Processing math: 96%
Research article

Normwise condition numbers of the indefinite least squares problem with multiple right-hand sides

  • In this paper, we investigate the normwise condition numbers of the indefinite least squares problem with multiple right-hand sides with respect to the weighted Frobenius norm and 2-norm. The closed formulas or upper bounds for these condition numbers are presented, which extend the earlier work for the indefinite least squares problem with single right-hand side. Numerical experiments are performed to illustrate the tightness of the upper bounds.

    Citation: Limin Li. Normwise condition numbers of the indefinite least squares problem with multiple right-hand sides[J]. AIMS Mathematics, 2022, 7(3): 3692-3700. doi: 10.3934/math.2022204

    Related Papers:

    [1] Hanadi Zahed, Zhenhua Ma, Jamshaid Ahmad . On fixed point results in F-metric spaces with applications. AIMS Mathematics, 2023, 8(7): 16887-16905. doi: 10.3934/math.2023863
    [2] Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344
    [3] Amer Hassan Albargi, Jamshaid Ahmad . Fixed point results of fuzzy mappings with applications. AIMS Mathematics, 2023, 8(5): 11572-11588. doi: 10.3934/math.2023586
    [4] Abdullah Eqal Al-Mazrooei, Jamshaid Ahmad . Fixed point approach to solve nonlinear fractional differential equations in orthogonal F-metric spaces. AIMS Mathematics, 2023, 8(3): 5080-5098. doi: 10.3934/math.2023255
    [5] Nehad Abduallah Alhajaji, Afrah Ahmad Noman Abdou, Jamshaid Ahmad . Application of fixed point theory to synaptic delay differential equations in neural networks. AIMS Mathematics, 2024, 9(11): 30989-31009. doi: 10.3934/math.20241495
    [6] Fatima M. Azmi . New fixed point results in double controlled metric type spaces with applications. AIMS Mathematics, 2023, 8(1): 1592-1609. doi: 10.3934/math.2023080
    [7] Gunaseelan Mani, Rajagopalan Ramaswamy, Arul Joseph Gnanaprakasam, Vuk Stojiljković, Zaid. M. Fadail, Stojan Radenović . Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space. AIMS Mathematics, 2023, 8(2): 3269-3285. doi: 10.3934/math.2023168
    [8] Amer Hassan Albargi . Some new results in F-metric spaces with applications. AIMS Mathematics, 2023, 8(5): 10420-10434. doi: 10.3934/math.2023528
    [9] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [10] Monairah Alansari, Mohammed Shehu Shagari, Akbar Azam, Nawab Hussain . Admissible multivalued hybrid Z-contractions with applications. AIMS Mathematics, 2021, 6(1): 420-441. doi: 10.3934/math.2021026
  • In this paper, we investigate the normwise condition numbers of the indefinite least squares problem with multiple right-hand sides with respect to the weighted Frobenius norm and 2-norm. The closed formulas or upper bounds for these condition numbers are presented, which extend the earlier work for the indefinite least squares problem with single right-hand side. Numerical experiments are performed to illustrate the tightness of the upper bounds.



    The theory of fixed points is considered to be the most delightful and energetic field of investigations in the development of mathematical analysis. In this scope, the notion of metric space [1] is one of pillars of not only mathematics but also physical sciences. Due to its noteworthy and remarkable contribution in different fields, it has been extended, improved and generalized in various ways.

    In recent years, many interesting generalizations (or extensions) of the metric space concept appeared. The famous extensions of the concept of metric spaces have been done by Bakhtin [2] which was formally defined by Czerwik [3] in 1993. Czerwik [3] gave the idea of b -metric space which broaden the notion of metric space by improving the triangle equality metric axiom by putting a constant s1 multiplied to the right-hand side, is one of the enormous applied extensions for metric spaces. Khamsi et al. [4] reintroduced this notion under the name metric-type and proved some fixed point results in this newly introduced space. In [5], Branciari gave the notion of rectangular metric space and generalized the classical metric space by replacing the triangle inequality with more general inequality that is called rectangular inequality. This inequality involves distance of four points. In 2018, Jleli et al. [6] gave a compulsive extension of a metric space, b -metric space and rectangular metric space which is known as F -metric space. Later on, Al-Mazrooei et al. [7] utilized F -metric space and investigated some fixed point theorems for rational contraction which involves non-negative constants. For more details, we refer the researchers [8,9,10,11,12,13,14,15,16,17,18,19,20]

    In this research article, we improve rational contraction of Al-Mazrooei et al. [7] by adding one more rational expression in it and replacing non-negative constants with control functions of two variables. We prove some common fixed point results which are generalizations of fixed point results in the context of F-metric spaces. As outcomes of our main results, we derive common fixed point theorems for rational contractions involving control functions of one variable. In this way, we derive the leading results of Jleli et al. [6] and Ahmad et al. [7]. We also establish some results in F-metric space equipped with a directed graph G. As an application, we investigate the solution to nonlinear neutral differential equation.

    Let us recall some related material to be used to establish our main results. Recall that Czerwik [3] gave the notion of b-metric space as follows:

    Definition 1. (see [3]) Let Θ and s1 be a constant. A function ς:Θ×Θ [0,) is called a b-metric if the following assertions hold:

    (b1) ς(ϱ,)0 and ς(ϱ,)=0 if and only if ϱ=;

    (b2) ς(ϱ,)=ς(,ϱ);

    (b3) ς(ϱ,φ)s[ς(ϱ,)+ς(,φ)];

    for all ϱ,,φΘ.

    The pair (Θ,ς) is then said to be a b-metric space.

    Jleli et al. [6] gave a fascinating extension of metric space and b -metric space as follows. Let F be a set of functions f:(0,+)R satisfying

    (F1) f is non-decreasing,

    (F2) for each {ϱȷ}R+, limȷϱȷ=0 if and only if limȷf(ϱȷ)=.

    Definition 2. (see [6]) Let Θ and ς:Θ×Θ[0,+). Assume that there exists (f,h)F×[0,+) such that

    (D1) (ϱ,)Θ×Θ, ς(ϱ,)=0 if and only if ϱ=,

    (D2) ς(ϱ,)=ς(,ϱ), for all (ϱ,)Θ×Θ,

    (D3) for every (ϱ,)Θ×Θ, for every NN, N2, and for every (ϱi)Ni=1Θ, with

    (ϱ1,ϱN)=(ϱ,),

    we have

    ς(ϱ,)>0   implies f(ς(ϱ,))f(N1i=1ς(ϱi,ϱi+1))+h.

    Then (Θ,ς) is called a F-metric space.

    Example 1. Let Θ=R and ς:Θ×Θ[0,+) be defined by

    ς(ϱ,)={(ϱ)2 if(ϱ,)[0,2]×[0,2]|ϱ| if(ϱ,)[0,2]×[0,2]

    with f(t)=ln(t) and h=ln(2), then (Θ,ς) is a F-metric space.

    Definition 3. (see [6]) Let (Θ,ς) be F-metric space,

    (i) a sequence {ϱȷ} in Θ is said to be F-convergent to ϱΘ if {ϱȷ} is convergent to ϱ with respect to the F-metric ς;

    (ii) a sequence {ϱȷ} is F-Cauchy, if

    limȷ,mς(ϱȷ,ϱm)=0;

    (iii) if every F-Cauchy sequence in Θ is F -convergent to a point of Θ, then (Θ,ς) is said to be a F-complete.

    Theorem 1. (see [6]) Let (Θ,ς) be a F-complete F-metric space and :ΘΘ. Assume that there exists α[0,1) such that

    ς((ϱ),())ας(ϱ,)

    for all ϱ,Θ, then has a unique fixed point ϱΘ. Moreover, for any ϱ0Θ, the sequence {ϱȷ}Θ defined by

    ϱȷ+1=(ϱȷ), ȷN,

    is F-convergent to ϱ.

    Subsequently, Hussain et al. [14] defined α-ψ-contraction in the background of F-metric spaces and generalized the main result of Jleli et al. [6]. Later on, Ahmad et al. [7] defined a rational contraction in F-metric space and proved the following result as generalization of main theorem of Jleli et al. [6].

    Theorem 2. (see [7]) Let (Θ,ς) be a F-complete F-metric space and :ΘΘ. Assume that there exists α,β[0,1) such that

    ς((ϱ),())ας(ϱ,)+βς(ϱ,ϱ)ς(,)1+ς(ϱ,)

    for all ϱ,Θ, then has a unique fixed point.

    We start this section with the following proposition which is helpful in proving our main result.

    Proposition 1. Let (Θ,ς) be a F-metric space and 1,2:(Θ,ς)(Θ,ς). Let ϱ0 Θ. Define the sequence {ϱȷ} by

    ϱ2ȷ+1=1ϱ2ȷandϱ2ȷ+2=2ϱ2ȷ+1 (3.1)

    for all ȷ=0,1,2,....

    Assume that there exist α:Θ×Θ[0,1) satisfying

    α(21ϱ,)α(ϱ,) and α(ϱ,12)α(ϱ,)

    for all ϱ,Θ. Then

    α(ϱ2ȷ,)α(ϱ0,) and α(ϱ,ϱ2ȷ+1)α(ϱ,ϱ1)

    for all ϱ,Θ and ȷ=0,1,2,....

    Proof. Let ϱ,Θ and ȷ=0,1,2,... Then we have

    α(ϱ2ȷ,)=α(21ϱ2ȷ2,)α(ϱ2ȷ2,)= α(21ϱ2ȷ4,)α(ϱ2ȷ4,)α(ϱ0,).

    Similarly, we have

    α(ϱ,ϱ2ȷ+1)=α(ϱ,12ϱ2ȷ1)α(ϱ,ϱ2ȷ1)=α(ϱ,12ϱ2ȷ3)α(ϱ,ϱ2ȷ3)α(ϱ,ϱ1).

    Hence, the proof is completed.

    Lemma 1. Let (Θ,ς) be a F-metric space and α,β:Θ×Θ[0,1). If 1,2:Θ Θ satisfy

    ς(1ϱ,21ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(ϱ,1ϱ)ς(1ϱ,21ϱ)1+ς(ϱ,1ϱ)

    and

    ς(12,2)α(2,)ς(2,)+β(2,)ς(2,12)ς(,2)1+ς(2,)

    for all ϱ, Θ, then

    ς(1ϱ,21ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(1ϱ,21ϱ)

    and

    ς(12,2)α(2,)ς(2,)+β(2,)ς(2,12).

    Proof. Using the hypothesis, we have

    ς(1ϱ,21ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(ϱ,1ϱ)ς(1ϱ,21ϱ)1+ς(ϱ,1ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(ϱ,1ϱ)1+ς(ϱ,1ϱ)ς(1ϱ,21ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(1ϱ,21ϱ).

    Similarly, we have

    ς(12,2)α(2,)ς(2,)+β(2,)ς(2,12)ς(,2)1+ς(2,)α(2,)ς(2,)+β(2,)ς(,2)1+ς(2,)ς(2,12)α(2,)ς(2,)+β(2,)ς(2,12).

    Theorem 3. Let (Θ,ς) be a F-complete F-metric space and 1,2:Θ Θ. If there exist mappings α,β,γ:Θ×Θ[0,1) such that

    (a) α(21ϱ,)α(ϱ,) and α(ϱ,12)α(ϱ,)

         β(21ϱ,)β(ϱ,) and β(ϱ,12)β(ϱ,)

         γ(21ϱ,)γ(ϱ,) and γ(ϱ,12)γ(ϱ,),

    (b) α(ϱ,)+β(ϱ,)+γ(ϱ,)<1,

    (c)

    ς(1ϱ,2)α(ϱ,)ς(ϱ,)+β(ϱ,)ς(ϱ,1ϱ)ς(,2)1+ς(ϱ,)+γ(ϱ,)ς(,1ϱ)ς(ϱ,2)1+ς(ϱ,) , (3.2)

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Let ϱ,Θ. From (3.2), we have

    ς(1ϱ,21ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(ϱ,1ϱ)ς(1ϱ,21ϱ)1+ς(ϱ,1ϱ)=α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(ϱ,1ϱ)ς(1ϱ,21ϱ)1+ς(ϱ,1ϱ).

    By Lemma 1, we get

    ς(1ϱ,21ϱ)α(ϱ,1ϱ)ς(ϱ,1ϱ)+β(ϱ,1ϱ)ς(1ϱ,21ϱ). (3.3)

    Similarly, we have

    ς(12,2)α(2,)ς(2,)+β(2,)ς(2,12)ς(,2)1+ς(2,)+γ(ϱ,)ς(,12)ς(2,2)1+ς(2,)=α(2,)ς(2,)+β(2,)ς(2,12)ς(,2)1+ς(2,).

    By Lemma 1, we get

    ς(12,2)α(2,)ς(2,)+β(2,)ς(2,12). (3.4)

    Let ϱ0 Θ and the sequence {ϱȷ} be defined by (3.1). From Proposition 1, (3.3), (3.4) and for all ȷ=0,1,2,...

    ς(ϱ2ȷ+1,ϱ2ȷ)=ς(12ϱ2ȷ1,2ϱ2ȷ1)α(2ϱ2ȷ1,ϱ2ȷ1)ς(2ϱ2ȷ1,ϱ2ȷ1)+β(2ϱ2ȷ1,ϱ2ȷ1)ς(2ϱ2ȷ1,12ϱ2ȷ1)=α(ϱ2ȷ,ϱ2ȷ1)ς(ϱ2ȷ,ϱ2ȷ1)+β(ϱ2ȷ,ϱ2ȷ1)ς(ϱ2ȷ,ϱ2ȷ+1)α(ϱ0,ϱ2ȷ1)ς(ϱ2ȷ,ϱ2ȷ1)+β(ϱ0,ϱ2ȷ1)ς(ϱ2ȷ,ϱ2ȷ+1)α(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ1)+β(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ+1)

    which implies that

    ς(ϱ2ȷ+1,ϱ2ȷ)α(ϱ0,ϱ1)1β(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ1). (3.5)

    Similarly, we have

    ς(ϱ2ȷ+2,ϱ2ȷ+1)=ς(21ϱ2ȷ,1ϱ2ȷ)α(ϱ2ȷ,1ϱ2ȷ)ς(ϱ2ȷ,1ϱ2ȷ)+β(ϱ2ȷ,1ϱ2ȷ)ς(1ϱ2ȷ,21ϱ2ȷ)=α(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ,ϱ2ȷ+1)+β(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)α(ϱ0,ϱ2ȷ+1)ς(ϱ2ȷ,ϱ2ȷ+1)+β(ϱ0,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)α(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ+1)+β(ϱ0,ϱ1)ς(ϱ2ȷ+1,ϱ2ȷ+2),

    which implies that

    ς(ϱ2ȷ+2,ϱ2ȷ+1)α(ϱ0,ϱ1)1β(ϱ0,ϱ1)ς(ϱ2ȷ,ϱ2ȷ+1)=α(ϱ0,ϱ1)1β(ϱ0,ϱ1)ς(ϱ2ȷ+1,ϱ2ȷ). (3.6)

    Let λ= α(ϱ0,ϱ1)1β(ϱ0,ϱ1)<1. Then from (3.5) and (3.6), we have

    ς(ϱȷ+1,ϱȷ)λς(ϱȷ,ϱȷ1)

    for all ȷN. Inductively, we can construct a sequence {ϱȷ} in Θ such that

    ς(ϱȷ+1,ϱȷ)λς(ϱȷ,ϱȷ1)ς(ϱȷ+1,ϱȷ)λ2ς(ϱȷ1,ϱȷ2)ς(ϱȷ+1,ϱȷ)λȷς(ϱ1,ϱ0)=λȷς(ϱ0,ϱ1)

    for all ȷN. Let (f,h)F×[0,+) be such that (D3) is satisfied. Let ϵ>0 be fixed. By (F2), there exists δ>0 such that

    0<t<δf(t)<f(δ)h. (3.7)

    Hence, by (3.7), (F1) and (F2), we have

    f(m1i=ȷς(ϱi,ϱi+1))f(m1i=ȷλȷ(ς(ϱ0,ϱ1)))f(ȷȷ(ϵ)λȷς(ϱ0,ϱ1))<f(ϵ)h (3.8)

    for m>ȷȷ(ϵ). Using (D3) and (3.8), we obtain ς(ϱȷ,ϱm)>0, m>ȷȷ(ϵ) implies

    f(ς(ϱȷ,ϱm))f(m1i=ȷς(ϱi,ϱi+1))+h<f(ϵ),

    which yields by (F1) that ς(ϱȷ,ϱm)<ϵ, m>ȷȷ(ϵ). It shows that {ϱȷ} is F-Cauchy. As (Θ,ς) is F-complete, so there exists ϱΘ such that {ϱȷ} is F -convergent to ϱ, i.e.,

    limȷς(ϱȷ,ϱ)=0. (3.9)

    Now, we show that ϱ is fixed point of 1. We contrary suppose that ς(ϱ,1ϱ)>0. Then from (3.2), (F1) and (D3), we have

    f(ς(ϱ,1ϱ))f(ς(ϱ,2ϱ2ȷ+1)+ς(2ϱ2ȷ+1,1ϱ))+hf(ς(ϱ,2ϱ2ȷ+1)+ς(1ϱ,2ϱ2ȷ+1))+hf(ς(ϱ,ϱ2ȷ+2)+(α(ϱ,ϱ2ȷ+1)ς(ϱ,ϱ2ȷ+1)+β(ϱ,ϱ2ȷ+1)ς(ϱ,1ϱ)ς(ϱ2ȷ+1,2ϱ2ȷ+1)1+ς(ϱ,ϱ2ȷ+1)+γ(ϱ,ϱ2ȷ+1)ς(ϱ2ȷ+1,1ϱ)ς(ϱ,2ϱ2ȷ+1)1+ς(ϱ,ϱ2ȷ+1)))+hf(ς(ϱ,ϱ2ȷ+2)+(α(ϱ,ϱ2ȷ+1)ς(ϱ,ϱ2ȷ+1)+β(ϱ,ϱ2ȷ+1)ς(ϱ,1ϱ)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ,ϱ2ȷ+1)+γ(ϱ,ϱ2ȷ+1)ς(ϱ2ȷ+1,1ϱ)ς(ϱ,ϱ2ȷ+2)1+ς(ϱ,ϱ2ȷ+1)))+h.

    Taking the limit as ȷ and using (F2) and (8), we have

    limȷf(ς(ϱ,1ϱ))limȷf(ς(ϱ,ϱ2ȷ+2)+(α(ϱ,ϱ2ȷ+1)ς(ϱ,ϱ2ȷ+1)+β(ϱ,ϱ2ȷ+1)ς(ϱ,1ϱ)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ,ϱ2ȷ+1)+γ(ϱ,ϱ2ȷ+1)ς(ϱ2ȷ+1,1ϱ)ς(ϱ,ϱ2ȷ+2)1+ς(ϱ,ϱ2ȷ+1)))+h=,

    which implies that ς(ϱ,1ϱ)=0, a contradiction. Thus ϱ=1ϱ. Now we prove that ϱ is fixed point of 2. Then from (3.2), (F1) and (D3), we have

    f(ς(ϱ,2ϱ))f(ς(ϱ,1ϱ2ȷ)+ς(1ϱ2ȷ,2ϱ))+hf(ς(ϱ,ϱ2ȷ+1)+(α(ϱ2ȷ,ϱ)ς(ϱ2ȷ,ϱ)+β(ϱ2ȷ,ϱ)ς(ϱ2ȷ,1ϱ2ȷ)ς(ϱ,2ϱ)1+ς(ϱ2ȷ,ϱ)+γ(ϱ2ȷ,ϱ)ς(ϱ,1ϱ2ȷ)ς(ϱ2ȷ,2ϱ)1+ς(ϱ2ȷ,ϱ)))+hf(ς(ϱ,ϱ2ȷ+1)+(ς(ϱ,ϱ2ȷ+1)+α(ϱ2ȷ,ϱ)ς(ϱ2ȷ,ϱ)+β(ϱ2ȷ,ϱ)ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ,2ϱ)1+ς(ϱ2ȷ,ϱ)+γ(ϱ2ȷ,ϱ)ς(ϱ,ϱ2ȷ+1)ς(ϱ2ȷ,2ϱ)1+ς(ϱ2ȷ,ϱ)))+h.

    Taking the limit as ȷ and using (F2) and (8), we have

    limȷf(ς(ϱ,2ϱ))limȷf(ς(ϱ,ϱ2ȷ+1)+(ς(ϱ,ϱ2ȷ+1)+α(ϱ2ȷ,ϱ)ς(ϱ2ȷ,ϱ)+β(ϱ2ȷ,ϱ)ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ,2ϱ)1+ς(ϱ2ȷ,ϱ)+γ(ϱ2ȷ,ϱ)ς(ϱ,ϱ2ȷ+1)ς(ϱ2ȷ,2ϱ)1+ς(ϱ2ȷ,ϱ)))+h=,

    which implies that ς(ϱ,1ϱ)=0, a contradiction. Thus ϱ=2ϱ.Thus ϱ is a common fixed point of 1 and 2. Now we prove that ϱ is unique. We suppose that

    ϱ/=1ϱ/=2ϱ/

    but ϱϱ/. Now from (3.2), we have

    ς(ϱ,ϱ/)=ς(1ϱ,2ϱ/)α(ϱ,ϱ/)ς(ϱ,ϱ/)+β(ϱ,ϱ/)ς(ϱ,ϱ)ς(ϱ/,2ϱ/)1+ς(ϱ,ϱ/)+γ(ϱ,ϱ/)ς(ϱ/,1ϱ)ς(ϱ,2ϱ/)1+ς(ϱ,ϱ/)=α(ϱ,ϱ/)ς(ϱ,ϱ/)+β(ϱ,ϱ/)ς(ϱ,ϱ)ς(ϱ/,ϱ/)1+ς(ϱ,ϱ/)+γ(ϱ,ϱ/)ς(ϱ/,ϱ)ς(ϱ,ϱ/)1+ς(ϱ,ϱ/).

    This implies that, we have

    ς(ϱ,ϱ/)α(ϱ,ϱ/)ς(ϱ,ϱ/)+γ(ϱ,ϱ/)ς(ϱ,ϱ/)ς(ϱ,ϱ/)1+ς(ϱ,ϱ/)α(ϱ,ϱ/)ς(ϱ,ϱ/)+γ(ϱ,ϱ/)ς(ϱ,ϱ/)=(α(ϱ,ϱ/)+γ(ϱ,ϱ/))ς(ϱ,ϱ/).

    As α(ϱ,ϱ/)+γ(ϱ,ϱ/)<1, we have

    ς(ϱ,ϱ/)=0.

    Thus ϱ=ϱ/. Hence, the proof is completed.

    Now, let us introduce the following example.

    Example 2. Let Θ={Sȷ=2ȷ+1:ȷN} be endowed with the F-metric

    ς(ϱ,)={0,ifϱ=,e|ϱ|,ifϱ,

    for all ϱ,Θ and f(t)=lnt. Then (Θ,ς) is an F-complete F-metric space. Define the mapping 1,2:ΘΘ by

    1(Sȷ)={S1,    ifȷ=1,S2,    ifȷ=2,Sȷ2,     ifȷ3,

    and

    2(Sȷ)={S1,    ifȷ=1,2,Sȷ1,     ifȷ3.

    Suppose that mȷ, then

    ς(1(Sȷ),2(Sm))=e|Sȷ2Sm1|=e|2(ȷm)2|<e1e|2(ȷm)|=ας(Sȷ,Sm)α(Sȷ,Sm)ς(Sȷ,Sm)+β(Sȷ,Sm)ς(Sȷ,1Sȷ)ς(Sm,2Sm)1+ς(Sȷ,Sm)+γ(Sȷ,Sm)ς(Sm,1Sȷ)ς(Sȷ,2Sm)1+ς(Sȷ,Sm).

    Thus all the assertions of Theorem 3 are satisfied with α:Θ×Θ[0,1) defined by α(Sȷ,Sm)=e1 and any β,γ:Θ×Θ[0,1). Hence S1 is a unique common fixed point of 1 and 2.

    Consequently, from Theorem 3, we have the following corollaries:

    Corollary 1. Let (Θ,ς) be a F-complete F-metric space and 1,2:Θ Θ. If there exist mappings α,β:Θ×Θ[0,1) such that

    (a) α(21ϱ,)α(ϱ,) and α(ϱ,12)α(ϱ,),

    β(21ϱ,)β(ϱ,) and β(ϱ,12)β(ϱ,);

    (b) α(ϱ,)+β(ϱ,)<1;

    (c)

    ς(1ϱ,2)α(ϱ,)ς(ϱ,)+β(ϱ,)ς(ϱ,1ϱ)ς(,2)1+ς(ϱ,) 

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Setting γ:Θ×Θ[0,1) by γ(ϱ,)=0 in Theorem 3.

    Corollary 2. Let (Θ,ς) be a F-complete F-metric space and 1,2:ΘΘ. If there exist mappings α,γ:Θ×Θ[0,1) such that

    (a) α(21ϱ,)α(ϱ,) and α(ϱ,12)α(ϱ,),

    γ(21ϱ,)γ(ϱ,) and γ(ϱ,12)γ(ϱ,);

    (b) α(ϱ,)+γ(ϱ,)<1;

    (c)

    ς(1ϱ,2)α(ϱ,)ς(ϱ,)+γ(ϱ,)ς(,1ϱ)ς(ϱ,2)1+ς(ϱ,) ,

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Setting β:Θ×Θ[0,1) by β(ϱ,)=0 in Theorem 3.

    Corollary 3. Let (Θ,ς) be a F-complete F-metric space and 1,2:ΘΘ. If there exists a mapping α:Θ×Θ[0,1) such that

    (a) α(21ϱ,)α(ϱ,) and α(ϱ,12)α(ϱ,);

    (b)

    ς(1ϱ,2)α(ϱ,)ς(ϱ,),

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Setting β,γ:Θ×Θ[0,1) by β(ϱ,)=γ(ϱ,)=0 in Theorem 3.1.

    Corollary 4. Let (Θ,ς) be a F -complete F-metric space and :Θ Θ. If there exists mapping α:Θ×Θ[0,1) such that

    (a) α(ϱ,)α(ϱ,) and α(ϱ,)α(ϱ,);

    (b)

    ς(ϱ,)α(ϱ,)ς(ϱ,),

    for all ϱ, Θ, then has a unique fixed point.

    Corollary 5. Let (Θ,ς) be a F-complete F-metric space and :Θ Θ. If there exist mappings α,β,γ:Θ×Θ[0,1) such that

    (a) α(ϱ,)α(ϱ,) and α(ϱ,)α(ϱ,),

    β(ϱ,)β(ϱ,) and β(ϱ,)β(ϱ,),

    γ(ϱ,)γ(ϱ,) and γ(ϱ,)γ(ϱ,);

    (b) α(ϱ,)+β(ϱ,)+γ(ϱ,)<1;

    (c)

    ς(ϱ,)α(ϱ,)ς(ϱ,)+β(ϱ,)ς(ϱ,ϱ)ς(,)1+ς(ϱ,)+γ(ϱ,)ς(,ϱ)ς(ϱ,)1+ς(ϱ,) 

    for all ϱ, Θ, then has a unique fixed point.

    Proof. Setting 1=2= in Theorem 3.

    Corollary 6. Let (Θ,ς) be a F-complete F-metric space and :Θ Θ. If there exist mappings α,β,γ:Θ×Θ[0,1) such that

    (a) α(ϱ,)α(ϱ,) and α(ϱ,)α(ϱ,),

    β(ϱ,)β(ϱ,) and β(ϱ,)β(ϱ,),

    γ(ϱ,)γ(ϱ,) and γ(ϱ,)γ(ϱ,);

    (b) α(ϱ,)+β(ϱ,)+γ(ϱ,)<1;

    (c)

    ς(nϱ,n)α(ϱ,)ς(ϱ,)+β(ϱ,)ς(ϱ,nϱ)ς(,n)1+ς(ϱ,)+γ(ϱ,)ς(,nϱ)ς(ϱ,n)1+ς(ϱ,)  (3.10)

    for all ϱ, Θ, then has a unique fixed point.

    Proof. From the Corollary (5), we have ϱΘ such that nϱ=ϱ. Now from

    ς(ϱ,ϱ)=ς(nϱ,nϱ)=ς(nϱ,nϱ)α(ϱ,ϱ)ς(ϱ,ϱ)+β(ϱ,ϱ)ς(ϱ,nϱ)ς(ϱ,nϱ)1+ς(ϱ,ϱ)+γ(ϱ,ϱ)ς(ϱ,nϱ)ς(ϱ,nϱ)1+ς(ϱ,ϱ) α(ϱ,ϱ)ς(ϱ,ϱ)+β(ϱ,ϱ)ς(ϱ,ϱ)ς(ϱ,ϱ)1+ς(ϱ,ϱ)+γ(ϱ,ϱ)ς(ϱ,ϱ)ς(ϱ,ϱ)1+ς(ϱ,ϱ)=α(ϱ,ϱ)ς(ϱ,ϱ)+γ(ϱ,ϱ)ς(ϱ,ϱ)ς(ϱ,ϱ)1+ς(ϱ,ϱ),

    which implies that

    ς(ϱ,ϱ)α(ϱ,ϱ)ς(ϱ,ϱ)+γ(ϱ,ϱ)ς(ϱ,ϱ)=(α(ϱ,ϱ)+γ(ϱ,ϱ))ς(ϱ,ϱ),

    which is possible only whenever ς(ϱ,ϱ)=0. Thus ϱ=ϱ.

    Corollary 7. Let (Θ,ς) be a F-complete F-metric space and 1,2:Θ Θ. If there exist mappings α,β,γ:Θ[0,1) such that

    (a) α(21ϱ)α(ϱ),

    β(21ϱ)β(ϱ),

    γ(21ϱ)γ(ϱ);

    (b) α(ϱ)+β(ϱ)+γ(ϱ)<1;

    (c)

    ς(1ϱ,2)α(ϱ)ς(ϱ,)+β(ϱ)ς(ϱ,1ϱ)ς(,2)1+ς(ϱ,)+γ(ϱ)ς(,1ϱ)ς(ϱ,2)1+ς(ϱ,) ,

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Define α,β,γ:Θ×Θ[0,1) by

    α(ϱ,)=α(ϱ),β(ϱ,)=β(ϱ)andγ(ϱ,)=γ(ϱ)

    for all ϱ,Θ. Then for all ϱ,Θ, we have

    (a) α(21ϱ,)=α(21ϱ)α(ϱ)=α(ϱ,) and α(ϱ,12)=α(ϱ)=α(ϱ,),

    β(21ϱ,)=β(21ϱ)β(ϱ)=β(ϱ,) and β(ϱ,12)=β(ϱ)=β(ϱ,),

    γ(21ϱ,)=γ(21ϱ)γ(ϱ)=γ(ϱ,) and γ(ϱ,12)=γ(ϱ)=γ(ϱ,);

    (b) α(ϱ,)+β(ϱ,)+γ(ϱ,)=α(ϱ)+β(ϱ)+γ(ϱ)<1;

    (c)

    ς(1ϱ,2)α(ϱ)ς(ϱ,)+β(ϱ)ς(ϱ,1ϱ)ς(,2)1+ς(ϱ,)+γ(ϱ)ς(,1ϱ)ς(ϱ,2)1+ς(ϱ,) =α(ϱ,)ς(ϱ,)+β(ϱ,)ς(ϱ,1ϱ)ς(,2)1+ς(ϱ,)+γ(ϱ,)ς(,1ϱ)ς(ϱ,2)1+ς(ϱ,);

    (d) λ=α(ϱ0,ϱ1)1β(ϱ0,ϱ1)=α(ϱ0)1β(ϱ0)<1.

    By Theorem 3, 1 and 2 have a unique common fixed point.

    Corollary 8. Let 1,2:Θ Θ. If there exist α,β, γ[0,1) with α+β+γ<1 such that

    ς(1ϱ,2)ας(ϱ,)+βς(ϱ,1ϱ)ς(,2)1+ς(ϱ,)+γς(,1ϱ)ς(ϱ,2)1+ς(ϱ,) ,

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Taking α()=α, β()=β and γ()=γ in Corollary 7.

    Corollary 9. Let (Θ,ς) be a F-complete F-metric space and 1,2:Θ Θ. If there exist α,β[0,1) with α+β<1 such that

    ς(1ϱ,2)ας(ϱ,)+βς(ϱ,1ϱ)ς(,2)1+ς(ϱ,)

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Taking γ=0 in Corollary 8.

    Remark 1. If we set 1=2= in the Corollary 9, the we get the main result of Al-Mazrooei et al. [7].

    Corollary 10. Let (Θ,ς) be a F-complete F-metric space and 1,2:Θ Θ. If there exists α[0,1) such that

    ς(1ϱ,2)ας(ϱ,)

    for all ϱ, Θ, then 1 and 2 have a unique common fixed point.

    Proof. Taking β=0 in Corollary 9.

    Remark 2. If we set 1=2= in the Corollary 10, the we get the main result of Samet et al. [6].

    Let (Θ,ς) be an F-metric space and G be a directed graph. Let us represent by G1 the graph generated from G by changing the direction of E(G). Hence,

    E(G1)={(ϱ,)Θ×Θ(,ϱ)E(G)}.

    Definition 4. An element ϱ Θ is said to be a common fixed point of the pair (1,2), if 1(ϱ)=2(ϱ)=ϱ. We denote by CFix(1,2), the family of all common fixed points of the pair (1,2), that is,

    CFix(1,2)={ϱΘ:1(ϱ)=2(ϱ)=ϱ}.

    Definition 5. Let (Θ,ς) be an F-complete F-metric space equipped with a directed graph G and let 1,2 :ΘΘ. Then the pair (1,2) is called a G-orbital cyclic pair, if

    (ϱ,1ϱ)E(G)(1ϱ,2(1ϱ))E(G),
    (ϱ,2ϱ)E(G)(2ϱ,1(2ϱ))E(G)

    for any ϱ Θ. Let us consider the following sets

    Θ1={ϱΘ(ϱ,1ϱ)E(G)},Θ2={ϱΘ(ϱ,2ϱ)E(G)}.

    Remark 3. If (1,2) is a G-orbital-cyclic pair, then Θ1Θ2.

    Proof. Let ϱ0Θ1. Then (ϱ0,1ϱ0)E(G)(1ϱ0,2(1ϱ0))E(G). If we represent by ϱ1=1ϱ0, then we get that (ϱ1,2(ϱ1))E(G), thus Θ2. Now let us prove the following main theorem.

    Theorem 4. Let (Θ,ς) be a F-complete F-metric space equipped with a directed graph G and 1,2:ΘΘ is G-orbital cyclic pair. Assume that there exists α[0,1) such that

    (ⅰ) Θ1,

    (ⅱ) ϱΘ1 and Θ2

    ς(1ϱ,2)αmax{ς(ϱ,),ς(ϱ,1ϱ)ς(,2)1+ς(ϱ,),ς(ϱ,2)ς(,1ϱ)1+ς(ϱ,)}, (5.1)

    (iii) 1 and 2 are continuous, or (ϱȷ)ȷNΘ, with ϱȷϱ as , and (ϱȷ,ϱȷ+1)E(G) for , we have ϱΘ1Θ2. In these conditions CFix(1,2),

    (iv) if (ϱ,ϱ/)CFix(1,2) implies ϱΘ1 and ϱ/Θ2, then the pair (1,2) has a unique common fixed point.

    Proof. Let ϱ0Θ1. Thus (ϱ0,1ϱ0)E(G). As the pair (1,2) is G-orbital cyclic, we get (1ϱ0,21ϱ0)E(G). Construct ϱ1 by ϱ1=1ϱ0, we have (ϱ1,2ϱ1)E(G) and from here (2ϱ1,12ϱ1)E(G). Denoting by ϱ2=2ϱ1, we have (ϱ2,1ϱ2)E(G). Pursuing along these lines, we generate a sequence (ϱȷ)ȷN with ϱ2ȷ=2ϱ2ȷ1 and ϱ2ȷ+1=1ϱ2ȷ, such that (ϱ2ȷ,ϱ2ȷ+1)E(G). We assume that ϱȷϱȷ+1. If, there exists N, such that ϱȷ0=ϱȷ0+1, then in the view of the fact that ΔE(G), (ϱȷ0,ϱȷ0+1)E(G) and thus ϱ=ϱȷ0 is a fixed point of 1. Now to manifest that ϱCFix(1,2), we shall discuss these two cases for . If is even, then . Then, ϱ2ȷ=ϱ2ȷ+1=1ϱ2ȷ and thus, ϱ2ȷ is a fixed point of 1. Assume that ϱ2ȷ=ϱ2ȷ+1=1ϱ2ȷ but ς(1ϱ2ȷ,2ϱ2ȷ+1)>0, and let ϱ=ϱ2ȷΘ1 and =ϱ2ȷ+1Θ2. So

    0<ς(ϱ2ȷ+1,ϱ2ȷ+2)=ς(1ϱ2ȷ,2ϱ2ȷ+1)αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,1ϱ2ȷ)ς(ϱ2ȷ+1,2ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,2ϱ2ȷ+1)ς(ϱ2ȷ+1,1ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+2)ς(ϱ2ȷ+1,ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1)}αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ+1,ϱ2ȷ+2)}=ας(ϱ2ȷ+1,ϱ2ȷ+2), (5.2)

    that is contradiction because α<1. Hence ϱ2ȷ is a fixed point of 2 too. Likewise if is odd number, then ϱΘ such that 1ϱ2ϱ=ϱ. So we assume that ϱȷϱȷ+1 for all N. Now we shall show that (ϱȷ)ȷN is Cauchy sequence. We have these two possible cases to discuss:

    Case 1. ϱ=ϱ2ȷΘ1 and =ϱ2ȷ+1Θ2.

    0<ς(ϱ2ȷ+1,ϱ2ȷ+2)=ς(1ϱ2ȷ,2ϱ2ȷ+1)αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,1ϱ2ȷ)ς(ϱ2ȷ+1,2ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,2ϱ2ȷ+1)ς(ϱ2ȷ+1,1ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ,ϱ2ȷ+2)ς(ϱ2ȷ+1,ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ+1),ς(ϱ2ȷ+1,ϱ2ȷ+2)}α[ς(ϱ2ȷ,ϱ2ȷ+1)+ς(ϱ2ȷ+1,ϱ2ȷ+2)]

    that is

    (1α)ς(ϱ2ȷ+1,ϱ2ȷ+2)ας(ϱ2ȷ,ϱ2ȷ+1)

    which implies

    ς(ϱ2ȷ+1,ϱ2ȷ+2)α1ας(ϱ2ȷ,ϱ2ȷ+1). (5.3)

    Case 2. ϱ=ϱ2ȷΘ1 and =ϱ2ȷ1Θ2.

    0<ς(ϱ2ȷ+1,ϱ2ȷ)=ς(1ϱ2ȷ,2ϱ2ȷ1)αmax{ς(ϱ2ȷ,ϱ2ȷ1),ς(ϱ2ȷ,1ϱ2ȷ)ς(ϱ2ȷ1,2ϱ2ȷ1)1+ς(ϱ2ȷ,ϱ2ȷ1),ς(ϱ2ȷ,2ϱ2ȷ1)ς(ϱ2ȷ1,1ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ1)}=αmax{ς(ϱ2ȷ,ϱ2ȷ1),ς(ϱ2ȷ,ϱ2ȷ+1)ς(ϱ2ȷ1,ϱ2ȷ)1+ς(ϱ2ȷ,ϱ2ȷ1),ς(ϱ2ȷ,ϱ2ȷ)ς(ϱ2ȷ1,ϱ2ȷ+1)1+ς(ϱ2ȷ,ϱ2ȷ1)}αmax{ς(ϱ2ȷ,ϱ2ȷ1),ς(ϱ2ȷ,ϱ2ȷ+1)}=αmax{ς(ϱ2ȷ1,ϱ2ȷ),ς(ϱ2ȷ,ϱ2ȷ+1)}α[ς(ϱ2ȷ1,ϱ2ȷ)+ς(ϱ2ȷ,ϱ2ȷ+1)]

    that is

    (1α)ς(ϱ2ȷ+1,ϱ2ȷ)ας(ϱ2ȷ,ϱ2ȷ1)

    which implies

    ς(ϱ2ȷ,ϱ2ȷ+1)α1ας(ϱ2ȷ1,ϱ2ȷ). (5.4)

    Since τ=α1α, so we have

    ς(ϱȷ,ϱȷ+1)τς(ϱȷ1,ϱȷ). (5.5)

    Thus, we have

    ς(ϱȷ,ϱȷ+1)τς(ϱȷ1,ϱȷ)τ2ς(ϱȷ2,ϱȷ1)τȷς(ϱ0,ϱ1). (5.6)

    Let (f,h)F×[0,+) be such that (D3) is satisfied. Let ϵ>0 be fixed. By (F2), δ>0 such that

    0<t<δf(t)<f(δ)h. (5.7)

    Hence, by (5.6), (F1) and (F2), we have

    f(m1i=ȷς(ϱi,ϱi+1))f(m1i=ȷλȷ(ς(ϱ0,ϱ1)))f(ȷn(ϵ)λȷς(ϱ0,ϱ1))<f(ϵ)h (5.8)

    for . By (D3) and (5.7), we get ς(ϱȷ,ϱm)>0, implies

    f(ς(ϱȷ,ϱm))f(m1i=ȷς(ϱi,ϱi+1))+h<f(ϵ)

    which yields by (F1) that ς(ϱȷ,ϱm)<ϵ, . It shows that {ϱȷ} is F-Cauchy. As (Θ,ς) is F-complete, so ϱΘ such that {ϱȷ} is F-convergent to ϱ, i.e.,

    limȷς(ϱȷ,ϱ)=0. (5.9)

    that is ϱȷϱ as . It is obvious that

    limȷϱ2ȷ=limȷϱ2ȷ+1=ϱ. (5.10)

    As 1 and 2 are continuous, so we have

    ϱ=limȷϱ2ȷ+1=limȷ1(ϱ2ȷ)=1(ϱ)ϱ=limȷϱ2ȷ+2=limȷ2(ϱ2ȷ+1)=2(ϱ). (5.11)

    Now letting ϱ=ϱΘ1 and =ϱ2ȷ+2Θ2, we have We contrary suppose that ς(ϱ,1ϱ)>0. Then from (3.2), (F1) and (D3), we have

    f(ς(1ϱ,ϱ))f(ς(ϱ1ϱ,2ϱ2ȷ+1)+ς(2ϱ2ȷ+1,ϱ))+hf(ς(ϱ,2ϱ2ȷ+1)+ς(ϱ2ȷ+2,ϱ))+hf(αmax{ς(ϱ,ϱ2ȷ+1),ς(ϱ,1ϱ)ς(ϱ2ȷ+1,2(ϱ2ȷ+1)1+ς(ϱ,ϱ2ȷ+1),ς(ϱ,2(ϱ2ȷ+1)ς(ϱ2ȷ+1,1ϱ)1+ς(ϱ,ϱ2ȷ+1)}+ς(ϱ2ȷ+2,ϱ))+h=f(αmax{ς(ϱ,ϱ2ȷ+1),ς(ϱ,1ϱ)ς(ϱ2ȷ+1,ϱ2ȷ+2)1+ς(ϱ,ϱ2ȷ+1),ς(ϱ,ϱ2ȷ+2)ς(ϱ2ȷ+1,1ϱ)1+ς(ϱ,ϱ2ȷ+1)}+ς(ϱ2ȷ+2,ϱ))+h.

    Taking and using (F2), (5.10) and (5.11), we get

    limȷf(ς(1ϱ,ϱ))=,

    which is a contradiction. Thus, we have ς(ϱ,1ϱ)=0. This yields that ϱ=1ϱ. Similarly, suppose that ϱ=ϱ2ȷ+1Θ1 and =ϱΘ2, we have

    f(ς(ϱ,2ϱ))f(ς(ϱ,1(ϱ2ȷ))+ς(1(ϱ2ȷ),2ϱ))+hf(ς(ϱ,1(ϱ2ȷ))+ς(1(ϱ2ȷ),2ϱ))+hf(ς(ϱ,1(ϱ2ȷ))+αmax{ς(ϱ2ȷ,ϱ),ς(ϱ2ȷ,1(ϱ2ȷ))ς(ϱ,2ϱ)1+ς(ϱ2ȷ,ϱ),ς(ϱ2ȷ,2ϱ)ς(ϱ,1(ϱ2ȷ))1+ς(ϱ2ȷ,ϱ)})+h.

    Taking the limit as and using (F2), (5.10) and (5.11), we have

    limȷf(ς(ϱ,2ϱ))=,

    which is a contradiction. Thus, we have ς(ϱ,2ϱ)=0. This yields that ϱ=2ϱ.

    Corollary 11. Let (Θ,ς) be a F-complete F-metric space equipped with a directed graph G and :ΘΘ is a G-orbital-cyclic. Suppose that there exists α[0,1) such that

    (i) Θ,

    (ii) ϱ,Θ, we have

    ς(ϱ,)αmax{ς(ϱ,),ς(ϱ,ϱ)ς(,)1+ς(ϱ,),ς(ϱ,)ς(,ϱ)1+ς(ϱ,)},

    (iii) is continuous, or (ϱȷ)ȷNΘ, with ϱȷϱ as ȷ, and (ϱȷ,ϱȷ+1)E(G) for ȷN, we have ϱΘ.

    Then has a unique fixed point.

    A representative stability result based on fixed point theory arguments follows a number of basic arguments adapted to the special structure of the equation under consideration. It leads to large number of results in the literature for different classes of equations, see [21,22]. In the present section, we investigate the existence of solution to differential equation

    ϱ/(t)=a(t)ϱ(t)+b(t)g(ϱ(tr(t)))+c(t)ϱ/(tr(t)). (6.1)

    We state a lemma of Djoudi et al.[23] which will be used in proving of our theorem.

    Lemma 2. (see [23]) Assume that r/(t)1 tR. Then ϱ(t) is a solution of (6.1) if and only if

    ϱ(t)=(ϱ(0)c(0)1r/(0)ϱ(r(0)))et0a(s)ds+c(t)1r/(t)ϱ(tr(t))t0(h(υ))ϱ(υr(υ)))b(υ)g(ϱ(υr(υ))))etυa(s)dsdυ, (6.2)

    where

    h(υ)=r//(υ)c(υ)+(c/(υ)+c(υ)a(υ))(1r/(υ))(1r/(υ))2. (6.3)

    Now suppose that ϑ:(,0]R is a bounded and continuous function, then ϱ(t)=ϱ(t,0,ϑ) is a solution of (6.1) if ϱ(t)=ϑ(t) for t0 and satisfies (6.1) for t0. Assume that C is the collection of ϱ:RR which are continuous. Define ϑ by

    ϑ={ϱ:RRsuchthatϑ(t)=ϱ(t)ift0,ϱ(t)0ast,ϱC}.

    Then ϑ is a Banach space endowed with .

    Lemma 3. (see [14]) The space (ϑ,) with the F-metric d defined by

    \begin{equation*} d(\mathfrak{t},\mathfrak{t}^{\ast }) = ||\mathfrak{t-t}^{\ast }|| = \sup\limits_{\varrho \in I}\left \vert \mathfrak{t}(\varrho )-\mathfrak{t} ^{\ast }(\varrho )\right \vert \end{equation*}

    for all t, t^{\ast }\in \aleph _{\vartheta }, is \mathcal{F} -metric space.

    Theorem 5. Let \Re :\aleph _{\vartheta }\rightarrow \aleph _{\vartheta } be a mapping defined by

    \begin{eqnarray} (\Re \varrho )(\mathfrak{t}) & = &\left( \varrho (0)-\frac{c(0)}{1-r^{/}(0)} \varrho (-r(0))\right) e^{-\int_{0}^{\mathfrak{t}}a(s)ds}+\frac{c(\mathfrak{t })}{1-r^{/}(\mathfrak{t})}\tau (\mathfrak{t}-r(\mathfrak{t})) \\ &&-\int_{0}^{\mathfrak{t}}(h(\upsilon )\varrho (\upsilon -r(\upsilon ))-b(\upsilon )g\left( \varrho (\upsilon -r(\upsilon ))\right) )e^{-\int_{\upsilon }^{\mathfrak{t}}a(s)ds}d\upsilon ,\mathit{{\text{}}}t\geq 0 \end{eqnarray} (6.4)

    for all \varrho \in \aleph _{\vartheta } . Assume that there exists \alpha :\aleph _{\vartheta }\times \aleph _{\vartheta }\mathfrak{\rightarrow }[0, 1) such that

    \begin{equation*} \alpha \left( \varrho (t),\hbar (t)\right) = \left \{ \left \vert \frac{c( \mathfrak{t})}{1-r^{/}(\mathfrak{t})}\right \vert +\int_{0}^{\mathfrak{t} }\left( \left \vert h(\upsilon )\right \vert +\left \vert b(\upsilon )\right \vert \right) e^{-\int_{\upsilon }^{\mathfrak{t}}a(s)ds}\right \} < 1. \end{equation*}

    Then \Re has a fixed point.

    Proof. It follows from (6.3) that \Re (\varrho), \Re (\hbar)\in \aleph _{\vartheta } . Now from (6.4), we have

    \begin{eqnarray*} \left \vert (\Re \varrho )(\mathfrak{t})-(\Re \hbar )(\mathfrak{t})\right \vert &\leq &\left \vert \frac{c(\mathfrak{t})}{1-r^{/}(\mathfrak{t})}\right \vert \left \Vert \varrho -\hbar \right \Vert \\ &&+\int_{0}^{\mathfrak{t}}|h(\upsilon )(\varrho (\upsilon -r(\upsilon )))-\hbar (\upsilon -r(\upsilon ))|e^{-\int_{\upsilon }^{\mathfrak{t}}a(s)ds} \\&& +\int_{0}^{\mathfrak{t}}|(b(\upsilon ))g(\varrho (\upsilon -r(\upsilon )))-g(\hbar (\upsilon -r(\upsilon )))|e^{-\int_{\upsilon }^{\mathfrak{t} }a(s)ds} \\ &\leq &\left \{ \left \vert \frac{c(\mathfrak{t})}{1-r^{/}(\mathfrak{t})} \right \vert +\int_{0}^{\mathfrak{t}}\left( \left \vert h(\upsilon )\right \vert +\left \vert b(\upsilon )\right \vert \right) e^{-\int_{\upsilon }^{ \mathfrak{t}}a(s)ds}\right \} \left \Vert \varrho -\hbar \right \Vert \\ &\leq &\alpha \left( \varrho ,\hbar \right) \left \Vert \varrho -\hbar \right \Vert . \end{eqnarray*}

    Hence,

    \begin{equation*} d(\Re \varrho ,\Re \hbar )\leq \alpha \left( \varrho ,\hbar \right) d(\varrho ,\hbar ). \end{equation*}

    Thus all the assumptions of Corollary 4 are satisfied and \Re has a unique fixed point in \aleph _{\vartheta } which solves (6.1).

    1) Can the notion of \mathcal{F} -metric space be extended to graphical \mathcal{F} -metric space?

    2) Can the results proved in this article be extended to multivalued mappings and fuzzy set valued mappings?

    3) Can differential inclusions can be solved as applications of fixed point results for multivalued mappings in the context of \mathcal{F} -metric space?

    In this article, we have utilized the notion of \mathcal{F} -metric spaces and obtained common fixed point results for generalized rational contractions involving control functions of two variables. We have derived common fixed points and fixed points of single valued mappings for contractions involving control functions of one variable and constants. We also have established some common fixed point theorems in \mathcal{F} -metric spaces endowed with graph. We expect that the obtained theorems in this article will make new relations for those people who are employing in \mathcal{F} -metric spaces.

    The second author Ahmad Al-Rawashdeh is financially supported by the Grants: UPAR-2019, Fund No. 31S397, and the Post-Doc-2019, Fund No. 31S404.

    The authors declare that they have no conflicts of interest.



    [1] M. Arioli, M. Baboulin, S. Gratton, A partial condition number for linear least squares problems, SIAM J. Matrix Anal. Appl., 29 (2007), 413–433. doi: 10.1137/050643088. doi: 10.1137/050643088
    [2] E. H. Bergou, S. Gratton, J. Tshimanga, The exact condition number of the truncated singular value solution of a linear ill-posed problem, SIAM J. Matrix Anal. Appl., 35 (2014), 1073–1085. doi: 10.1137/120869286. doi: 10.1137/120869286
    [3] A. Bojanczyk, N. J. Higham, H. Patel, Solving the indefinite least squares problem by hyperbolic QR factorization, SIAM J. Matrix Anal. Appl., 24 (2003), 914–931. doi: 10.1137/S0895479802401497. doi: 10.1137/S0895479802401497
    [4] S. Chandrasekaran, M. Gu, A. H. Sayed, A stable and efficient algorithm for the indefinite linear least-squares problem, SIAM J. Matrix Anal. Appl., 20 (1998), 354–362. doi: 10.1137/S0895479896302229. doi: 10.1137/S0895479896302229
    [5] H. Diao, T. Zhou, Backward error and condition number analysis for the indefinite linear least squares problem, Int. J. Comput. Math., 96 (2019), 1603–1622. doi: 10.1080/00207160.2018.1467007. doi: 10.1080/00207160.2018.1467007
    [6] J. I. Giribet, A. Maestripieri, F. M. Peria, A geometrical approach to indefinite least squares problem, Acta Appl. Math., 111 (2011), 65–81. doi: 10.1007/s10440-009-9532-3. doi: 10.1007/s10440-009-9532-3
    [7] A. Graham, Kronecker Products and Matrix Calculus with Application, Wiley, New York, 1981.
    [8] S. Gratton, On the condition number of linear least squares problems in a weighted Frobenius norm, BIT, 36 (1996), 523–530. doi: 10.1007/BF01731931. doi: 10.1007/BF01731931
    [9] B. Hassibi, A. H. Sayed, T. Kailath, Linear estimation in Krein spaces. Part I: Theory, IEEE Trans. Automat. Contr., 41 (1996), 18–33. doi: 10.1109/9.481605. doi: 10.1109/9.481605
    [10] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2Eds., SIAM, Philadelphia, 2002.
    [11] H. Li, S. Wang, H. Yang, On mixed and componentwise condition numbers for indefinite least squares problem, Linear Algebra Appl., 448 (2014), 104–129. doi: 10.1016/j.laa.2014.01.030. doi: 10.1016/j.laa.2014.01.030
    [12] H. Li, S. Wang, On the partial condition numbers for the indefinite least squares problem, Appl. Numer. Math., 123 (2018), 200–220. doi: 10.1016/j.apnum.2017.09.006. doi: 10.1016/j.apnum.2017.09.006
    [13] Q. Liu, X. Li, Preconditioned conjugate gradient methods for the solution of indefinite least squares problems, Calcolo, 48 (2011), 261–271. doi: 10.1007/s10092-011-0039-8. doi: 10.1007/s10092-011-0039-8
    [14] Q. Liu, A. Liu, Block SOR methods for the solution of indefinite least squares problems, Calcolo, 51 (2014), 367–379. doi: 10.1007/s10092-013-0090-8. doi: 10.1007/s10092-013-0090-8
    [15] Y. Ou, Z. Peng, The solvability conditions for one kind of indefinite problems, Proceedings of the ninth International Conference on Matrix Theory and its Applications, World Academic Union, UK, 2010,142–145.
    [16] A. H. Sayed, B. Hassibi, T. Kailath, Inertia properties of indefinite quadratic forms, IEEE. Signal Process. Lett., 3 (1996), 57–59. doi: 10.1109/97.484217. doi: 10.1109/97.484217
    [17] J. Song, USSOR method for solving the indefinite least squares problem, Int. J. Comput. Math., doi: 10.1080/00207160.2019.1658869.
    [18] S. Van Huffel, J. Vandewalle, The Total Least Squares Problem: Computational Aspects and Analysis, SIAM, Philadelphia, 1991. doi: 10.2307/2153088.
    [19] L. Yang, H. Li, Condition numbers for indefinite least squares problem with multiple right-hand sides, J. Math. Res. Appl., 37 (2017), 725–742.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1866) PDF downloads(57) Cited by(0)

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog