ty) 6 ψ(M(x, y)), for all x, y ∈ X. (3.2)

In what follows we shall express the main theorem of this paper.

Theorem 3.1. Let (X, dξ) be an extended rectangular b-metric space and T : X → X be an α-admissible
extendedZ-contraction mappings. If the following conditions hold:
(i) T is an α−orbital admissible;
(ii) There exists x0 ∈ X such that α(x0,T x0) > 1 and α(x0,T 2x0) > 1;
(iii) (X, dξ) is T -orbitally complete;
(iv) T is orbitally continuous;
(v) For x0 ∈ X in (ii), we have lim sup

n→∞

ψn+1(t)
ψn(t) ξ(xn+1, xn+p) < 1, where t > 0, p ∈ N+ and xn = T n(x0) for

all n ∈ N,
then T has a fixed point.

Proof. From (ii), there exists x0 ∈ X such that α(x0,T x0) > 1 and α(x0,T 2x0) > 1. Define a sequence
{xn} by xn+1 = T xn, n ∈ N. By (i) and mathematical induction, it easily follows that

α(xn, xn+1) > 1, for all n ∈ N, (3.3)

and
α(xn, xn+2) > 1, for all n ∈ N. (3.4)

If there exist some n0 ∈ N such that xn0 = xn0+1, then T xn0 = xn0 , so xn0 is a fixed point of T , the proof
is completed. So, assume that xn , xn+1 for all n ∈ N, i.e., dξ(xn, xn+1) > 0 for all n ∈ N. Now, we show
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that xm , xn for all m , n. Suppose that xm = xn for some m < n, so we get xm+1 = T xm = T xn = xn+1.
By this way, we can easily obtain xn+k = xm+k for all k ∈ N. Therefore, by (3.2) and (3.3), we have

0 < dξ(xm, xm+1) = dξ(xn, xn+1) = dξ(T xn−1,T xn) 6 α(xn−1, xn)dξ(T xn−1,T xn)
6 ψ(M(xn−1, xn)) < dξ((xn−1, xn)) < dξ(xn−2, xn−1) < · · ·
< dξ(xm, xm+1),

this is a contradiction. So next, we can assume that xm , xn for all m , n. Set x = xn, y = xn+1 in (3.2)
and by (3.3), we have

dξ(xn+1, xn+2) 6 α(xn, xn+1)dξ(T xn,T xn+1) 6 ψ(M(xn, xn+1)), (3.5)

where

M(xn, xn+1) = max{dξ(xn, xn+1), dξ(T xn, xn), dξ(xn+1,T xn+1)}
= max{dξ(xn, xn+1), dξ(xn+1, xn+2)}.

If M(xn, xn+1) = dξ(xn+1, xn+2) for some n ∈ N, by (3.5) and the property of ψ, it follows that

dξ(xn+1, xn+2) 6 ψ(dξ(xn+1, xn+2)) < dξ(xn+1, xn+2), (3.6)

which is a contradiction. So M(xn, xn+1) = dξ(xn, xn+1) for all n ∈ N, then we get

dξ(xn+1, xn+2) 6 ψ(dξ(xn, xn+1)), for all n ∈ N.

By induced iteration, we get

dξ(xn+1, xn+2) 6 ψn+1(dξ(x0, x1)), for all n ∈ N. (3.7)

Now we apply x = xn, y = xn+2 to (3.2) and by (3.4), we have

dξ(xn+1, xn+3) 6 α(xn, xn+2)dξ(T xn,T xn+2) 6 ψ(M(xn, xn+2)), (3.8)

where

M(xn, xn+2) = max{dξ(xn, xn+2), dξ(T xn, xn), dξ(xn+2,T xn+2)}
= max{dξ(xn, xn+2), dξ(xn, xn+1)}.

Now if M(xn, xn+2) = dξ(xn, xn+1) for some n ∈ N, then by (3.7) and (3.8), we get

dξ(xn+1, xn+3) 6 ψ(dξ(xn, xn+1)) 6 ψn+1(dξ(x0, x1)) < ψn(dξ(x0, x1)). (3.9)

If M(xn, xn+2) = dξ(xn, xn+2), then by (3.8), it follows that

dξ(xn+1, xn+3) 6 ψ(dξ(xn, xn+2)),

so
dξ(xn+1, xn+3) 6 ψn+1(dξ(x0, x2)) < ψn(dξ(x0, x2)). (3.10)
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Let d∗ = max{dξ(x0, x1), dξ(x0, x2)}, combine (3.9) with (3.10), then

dξ(xn+1, xn+3) < ψn(d∗). (3.11)

Now we claim that {xn} is a Cauchy sequence. We discuss the following two cases:
Case 1. p = 2k + 1 (p is odd), for any k > 1. Now by (dξ3) and (3.7), for any n ∈ N, we have

dξ(xn, xn+2k+1) 6 ξ(xn, xn+2k+1)[(dξ(xn, xn+1) + dξ(xn+1, xn+2) + dξ(xn+2, xn+2k+1)]
= ξ(xn, xn+2k+1)[dξ(xn, xn+1) + dξ(xn+1, xn+2)] + ξ(xn, xn+2k+1)dξ(xn+2, xn+2k+1)
6 ξ(xn, xn+2k+1)(dn + dn+1) + ξ(xn, xn+2k+1)ξ(xn+2, xn+2k+1)(dn+2 + dn+3)

+ ξ(xn, xn+2k+1)ξ(xn+2, xn+2k+1)dξ(xn+2, xn+2k+1)
6 ξ(xn, xn+2k+1)(dn + dn+1) + ξ(xn, xn+2k+1)ξ(xn+2, xn+2k+1)(dn+2 + dn+3) + · · ·

+ ξ(xn, xn+2k+1)ξ(xn+2, xn+2k+1) · · · ξ(xn+2k−2, xn+2k+1)(dn+2k−2 + dn+2k−1)
+ ξ(xn, xn+2k+1)ξ(xn+2, xn+2k+1) · · · ξ(xn+2k−2, xn+2k+1)dξ(xn+2k, xn+2k+1)
6 ξ(xn, xn+2k+1)(ψn(G0) + ψn+1(G0)) + ξ(xn+2, xn+2m+1)(ψn+2(G0) + ψn+3(G0)) + · · ·

+ ξ(xn, xn+2k+1)ξ(xn+2, xn+2k+1) · · · ξ(xn+2k−2, xn+2k+1)(ψn+2k−2(G0) + ψn+2k−1(G0))
+ ξ(xn, xn+2k+1)ξ(xn+2, xn+2k+1) · · · ξ(xn+2k−2, xn+2k+1)ψn+2k(G0)
6 ξ(x0, xn+2k+1)ξ(x1, xn+2k+1)ξ(x2, xn+2k+1) · · · ξ(xn, xn+2k+1)[ψn(G0)

+ ξ(xn+1, xn+2k+1)ψn+1(G0)] + ξ(x0, xn+2k+1)ξ(x1, xn+2k+1)ξ(x2, xn+2k+1) · · ·
× ξ(xn+2, xn+2k+1)[ψn+2(G0) + ξ(xn+3, xn+2k+1)ψn+3(G0)] + · · · + ξ(x0, xn+2k+1)
× ξ(x1, xn+2k+1)ξ(x2, xn+2k+1) · · · ξ(xn+2k−2, xn+2k+1)[ψn+2k−2(G0)
+ ξ(xn+2k−1, xn+2k+1)ψn+2k−1(G0)] + ξ(x0, xn+2k+1)ξ(x1, xn+2k+1)ξ(x2, xn+2k+1)
× · · · ξ(xn+2k, xn+2k+1)ψn+2k(G0)

=

n+2k∑
i=n

ψi(G0)
i∏

j=0

ξ(x j, xn+2k+1), (3.12)

where dn = dξ(xn, xn+1) and ψn(G0) = ψn(dξ(x0, x1)) for some G0 = dξ(x0, x1). Let

S n =

n∑
i=0

ψi(G0)
i∏

j=0

ξ(x j, xn+2k+1)

for all n ∈ N. From (3.12), we can deduce that

dξ(xn, xn+2k+1) 6 S n+2k − S n−1. (3.13)

Consider the series
∞∑

i=0
ψi(G0)

i∏
j=0
ξ(x j, xn+2k+1). Let un = ψn(G0)

n∏
j=0
ξ(x j, xn+2k+1), then we have

un+1

un
=

ψn+1(G0)
n+1∏
j=0
ξ(x j, xn+2k+1)

ψn(G0)
n∏

j=0
ξ(x j, xn+2k+1)

=
ψn+1(G0)
ψn(G0)

ξ(xn+1, xn+2k+1).
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In view of (v), by the ratio test of positive series, we conclude that the series
∞∑

i=0
ψi(G0)

i∏
j=0
ξ(x j, xn+2k+1) is convergent. Consequently, let n→ ∞ in (3.13), we get that

dξ(xn, xn+p)→ 0.

Case 2. p = 2k (p is even) for any k > 1. Combine (dξ3), (3.7) with (3.11), we obtain

dξ(xn, xn+2k) 6 ξ(xn, xn+2k)[(dξ(xn, xn+1) + dξ(xn+1, xn+2) + dξ(xn+2, xn+2k)]
= ξ(xn, xn+2k)[dξ(xn, xn+1) + dξ(xn+1, xn+2)] + ξ(xn, xn+2k)dξ(xn+2, xn+2k)
6 ξ(xn, xn+2k)(dn + dn+1) + ξ(xn, xn+2k)ξ(xn+2, xn+2k)(dn+2 + dn+3)

+ ξ(xn, xn+2k)ξ(xn+2, xn+2k)dξ(xn+3, xn+2k)
6 ξ(xn, xn+2k)(dn + dn+1) + ξ(xn, xn+2k)ξ(xn+2, xn+2k)(dn+2 + dn+3) + · · ·

+ ξ(xn, xn+2k)ξ(xn+2, xn+2k) · · · ξ(xn+2k−3, xn+2k)(dn+2k−3 + dn+2k−2)
+ ξ(xn, xn+2k)ξ(xn+2, xn+2k) · · · ξ(xn+2k−3, xn+2k)dξ(xn+2k−2, xn+2k)

< ξ(xn, xn+2k)(ψn(G0) + ψn+1(G0)) + ξ(xn, xn+2k)ξ(xn+2, xn+2k)(ψn+2(G0) + ψn+3(G0)) + · · ·

+ ξ(xn, xn+2k)ξ(xn+2, xn+2k) · · · ξ(xn+2k−3, xn+2k)(ψn+2k−3(G0) + ψn+2k−2(G0))
+ ξ(xn, xn+2k)ξ(xn+2, xn+2k) · · · ξ(xn+2k−3, xn+2k)ψn+2k−1(d∗)
6 ξ(x0, xn+2k)ξ(x1, xn+2k)ξ(x2, xn+2k) · · · ξ(xn, xn+2k)[ψn(G0)

+ ξ(xn+1, xn+2k)ψn+1(G0)] + ξ(x0, xn+2k)ξ(x1, xn+2k)ξ(x2, xn+2k) · · ·
× ξ(xn+2, xn+2k)[ψn+2(G0) + ξ(xn+3, xn+2k)ψn+3(G0)] + · · · + ξ(x0, xn+2k)
× ξ(x1, xn+2k)ξ(x2, xn+2k) · · · ξ(xn+2k−3, xn+2k)[ψn+2k−3(G0)
+ ξ(xn+2k−2, xn+2k)ψn+2k−2(G0)] + ξ(x0, xn+2k)ξ(x1, xn+2k)ξ(x2, xn+2k)
× · · · ξ(xn+2k−2, xn+2k)ψn+2k−1(d∗)

<

n+2k−1∑
i=n

ψi(d∗)
i∏

j=0

ξ(x j, xn+2k), (3.14)

where ψn(G0) = ψn(dξ(x0, x1)), dn = dξ(xn, xn+1) and d∗ = max{dξ(x0, x1), dξ(x0, x2)}. Choose for all
n ∈ N,

Rn =

n∑
i=0

ψi(d∗)
i∏

j=0

ξ(x j, xn+2k).

From (3.14), we can deduce that

dξ(xn, xn+2k) < Rn+2k−1 − Rn−1. (3.15)

Consider the series
∞∑

i=0
ψi(d∗)

i∏
j=0
ξ(x j, xn+2k). Let vn = ψn(d∗)

n∏
j=0
ξ(x j, xn+2k), then we have

vn+1

vn
=

ψn+1(d∗)
n+1∏
j=0
ξ(x j, xn+2k)

ψn(d∗)
n∏

j=0
ξ(x j, xn+2k)

=
ψn+1(d∗)
ψn(d∗)

ξ(xn+1, xn+2k).
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In similar way, we get that the series
∞∑

i=0
ψi(d∗)

i∏
j=0
ξ(x j, xn+2k) is convergent. So, take n → ∞

in (3.15), it must be
dξ(xn, xn+p)→ 0.

In the both cases, we have

lim
n→∞

dξ(xn, xn+p) = 0, for all p ∈ N.

This shows that the sequence {xn} is a Cauchy sequence in X. Since (X, dξ) is T -orbitally complete,
then there exists x ∈ X such that

lim
n→∞

dξ(xn, x) = 0. (3.16)

In view of the orbitally continuity of T , thus, there exists {nk} ⊂ N such that lim
k→∞

dξ(T xnk ,T x) → 0,
and by (dξ3), it follows that

dξ(x,T x) 6 ξ(x,T x)[dξ(x, xnk) + dξ(xnk , xnk+1) + dξ(T xnk ,T x)].

Taking k → ∞ in the both sides of this inequality, then we have

dξ(x,T x) = 0.

So T x = x, that is T has a fixed point. �

Remark 3.3. We improve, extend the previous results of Chifu et al. [1], and get the same results in
an extended rectangular b-metric space by weaker conditions than some conditions in Theorem 2.2.
Notice that triangular α-orbital admissible is replaced by α-orbital admissible and α(x0,T 2x0) > 1, the
latter is weaker than the former. Moreover, we utilize T -orbitally completeness and orbitally continuity
instead of completeness and continuity, respectively. Meanwhile, we give a new condition (v), which
is different from the original condition in Theorem 2.2.

Now, we give some examples to demonstrate the validity of Theorem 3.1.

Example 3.1. Let X = {1, 2, 3, 4, 5}. Defined ξ : X × X → [0,∞) and dξ by

ξ(x, y) = x + y + 1, for all x, y ∈ X

and

dξ(x, x) = 0, for all x ∈ X;
dξ(x, y) = dξ(y, x), for all x, y ∈ X;
dξ(1, 3) = dξ(2, 5) = 70, dξ(1, 4) = 1000 and dξ(1, 5) = 2000;
dξ(1, 2) = dξ(2, 3) = dξ(3, 4) = 60, dξ(3, 5) = dξ(4, 5) = dξ(2, 4) = 400.

In Example 2.1, we already know that dξ is an extended rectangular b-metric. Next, take T : X → X
and α(x, y) as follows:

T x =

1, if x = 1, 3, 5;
2, otherwise

AIMS Mathematics Volume 7, Issue 3, 3701–3718.
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and

α(x, y) =


3
2
, if (x, y) ∈ A;

0, otherwise,

where A = {(1, 1), (2, 2), (4, 2), (5, 1), (5, 2)}. Let ζ1(u, v) = 3
5v − u and ψ(t) = 1

5 t. We show that T is
an α-admissible extendedZ-contraction mapping. Indeed, if (x, y) < A, then (3.1) holds. We consider
(x, y) ∈ A, then we have

ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) =
3

25
M(x, y) − α(x, y)dξ(T x,Ty)

=
3
25

max{dξ(x, y), dξ(T x, x), dξ(y,Ty)} −
3
2

dξ(T x,Ty). (3.17)

Case 1. (x, y) = (1, 1), then ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) = 0;
Case 2. (x, y) = (2, 2), then ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) = 0;
Case 3. (x, y) = (4, 2), then ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) = 48;
Case 4. (x, y) = (5, 1), then ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) = 240;
Case 5. (x, y) = (5, 2), then ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) = 150.
So, it must be ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) > 0. Thus, T is an α-admissible extended Z-

contraction. T is an α−orbital admissible, in fact, if α(x,T x) > 1, then (x,T x) ∈ A, by definition
of T , it easily follows that (T x,T 2x) ∈ A, that is α(T x,T 2x) > 1. Clearly,

Case 1. x0 = 1, α(1,T1) = α(1, 1) > 1, α(T1,T 21) = α(1, 1) > 1;
Case 2. x0 = 2, α(2,T2) = α(2, 2) > 1, α(T2,T 22) = α(2, 2) > 1;
Case 3. x0 = 4, α(4,T4) = α(4, 2) > 1, α(T4,T 24) = α(2, 2) > 1;
Case 4. x0 = 5, α(5,T5) = α(5, 1) > 1, α(T5,T 25) = α(1, 1) > 1.
At the same time, there exists x0 ∈ X such that α(x0,T x0) > 1, α(x0,T 2x0) > 1 and xn = 1 for all

n > 2. We have

lim sup
n→∞

ψn+1(t)
ψn(t)

ξ(xn+1, xn+p) = lim sup
n→∞

1
5

[xn+1 + xn+p + 1] =
3
5
< 1, for all t > 0,

we can easily prove (X, dξ) is T -orbitally complete and T is orbitally continuous. All conditions of
Theorem 3.1 are satisfied, 1 and 2 are two fixed points of T .

Example 3.2. Let X = N − {0}. Define dξ : X × X → [0,∞) by

dξ(x, y) =



0, if x = y;
1
x
, if x is even and y is odd;

1
y
, if y is even and x is odd;

1, otherwise.

Then (X, dξ) is a complete extended rectangular b-metric space with ξ(x, y) = x + y + 1. It is apparent
that (X, dξ) satisfies the condition (iii) in Theorem 3.1.
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Define the mapping T : X → X and the function α : X × X → [0,∞) by

T x =


x
2
, if x is even;

x + 1
2

, otherwise

and

α(x, y) =

x, if (x, y) ∈ Q;
0, otherwise,

where Q = {(x, y) : |x − y| 6 1} − {(x, y) : |x − y| 6 1, if y is even and x is odd}. Then T satisfies
the conditions (i) and (iv) in Theorem 3.1. Take ψ(t) = t

4 and ζ(u, v) = 1
2v − u, note that there exists

x0 = 1 such that T satisfies the conditions (ii) and (v) in Theorem 3.1. Furthermore, we show that
T is an α-admissible extended Z-contraction. Indeed, α(x, y)dξ(T x,Ty) = 0 for all x, y ∈ X. So, by
Theorem 3.1, T has a fixed point x = 1.

Now, we provide sufficient conditions for the existence of fixed points of T in Theorem 3.1, but it
can’t guarantee the uniqueness of the fixed point. In order to assure the uniqueness of the fixed point,
consider the following condition:
(vi) For all x, y ∈ Fix(T )⇒ α(x, y) > 1, where Fix(T ) is the set of fixed points of T .

Theorem 3.2. Adding (vi) to the conditions of Theorem 3.1, we can obtain the uniqueness of the fixed
point of T .

Proof. If there exist two different fixed points x∗ and y∗ in X, that is T x∗ = x∗,Ty∗ = y∗. Applying
x = x∗, y = y∗ to (3.2), and by (vi), then we have

dξ(x∗, y∗) 6 α(x∗, y∗)dξ(T x∗,Ty∗) 6 ψ(M(x∗, y∗)) = ψ(dξ(x∗, y∗)) < dξ(x∗, y∗),

this is a contradiction. So x∗ = y∗, i.e., T has a unique fixed point. �

Now, we use Example 2.1 again to demonstrate the validity of Theorem 3.2.

Example 3.3. Let X = {1, 2, 3, 4, 5}. Defined ξ : X × X → [0,∞) and dξ by

ξ(x, y) = x + y + 1, for all x, y ∈ X

and

dξ(x, x) = 0, for all x ∈ X;
dξ(x, y) = dξ(y, x), for all x, y ∈ X;
dξ(1, 3) = dξ(2, 5) = 70, dξ(1, 4) = 1000 and dξ(1, 5) = 2000;
dξ(1, 2) = dξ(2, 3) = dξ(3, 4) = 60, dξ(3, 5) = dξ(4, 5) = dξ(2, 4) = 400.

In Example 2.1, we already know that dξ is an extended rectangular b-metric. Next, take T : X → X
and α(x, y) as follows:

T x =

1, if x = 1, 2;
2, otherwise
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and

α(x, y) =

2, if (x, y) ∈ B;
0, otherwise,

where B = {(1, 1), (2, 1), (4, 1), (5, 1)}. Let ζ1(u, v) = 1
2v − u and ψ(t) = 1

4 t. We show that T is an
α-admissible extended Z-contraction mapping. Indeed, if (x, y) < B, then (3.1) holds. we consider
(x, y) ∈ B, then we have

ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) =
1
8

M(x, y) − α(x, y)dξ(T x,Ty)

=
1
8

max{dξ(x, y), dξ(T x, x), dξ(y,Ty)} − 2dξ(T x,Ty). (3.18)

Case 1. (x, y) = (1, 1), then ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) = 0;
Case 2. (x, y) = (2, 1), then ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) = 15

2 ;
Case 3. (x, y) = (4, 1), then ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) = 5;
Case 4. (x, y) = (5, 1), then ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) = 130.

So, it must be ζ(α(x, y)dξ(T x,Ty), ψ(M(x, y))) > 0. Thus, T is an α-admissible extended Z-
contraction mapping. T is an α−orbital admissible mapping, in fact, if α(x,T x) > 1, then (x,T x) ∈ B,
by definition of T , it easily follows that (T x,T 2x) ∈ B, that is α(T x,T 2x) > 1. Clearly,

Case 1. x0 = 1, α(1,T1) = α(1, 1) > 1, α(T1,T 21) = α(1, 1) > 1;
Case 2. x0 = 2, α(2,T2) = α(2, 1) > 1, α(T2,T 22) = α(1, 1) > 1.
While x0 ∈ X, xn = 1 for all n > 2, p > 0, we can easily prove (X, dξ) is T -orbitally complete and T

is orbitally continuous. Meanwhile, for x0 ∈ X, we have

lim sup
n→∞

ψn+1(t)
ψn(t)

ξ(xn+1, xn+p) = lim sup
n→∞

1
4

[xn+1 + xn+p + 1] =
3
4
< 1, for all t > 0.

There exists x0 = 1 or x0 = 2, satisfying α(x0,T x0) > 1 and α(x0,T 2x0) > 1. All conditions of
Theorem 3.2 are satisfied, so T has a unique fixed point x = 1.

Corollary 3.1. If we replace extended rectangular b-metric space with extend b-metric space in
Theorem 3.1, then the conclusion still holds.

Proof. Every extended b-metric space is also an extended rectangular b-metric space, so the
Corollary 3.1 holds clearly. �

In Theorem 3.1 and Corollary 3.1, if we replace (iii) and (iv) with the completeness of (X, dξ) and
the continuity of T respectively, then we can acquire the following results.

Corollary 3.2. Let (X, dξ) be a complete rectangular extended b-metric space and T : X → X be an
α-admissible extendedZ-contraction. If the following conditions hold:
(i) T is an α-orbital admissible;
(ii) There exists x0 ∈ X such that α(x0,T x0) > 1 and α(x0,T 2x0) > 1;
(iii) T is continuous;
(iv) For x0 ∈ X in (ii), we have lim sup

n→∞

ψn+1(t)
ψn(t) ξ(xn+1, xn+p) < 1, where t > 0, p ∈ N+ and xn = T n(x0), for

all n ∈ N,
then T has a fixed point.
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Corollary 3.3. Let (X, dθ) be a complete extended b-metric space and T : X → X be an α-admissible
extendedZ-contraction. If the following conditions hold:
(i) T is an α-orbital admissible;
(ii) There exists x0 ∈ X such that α(x0,T x0) > 1 and α(x0,T 2x0) > 1;
(iii) T is continuous;
(iv) For x0 ∈ X in (ii), we have lim sup

n→∞

ψn+1(t)
ψn(t) θ(xn+1, xn+p) < 1, where t > 0, p ∈ N+ and xn = T n(x0), for

all n ∈ N,
then T has a fixed point.

Corollary 3.4. Let (X, d) be a complete b-metric space with coefficient s and T : X → X be an α-
admissible extendedZ-contraction. If the following conditions hold:
(i) T is an α-orbital admissible;
(ii) There exists x0 ∈ X such that α(x0,T x0) > 1 and α(x0,T 2x0) > 1;
(iii) T is continuous;
(iv) For x0 ∈ X in (ii). Take sequence {xn = T nx0}, we have lim sup

n→∞

ψn+1(t)
ψn(t) < 1

s , for all t > 0,

then T has a fixed point.

Corollary 3.5. Let (X, dξ) be a complete extended rectangular b-metric space and T : X → X be an
α-admissible extendedZ-contraction mapping. If the following conditions hold:
(i) T is triangular α−orbital admissible;
(ii) There exists x0 ∈ X such that α(x0,T x0) > 1;
(iii) T is continuous;
(iv) For x0 ∈ X in (ii) such that lim sup

n→∞

ψn+1(t)
ψn(t) ξ(xn+1, xn+p) < 1, where t > 0, p ∈ N+ and xn = T n(x0) for

all n ∈ N,
then T has a fixed point.

Remark 3.4. Corollary 3.5 is an improvement of Theorem 2.2. On the one hand, extended rectangular
b-metric space is a generalization of extended b-metric space; on the other hand, the condition (v) is
different from the conditions in Theorem 2.2.

4. Application

In this section, we discuss an application that attributes the solvability of boundary value problem
of second order ordinary differential equation:x′′(u) = − f (u, x(u)), u ∈ [0, 1],

x(0) = x(1) = 0.
(4.1)

Let X = C([0, 1],R) be the set of all real continuous functions defined on [0, 1], endowed with the
extended rectangular b-metric

dξ(x, y) = max
u∈[0,1]

(|x(u) − y(u)|)n, for all x, y ∈ X.

It is evident that (X, dξ) is a complete extended rectangular b-metric space with ξ(x, y) = 3n−1 + x + y,
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where n > 1. The boundary value problem of (4.1) is equivalent to the following integral equation:

x(u) =

∫ 1

0
G(u, t) f (t, x(t))dt, for all u ∈ [0, 1],

where G(u, t) is the Green function given as

G(u, t) =

t(1 − u), 0 6 t 6 u 6 1,
u(1 − t), 0 6 u 6 t 6 1.

Define the mapping T : X → X by

T x(u) =

∫ 1

0
G(u, t) f (t, x(t))dt, for all u ∈ [0, 1]

and let δ : R × R→ R be a given function.

Theorem 4.1. Consider the integral equation (4.1). Suppose that the following assertions hold:
(i) f : [0, 1] × R→ R is continuous;
(ii) There exist x0 ∈ X and ψ(t) ∈ Ψ such that δ(x0,T x0) > 0, δ(x0,T 2x0) > 0 and

lim sup
n→∞

ψn+1(t)
ψn(t)

ξ(xn+1, xn+p) < 1,

where t > 0, p ∈ N+ and xn = T n(x0) for all n ∈ N;
(iii) For all u ∈ [0, 1] and x ∈ X, δ(x,T x) > 0 implies that δ(T x,T 2x) > 0;
(iv) If δ(x, y) > 0, then | f (t, x(t)) − f (t, y(t))| 6 n

√
8n−1M(x, y), where

M(x, y) = max{dξ(x, y), dξ(x,T x), dξ(y,Ty)}.

Then the integral equation (4.1) has a solution in X.

Proof. We define the function α : X × X → [0,∞) by

α(x, y) =

1, if δ(x, y) > 0,
0, otherwise.

By (i)–(iii), it is clear that the conditions (i)–(iv) in Theorem 3.1 hold.
Case 1. If δ(x, y) < 0, i.e., α(x, y) = 0, then 1

8 M(x, y) − α(x, y)dξ(T x,Ty) > 0.
Case 2. If δ(x, y) > 0, i.e., α(x, y) = 1, by (iv), we have

1
8

M(x, y) − α(x, y)dξ(T x,Ty) =
1
8

M(x, y) − dξ(T x,Ty)

=
1
8

M(x, y) − max
u∈[0,1]

(|T x(u) − Ty(u)|)n

=
1
8

M(x, y) − max
u∈[0,1]

(|
∫ 1

0
G(u, t)( f (t, x(t)) − f (t, y(t)))dt|)n
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>
1
8

M(x, y) − max
u∈[0,1]

(
∫ 1

0
G(u, t)| f (t, x(t)) − f (t, y(t))|dt)n

>
1
8

M(x, y) − max
u∈[0,1]

(
∫ 1

0
G(u, t) n

√
8n−1M(x, y)dt)n

>
1
8

M(x, y) −
1

81−n M(x, y)max
u∈[0,1]

(
∫ 1

0
G(u, t)dt)n

=
1
8

M(x, y) −
1

81−n M(x, y)(
1
8

)n

= 0.

In the both cases, it must be 1
8 M(x, y)−α(x, y)dξ(T x,Ty) > 0 for all x, y ∈ X. Now, we take ψ(t) = 1

4 t
and ζ(u, v) = 1

2v − u, it is easy to verify that T is an α-admissible extended Z-contraction mapping.
By (iv), it is clear the conditions (v) in Theorem 3.1 holds. Therefore, by Theorem 3.1, we can make
sure that the boundary value problems (4.1) has a solution. �

Eventually, we give an example to show the applicability of Theorem 4.1.

Example 4.1. Let f (u, x(u)) = u
2 for all u ∈ [0, 1]. It is obvious that there exist x0 = 0 and ψ(t) = t

4
such that the all assertions in Theorems 4.1 hold. So, by Theorem 4.1, the boundary value problem
of (4.1) has a solution, which is x(u) = − u3

12 + u
12 .

5. Conclusions

In this paper, we acquire the existence and uniqueness of the fixed point of α-admissible extended
Z-contraction mappings in extended rectangular b-metric spaces and provide some examples to show
the validity of our main results. It is obvious that we can take the reasonable auxiliary functions α, ψ, ζ
to give some corollary in the various settings (in the context of partially ordered set endowed with a
metric, orthogonal set endowed with a metric, cyclic contraction, etc.). Finally, we give an application
to the boundary value problems of second order ordinary differential equation.
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14. M. Asim, M. Imdad, S. Radenović, Fixed point resuls in extended rectangular b-metric spaces with
an application, U.P.B. Sci. Bull., Series A, 81 (2019), 43–50.

15. T. Abdeljawad, E. Karapınar, S. K. Panda, N. Mlaiki, Solutions of boundary value problems on
extended-Branciari b-distance, J. Inequal. Appl., 2020 (2020), 1–16. doi: 10.1186/s13660-020-
02373-1.

16. R. Jain, H. K. Nashine, R. George, Z. D. Mitrović, On extended Branciari b-distance spaces
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